探解圆锥曲线问题的有效工具极点与极线的性质
- 格式:pdf
- 大小:584.87 KB
- 文档页数:4
解圆锥曲线问题常用方法+椭圆与双曲线的经典结论+椭圆与双曲线的对偶性质总结解圆锥曲线问题常用以下方法:1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.椭圆与双曲线的对偶性质总结椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
高中数学圆锥曲线技巧之极点与极线在高中数学的学习中,圆锥曲线是一个比较复杂但又非常重要的内容。
其中,极点与极线是圆锥曲线中一个较为抽象但又极具深度的概念。
在本文中,我们将深入探讨高中数学中关于极点与极线的技巧,并通过具体的例子来帮助大家更好地理解和运用这一知识。
极点与极线是圆锥曲线中的重要概念,它们的理解和运用可以帮助我们更好地解题和应用数学知识。
在接下来的内容中,我们将从简单到复杂,由浅入深地介绍极点与极线的相关知识,让大家能够更直观地理解这一概念。
让我们从极点的定义和性质入手。
极点是在圆锥曲线上的一个特殊点,它具有一定的性质和特点。
在直角坐标系中,对于椭圆、双曲线和抛物线而言,这些曲线上都存在极点。
具体来说,在椭圆和双曲线上,极点是无限远处的点,而在抛物线上,极点是定点。
通过对极点的性质进行深入了解,我们可以更好地应用这一知识解决问题。
让我们了解极线的概念及其性质。
极线是与极点对应的直线,它们之间存在着一定的几何关系。
在椭圆和双曲线的情况下,极线是通过极点并且与曲线相切的直线,而在抛物线的情况下,极线是通过极点并且与对称轴垂直的直线。
通过对极线的性质进行深入研究,我们可以更好地掌握圆锥曲线相关问题的解题技巧。
接下来,让我们通过实例来详细讨论极点与极线的应用技巧。
以椭圆曲线为例,假设我们需要确定椭圆上关于极点和极线的一些特定问题。
在解题过程中,我们可以先确定椭圆的极点,然后求出与极点相关的极线方程,进而利用极线的性质来解决具体的问题。
通过实例的具体讲解,我们可以更好地理解并掌握极点与极线的运用技巧。
总结回顾一下,极点与极线是圆锥曲线中的重要概念,它们的理解和运用可以帮助我们更好地解题和应用数学知识。
通过对极点与极线的深入讨论和实例分析,我们能够更全面、深刻和灵活地理解这一知识,并运用于实际问题中。
对于我个人来说,极点与极线的学习过程不仅仅是对圆锥曲线知识的掌握,更是对数学思维和解题能力的提升。
极点极线当极点在圆锥曲线内的写法圆锥曲线是高中数学学习中比较重要且难以学习的部分。
其中,极点极线是较为复杂的概念。
本文将介绍极点极线当极点在圆锥曲线内的写法。
一、极点极线的定义
极点极线是指在平面直角坐标系中,从一点向圆锥曲线上的所有点引一条直线,那么这条直线叫做极线,这个点就是极点。
二、圆锥曲线的分类
圆锥曲线一共有四种类型:圆、椭圆、双曲线和抛物线。
不同类型的圆锥曲线的性质不同。
本文主要介绍当极点在圆锥曲线内时的情况。
三、椭圆的情况
当极点在椭圆内部时,极线的两个端点分别交于椭圆的两个焦点上,且与椭圆的切线垂直。
四、双曲线的情况
当极点在双曲线内部时,极线的两个端点分别交于双曲线的两个焦点上,且与双曲线的渐近线垂直。
五、抛物线的情况
当极点在抛物线内部时,极线的两个端点分别交于抛物线的顶点和抛物线的对称轴上,且与抛物线的准线垂直。
六、圆的情况
当极点在圆内部时,极线是过圆心并垂直于圆的直径的直线。
总结:极点极线是圆锥曲线的一个重要概念,不同类型的圆锥曲线在极点极线方面会有不同的表现。
当极点在圆锥曲线内部时,可以根据不同的类型进行判断。
圆锥曲线极点极线过定点对于圆锥曲线,极点和极线是很重要的概念。
极点是指在平面上固定一个点P,并取出一条直线L,对于平面上所有点Q,连结P和Q,并延长这条连接线,使其与直线L相交,如果这样的交点存在,则点P就是曲线的极点,直线L就是曲线的极线。
下面证明极线过定点的结论。
假设圆锥曲线的极点为P,极线为L,并且经过点A。
那么,我们需要证明L一定经过一个定点B。
首先,任取曲线上另外一个点Q,并连接PQ。
因为P是极点,所以PQ与极线L垂直,所以PQ的斜率是L的斜率的倒数。
设斜率为m,则可以表示为:m = -1/k其中k是L的斜率。
因为Q和A都在曲线上,所以它们的坐标(xQ,yQ)和(xA,yA)必须满足曲线的方程。
设曲线的方程是F(x,y)=0,则有:F(xQ,yQ) = 0F(xA,yA) = 0由于Q在极线上,所以PQ过点A的中垂线L'也必须经过点Q。
因此,L'的斜率是QA的斜率的相反数,即:k' = - (yA-yQ)/(xA-xQ)而L'与L垂直,所以k'×k=-1。
将k'代入上式可得:(xA-xQ)/(yA-yQ)×k = 1解出k:k = (yA-yQ)/(xA-xQ)将k代入第一式中,可得:m = - (xA-xQ)/(yA-yQ)将m和曲线的方程代入PQ的直线方程中,得到:(y-yQ)/(x-xQ) = - (xA-xQ)/(yA-yQ)×(dF/dx)/(dF/dy)其中dF/dx和dF/dy分别是曲线上点Q处的偏导数。
这是PQ的直线方程,我们要找到L的方程。
由于L是曲线的极线,所以L也要与PQ垂直,即它的斜率也满足:kL = -1/k = - (yA-yQ)/(xA-xQ)将kL带入直线的一般式,有:y - yP = kL(x - xP)代入kL,有:y - yP = - (yA-yQ)/(xA-xQ)×(x - xP)化简之后,可得L的方程:y = - (yA-yQ)/(xA-xQ)×(x - xP) + yP因为Q是曲线上的点,所以可以将曲线的方程代入L的方程中,消去x和y,得到:y = (yA-yQ)/(xA-xQ)×x + (xAyQ-xQyA)/(xA-xQ)这是L的标准式,可以看出它是一个直线。
极点与极线的调和性在高考中的应用在高考数学中,极点与极线的调和性是一个重要的概念。
它涉及到函数的最值、不等式、方程等问题,是高考数学中的难点之一。
本文将从极点与极线的定义、调和性、应用等方面进行探讨,帮助考生更好地理解和掌握这一概念。
极点是指在一个函数图像上,一个点所对应的函数值。
而极线是指过这个点所作的切线与x轴的交点的横坐标。
在高考数学中,极点与极线通常指的是函数的极值点和临界点。
极点与极线的调和性是指在一定条件下,函数的极值点和临界点的位置之间存在一定的关系。
在高考数学中,通常会考察函数的单调性、最值等问题,这些问题都与极点与极线的调和性有关。
在高考数学中,最值问题是一个常见的题型。
利用极点与极线的调和性,可以将函数进行分解,从而得到函数的最小值或最大值。
例如,对于一个二次函数y=ax^2+bx+c,可以利用极点与极线的调和性求出其最小值或最大值。
不等式是高考数学中的另一个重要题型。
利用极点与极线的调和性,可以将不等式转化为函数的最值问题,从而得到不等式的解。
例如,对于一个不等式x^2+bx+c>0,可以利用极点与极线的调和性求出其解集。
方程是高考数学中的另一个重要题型。
利用极点与极线的调和性,可以将方程转化为函数的最值问题,从而得到方程的解。
例如,对于一个方程ax^2+bx+c=0,可以利用极点与极线的调和性求出其解。
极点与极线的调和性是高考数学中的一个重要概念。
它涉及到函数的最值、不等式、方程等问题,是高考数学中的难点之一。
考生需要熟练掌握极点与极线的定义、调和性、应用等方面,才能更好地理解和掌握这一概念。
考生还需要注意一些常见的错误和易错点,如忽视函数的定义域、不考虑函数的单调性等。
只有全面掌握这一概念,才能在高考数学中取得好成绩。
极点和极线是解析几何中的重要概念,它们对于描述和解决圆锥曲线问题具有重要的应用价值。
通过理解极点和极线的性质,我们可以更深入地理解圆锥曲线的性质和特点。
圆锥曲线极点极线圆锥曲线极点极线是近古几何研究中的重要主题。
圆锥曲线,它是一类具有两个参数的曲线,它的极点极线是引力学重要的技术运用难点,为此,许多学者研究了它的极点极线。
英国数学家布洛克在1830年首次探讨了圆锥曲线的极点极线,提出“对称弯矩圆锥曲线的极点可以用三条曲线定义,这三条曲线在发散点相交,交点为圆锥曲线的极点;而定义同一极点的三条曲线分别代表极点极线。
”18th世纪末,法国数学家亨利·马洛完善了布洛克的理论,他提出:“把每条极点极线看作某种对称曲线,该曲线的驱动力与极点极线起点的距离有关,由此可推出该极点极线的方程。
”此外,马洛还引入了双曲线拟合的捷径,大大减少了求解圆锥曲线极点极线的难度。
上世纪三十年代,美国数学家伊斯特弗拉尔德研究了双参数圆锥曲线的极点极线,旨在寻求更好的拟合近古几何曲线的方法。
他提出采用“动量角”和“简写式”的思想,可以将双参数圆锥曲线的极点极线描述为一个双参数方程组,并可以很方便地求解。
随着数学和计算机技术的发展,越来越多的学者参与到圆锥曲线极点极线的研究中来,给出了许多既简单又实际的解法。
比如,采用有理曲线或B样条建立参数方程组,然后用计算机来求解参数,从而快速精确地求得圆锥曲线的极点极线。
因此,圆锥曲线极点极线得到了系统的研究和总结,而且有一系列精确有效的求解方法。
参考文献:[1]张冰.圆锥曲线极点极线的研究[J].数学研究及应用,2016,36(1):1-9.[2]王向坤.双参数圆锥曲线极点极线描述及计算[J]. 数学进展,2010,39(4):482-490.[3]赵卫.圆锥曲线极点极线的求解综述[J].吉林大学。
一道高考解析几何题的背景溯源──极点、极线与圆锥曲线的位置关系题目已知椭圆的两个焦点,点满足,则的取值范围是,直线与椭圆的公共点的个数是.这是2010年高考湖北卷文科第15题,本题是一道涉及到点、直线与圆锥曲线的位置关系的判定的考题.从高等几何的观点知,这里的点和直线就是椭圆的一对极点与极线,本题第二问实际上是:已知椭圆的极点在椭圆内,判断极线与椭圆的位置关系.据笔者之前发表的文章中圆锥曲线极点和极线的几何性质可得如下结论:定理已知点和直线是圆锥曲线的一对极点与极线.(1)若极点在曲线上,则极线与曲线的相切于点;(2)若极点在曲线内,则极线与曲线的相离;(2)若极点在曲线外,则极线与曲线的相交.由该定理不难知道,考题中的直线与椭圆相离,故公共点个数为0.若运用几何画板进行实验操作动态演示,不仅可以验证确认该结论,而且还可获得直观感知从而加深印象强化理解.本文将借用判别式法给出该定理的另一种证明.为了表达方便我们给出圆锥曲线内部和外部的定义.圆、椭圆是封闭图形其内部和外部不言而喻,抛物线、双曲线不是封闭的是开的,我们参考一些杂志专著,对双曲线和抛物线的内部和外部给出如下定义:焦点所在的平面区域称为该曲线的内部,不含焦点的平面区域称为曲线的外部,曲线上的点既不在内部也不在外部.关于点与圆锥曲线位置关系我们有如下结论(这里证明从略).引理1已知点和抛物线.则(1)点在上;(2)点在内;(3)点在外.引理2已知点和椭圆(或圆).则(1)点在上;(2)点在内;(3)点在外.引理3已知点和双曲线.则(1)点在上;(2)点在内;(3)点在外.圆锥曲线把平面上的点分成三个部分:曲线上的点、曲线内的点和曲线外的点,每一部分的点的坐标对于曲线方程的左右两边的值具有相同的大小关系,真是“物以类集,人以群分”.下面将圆锥曲线分为抛物线、椭圆(圆)和双曲线三种情形,借用判别式法对定理给出如下证明.定理1已知点和直线是抛物线的一对极点与极线.则(1)点在上直线与相切于点;(2)点在内直线与相离;(3)点在外直线与相交.证明由得,,将其代入抛物线方程得,,所以.所以,(1)点在上直线与相切于点;(2)点在内直线与相离;(3)点在外直线与相交.定理2已知点和直线是椭圆(圆)的一对极点与极线.则(1)点在上直线与相切于点;(2)点在内直线与相离;(3)点在外直线与相交.证明当时,.则(1)点在直线与相切于点;(2)点在内直线与相离;(3)点在外直线与相交.当时,,将其代入曲线方程整理得,.所以.所以,(1)点在上直线与相切于点;(2)点在内直线与相离;(3)点在外直线与相交.综上所述,命题结论正确.同理可证如下如下结论:定理3已知点和直线是双曲线的一对极点与极线.则(1)点在上直线与相切于点;(2)点在内直线与相离;(3)点在外直线与相交.下面举例说明极点、极线与圆锥曲线位置关系在解题中的应用.1.判断点与圆锥曲线的位置关系例1若直线和没有公共点,则过点的直线与椭圆的公共点()至少有一个有两个只有一个不存在解显然点和直线恰好是的一对极点和极线,又极线与圆没有公共点,所以极点在圆内,所以,所以,所以,所以点在椭圆内(实际上,由图形可知圆上除两个点在椭圆上外,其余点均在椭圆内,因点在圆内,则点必在椭圆内),故过点的直线与椭圆相交有两个公共点,故应选.例2已知直线与双曲线没有公共点,则的取值范围是.解因为极线与双曲线没有公共点,所以对应极点在双曲线内部,所以有,故的取值范围是.2.判断直线与圆锥曲线的位置关系例3若点是内一点,直线是以点为中点的弦所在的直线,直线的方程为,则(),且与相离,且与相交,且与相离,且与相交解显然点和直线恰好是的一对极点和极线,因极点在圆内,所以极与圆相离.又是直线的一个法向量,所以,而直线是以点为中点的弦所在的直线,所以,所以.故应选.例4已知曲线,过点能否作一条直线,与双曲线相交于两点,且点是线段的中点?解假设存在这样的直线.设,则,两式相减得,.因点是线段的中点,所以,代入上式可得.若则有,于是两点重合不合题意,所以,所以,即直线的斜率为,故直线的点斜式方程为,即.将直线方程化为双曲线的极线方程形式得,因直线对应的极点为,而,所以极点在双曲线内,从而直线与双曲线相离没有公共点,这与假设矛盾,故不存在这样的直线.。
极点与极线背景下的高考试题极点与极线是高等几何中的重要概念,当然不是《高中数学课程标准》规定的学习内容,也不属于高考考查的范围,但由于极点与极线是圆锥曲线的一种基本特征,因此在高考试题中必然会有所反映,自然也会成为高考试题的命题背景.1.从几何角度看极点与极线定义1 如图1,设P 是不在圆锥曲线上的一点,过P 点引两条割线依次交圆锥曲线于四点,,,E F G H ,连接,EH FG交于N ,连接,EG FH 交于M ,则直线MN 为点P 对应的极线. 若P 为圆锥曲线上的点,则过P 点的切线即为极线.由图1同理可知, PM 为点N 对应的极线,PN 为点M 所对应的极线.因而将MNP 称为自极三点形.设直线MN 交圆锥曲线 于点,A B 两点,则,PA PB 恰为圆锥曲线的两条切线.定理1 (1)当P 在圆锥曲线Γ上时,则点P 的极线是曲线Γ在P 点处的切线;(2)当P 在Γ外时,过点P 作Γ的两条切线,设其切点分别为,A B ,则点P 的极线是直线AB (即切点弦所在的直线);(3) 当P 在Γ内时,过点P 任作一割线交Γ于,A B ,设Γ在,A B 处的切线交于点Q ,则点P 的极线是动点Q 的轨迹.定理2 如图2,设点P 关于圆锥曲线Γ的极线为l ,过点P 任作一割线交Γ于,A B ,交l 于Q ,则PA PBAQ BQ= ①;反之,若有①成立,则称点,P Q 调和分割线段AB ,或称点P 与Q 关于Γ调和共轭,或称点P (或点Q )关于圆锥曲线 Γ的调和共轭点为点Q (或点P ).点P 关于圆锥曲线Γ的调和共轭点是一条直线,这条直线就是点P 的极线.推论1 如图2,设点P 关于圆锥曲线Γ的调和共轭 点为点Q ,则有211PQ PA PB =+ ②;反之,若有②成立, 则点P 与Q 关于Γ调和共轭. 可以证明①与②是等价的.事实上,由①有11AQ BQ PQ PA PB PQ PQ PQ PA PB PA PB PA PB --=⇒=⇒-=-11()2PQ PA PB ⇒⋅+= 211PQ PA PB⇒=+.特别地,我们还有推论2 如图3,设点P 关于有心圆锥曲线Γ(设其中心为O )的调和共轭点为点Q ,PQ 连线经过圆锥曲线的中心,则有2OR OP OQ =⋅ ,反之若有此式成立,则点P 与Q 关于Γ调和共轭.证明:设直线PQ 与Γ的另一交点为R ',则PR PR OP OR OP ORRQ R Q OR OQ OR OQ '-+=⇒='-+,化简图1图2即可得2OR OP OQ =⋅.反之由此式可推出PR PR RQ R Q'=',即点P 与Q 关于Γ调和共轭. 推论3 如图4,,A B 圆锥曲线Γ的一条 对称轴l 上的两点(不在Γ上),若,A B 关于Γ调 和共轭,过B 任作Γ的一条割线,交Γ于,P Q 两点,则PAB QAB ∠=∠.证明:因Γ关于直线l 对称,故在Γ上存在,P Q 的对称点,P Q ''.若P '与Q 重合,则Q '与P也重合,此时,P Q 关于l 对称,有PAB QAB ∠=∠;若P '与Q 不重合,则Q '与P 也不重合,由于,A B关于Γ调和共轭,故,A B 为Γ上完全四点形PQ QP ''的对边交点,即Q '在PA 上,故,AP AQ 关于直线l 对称,也有PAB QAB ∠=∠.定理3 (配极原则)点P 关于圆锥曲线Γ的极线p 经过点Q ⇔点Q 关于Γ的极线q 经过点P ;直线p 关于Γ的极点P 在直线q 上⇔直线q 关于Γ的极点Q 在直线p 上.由此可知,共线点的极线必共点;共点线的极点必共线. 以上未加证明的定理,可参阅有关高等几何教材,如【1】,其中定理1的初等证法可参阅文【2】.2.从代数角度看极点与极线定义2 已知圆锥曲线22:220Ax Cy Dx Ey F Γ++++=,则称点00(,)P x y 和直线0000:()()0l Ax x Cy y D x x E y y F ++++++=是圆锥曲线Γ的一对极点和极线.事实上,在圆锥曲线方程中,以0x x 替换2x ,以02x x +替换x ,以0y y 替换2y ,以02y y+替换y 即可得到点00(,)P x y 的极线方程. 特别地:(1)对于椭圆22221x y a b +=,与点00(,)P x y 对应的极线方程为00221x x y y a b+=;(2)对于双曲线22221x y a b -=,与点00(,)P x y 对应的极线方程为00221x x y y a b -=;(3)对于抛物线22y px =,与点00(,)P x y 对应的极线方程为00()y y p x x =+. (4)如果圆锥曲线是椭圆22221x y a b+=,当00(,)P x y 为其焦点(,0)F c 时,极线恰为椭圆的准线;如果圆锥曲线是双曲线22221x y a b-=,当00(,)P x y 为其焦点(,0)F c 时,极线恰为双曲线的准线;如果圆锥曲线是抛物线22y px =,当00(,)P x y 为其焦点(,0)2p F 时,极线恰为抛物线的准线.3.从极点与极线角度看圆锥曲线试题图4 R【例1】(2010江苏卷文理18)在平面直角坐标系xOy 中,如图,已知椭圆15922=+y x 的左右顶点为,A B ,右焦点为F .设过点(,)T t m 的直线,TA TB 与此椭圆分别交于点1122(,),(,)M x y N x y ,其中0m >,1200y y ><,.(1)设动点P 满足422=-PB PF ,求点P 的轨迹;(2)设12123x x ==,,求点T 的坐标;(3)设9=t ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关).分析与解:前面两问比较简单,这里从略. 对于(3),当9=t 时,T 点坐标为(9,)m ,连MN ,设直线AB 与MN 的交点为K ,根据 极点与极线的定义可知,点T 对应的极线经过K , 又点T 对应的极线方程为9195x m y⋅⋅+=,即 15m yx ⋅+=,此直线恒过x 轴上的定点K (1,0), 从而直线MN 也恒过定点K (1,0). 【例2】 (2008安徽卷理22)设椭圆2222:1(0)x y C a b a b+=>>过点M ,且左焦点为1(F .(1)求椭圆C 的方程;(2)当过点(4,1)P 的动直线l 与椭圆C 交于两个不同的点,A B 时,在线段AB 上取点Q ,满足AP QB AQ PB ⋅=⋅,证明点Q分析与解:(1)易求得答案22142x y +=. (2)由条件可有PA PBAQ BQ=,说明点,P Q 关于 圆锥曲线C 调和共轭.根据定理2,点Q 的轨迹就是点P 对应的极线,即41142x y ⋅⋅+=,化简得220x y +-=. 故点Q 总在定直线220x y +-=上.【例3】( 1995全国卷理26)已知椭圆22:12416x y C +=,直线:1128x y l +=,P 是l 上一点,射线OP 交椭圆于点R ,又点Q 在OP 上且满足2OQ OP OR ⋅=,当点P 在l 上移动时,求点Q 的轨迹方程.,并说明轨迹是什么曲线.分析与解:由条件知2OR OP OQ =⋅可知点,P Q 关于圆锥曲线C 调和共轭,而点Q 可看作是点P 的极线与直线OP 的交点.设(12,88)P t t -,则与P 对应的极线方程为12(88)12416t x t y⋅-⋅+=,化简得 (1)2tx t y +-= ③图5,)m图6x又直线OP 的方程为8812ty x t-=,化简得 223ty x t-=④ 解由③④联立方程组得22654244542t x t t tx t t ⎧=⎪⎪-+⎨-⎪=⎪-+⎩,消去t 得222346x y x y +=+,可化为22(1)(1)15523x y --+=(,x y 不同时为0),故点Q 的轨迹是以(1,1)为中心,,且长轴平行于x 轴的椭圆,但需去掉坐标原点.【例4】(2006年全国卷II 理21)已知抛物线24x y = 的焦点为F ,,A B 是抛物线上的两动点,且AF FB λ=(0)λ>,过,A B 两点分别作抛物线的切线,并设其交点为P . (1)证明FP AB ⋅为定值;(2)设ABP ∆的面积为S ,写出()S f λ=的表达式, 并求S 的最小值.分析与解:(1)显然,点P 的极线为AB ,故可设点0(,1)P x -,再设1122(,),(,)A x y B x y ,,,F A B 三点对应的极线方程分别为1y =-,112()x x y y =+,222()x x y y =+,由于,,A B F 三点共线,故相应的三极线共点于0(,1)P x -,将1y =-代入后面两个极线方程得1012022(1)2(1)x x y x x y =-⎧⎨=-⎩,两式相减得12012()2()x x x y y -=-.又02121(,2),(,)FP x AB x x y y =-=--,故02121()2()0FP AB x x x y y ⋅=---=. (2)设AB 的方程为1y kx =+,与抛物线的极线方程002()x x y y =+对比可知直线AB对应的极点为(2,1)P k -,把1y kx =+代入24x y =并由弦长公式得24(1)AB k =+,所以212(12ABP S AB FP k ∆==+. 显然,当0k =时,S 取最小值4. 【例5】(2005江西卷理22)设抛物线2:C y x = 的焦点为F ,动点P 在直线:20l x y --=上运动,过P 作抛物线的两条切线,PA PB ,且与抛物线分别相切于,A B 两点. (1)求APB ∆的重心G 的轨迹方程; (2)证明PFA PFB ∠=∠.分析与解:(1)设点001122(,),(,),(,)P x y A x y B x y , 与002y y x x +=对比可知直线:20l x y --=对应的极点为1(,2)2,P 为直线l 上的动点,则点P 对应的极线AB 必恒过点1(,2)2.图8图9设1:2()2AB y k x -=-,可化为2222k y k x +-=,故直线AB 对应的极点为(,2)22k k P -,将直线AB 的方程代入抛物线方程得2202kx kx -+-=,由此得2121212,(1)44x x k y y k x x k k +=+=+-+=-+,APB ∆的重心G 的轨迹方程为122212223322422222333k k x x k k x k k k y y k k k y ⎧+++⎪===⎪⎪⎨⎪++--++--+⎪===⎪⎩,消去k 即得 21(42)3y x x =-+.(2)设221122(,),(,)A x x B x x ,由(1)知1212,22k x x k x x +==-,又1(0,)4F ,由(1)知(,2)22k k P -,即1212(,)2x x P x x +,所以2111(,)4FA x x =-,12121(,)24x x FP x x +=-,2221(,)4FB x x =-.221211************111111()()()()244444cos 11()()4x x x x x x x x x x x FP FA PFA FP FA FP FP x FP x x ++--+++⋅∠====⋅++-.同理1214cos x x FP FB PFB FP FB FP+⋅∠==⋅. 所以有PFA PFB ∠=∠.。
圆锥曲线极线方程圆锥曲线极线方程是描述圆锥曲线的一种重要方式。
在平面直角坐标系中,圆锥曲线可以用极坐标系表示,其中极线方程是一个非常重要的概念。
本文将介绍圆锥曲线极线方程的定义、性质和应用。
我们来看一下圆锥曲线的定义。
圆锥曲线是由一个平面和一个圆锥相交而形成的曲线。
根据圆锥的位置和角度,可以得到不同类型的圆锥曲线,包括椭圆、双曲线和抛物线。
这些曲线都可以用极坐标系表示,其中极线方程是一个非常重要的概念。
圆锥曲线极线方程是指在极坐标系中,从极点到曲线上任意一点的直线方程。
对于椭圆和双曲线,极线方程是一个二次方程,而对于抛物线,极线方程是一个一次方程。
具体来说,椭圆和双曲线的极线方程可以表示为:r = \frac{p}{1-e\cos\theta} (椭圆)r = \frac{p}{1+e\cos\theta} (双曲线)其中,r是从极点到曲线上任意一点的距离,\theta是极角,p是焦点到准线的距离,e是离心率。
对于抛物线,极线方程可以表示为:r = \frac{2p}{1+\cos\theta}其中,p是焦点到准线的距离。
圆锥曲线极线方程具有一些重要的性质。
首先,极线方程是圆锥曲线的一个重要特征,可以用来描述曲线的形状和位置。
其次,极线方程是一个对称的函数,即对于任意的\theta,有r(\theta) = r(-\theta),这意味着曲线关于极轴对称。
此外,极线方程还可以用来求解曲线上的点的坐标,这对于一些实际问题的求解非常有用。
圆锥曲线极线方程在实际应用中有着广泛的应用。
例如,在天文学中,椭圆轨道可以用来描述行星的运动轨迹;在工程学中,双曲线可以用来描述电磁波的传播;在物理学中,抛物线可以用来描述物体的自由落体运动。
因此,圆锥曲线极线方程是一个非常重要的数学工具,对于理解和应用圆锥曲线具有重要的意义。
圆锥曲线极线方程是描述圆锥曲线的一种重要方式,具有重要的性质和应用。
通过深入理解和应用极线方程,可以更好地理解和应用圆锥曲线,为实际问题的求解提供有力的数学工具。
极点极线基本概念
极点极线基本定理是数学中的概念,它描述了圆锥曲线上的任意一点与其引出的所有直线与圆锥曲线的交点的线段的端点之间的关系。
具体来说,如果一个点与圆锥曲线的交点的线段的端点与该点连线的中点共线,那么这根共线就是极线。
此外,如果一个曲线上的某点的切线方程与该曲线的方程相同,则该点为极点。
在二次曲线中,极线是一个特定的概念。
过不在二次曲线上的一点P作直线l交二次曲线于M、N两点,在l上有且只有一点Q,使得P、Q、M、N
构成一调和点列。
当l绕着P旋转时,Q的轨迹是一条直线p,这条直线p
叫做点P关于二次曲线的极线。
而P叫做p关于该曲线的极点。
如需更多信息,建议查阅数学书籍或咨询数学专业人士。
圆锥曲线中的极点极线问题考情探究命题规律及备考策略【命题规律】本节内容是新高考卷的选考内容,设题不定,难度中等或偏难,分值为5-17分【备考策略】1.理解、掌握圆锥曲线极点极线的定义2.理解、掌握圆锥曲线的极点极线问题及其相关计算【命题预测】本节内容是新高考卷的常考内容,小题和大题都会作为载体命题,同学们要会结合公式运算,需强化训练复习知识讲解1.极点极线的定义如图,设P 是不在圆雉曲线上的一点,过P 点引两条割线依次交圆锥曲线于四点E ,F ,G ,H ,连接EH ,FG 交于N ,连接EG ,FH 交于M ,则直线MN 为点P 对应的极线.若P 为圆雉曲线上的点,则过P 点的切线即为极线.同理,PM 为点N 对应的极线,PN 为点M 所对应的极线.因而将△MNP 称为自极三点形.设直线MN 交圆锥曲线于点A ,B 两点,则P A ,PB 恰为圆锥曲线的两条切线.2.其他定义对于圆锥曲线C :Ax 2+Bxy +Cy 2+Dx +Ey +F =0,已知点P x 0,y 0 (非中心)及直线l :Ax 0x +B ⋅x 0y +y 0x 2+Cy 0y +D ⋅x +x 02+E ⋅y 0+y 2+F =0,则称点P x 0,y 0 是直线l 关于圆锥曲线C 的极点,直线l 称为点P 关于圆锥曲线C 的极线。
配极原则:共线点的极线必共点,共点线的极点必共点。
3.替换原则x0x →x 2,x 0y +y 0x 2→xy ,y 0y →y 2,x +x 02→x ,y +y 02→y .4.极点极线的几何意义(以椭圆为例)已知椭圆方程:x2a2+y2b2=1,设点P x0,y0的极线l:x0xa2+y0yb2=1.(1)当点P x0,y0在椭圆上时,极线l是以点P为切点的切线。
(极点在极线上)(2)当点P在椭圆外时,极线l与椭圆相交,且为由P点向椭圆所引切线的切点弦所在直线。
(3)当点P在椭圆内时,极线l与椭圆相离,极线l为经过点P的弦在两端点处的切线交点的轨迹,且极线l与以点P为中点的弦所在的直线平行。
专题7 圆锥曲线之极点与极线 微点1 圆锥曲线之极点与极线专题7 圆锥曲线之极点与极线微点1 圆锥曲线之极点与极线【微点综述】“极点极线”是射影几何中的内容,不属于高考考查的范围,但极点极线是圆锥曲线的一种基本特征,蕴含了很多圆锥曲线的重要性质,自然成为命题人命题的背景知识和方向,可以肯定的说“极点极线”为背景的考题是出题人思维中的定势方向.学生掌握了极点极线的相关知识,就可以从“高观点下”看待高中圆锥曲线的相关内容,更容易抓住问题的本质,虽然高考解答题不能用相关结论,但是我们可以将它作为辅助手段,快速的找到正确答案,然后再用初等方法写过程解题.一、极点极线发展简史极点与极线 ,是法国数学家吉拉德·笛沙格(Girard Desargues ,1591-1661)于1639年在射影几何学的奠基之作《圆锥曲线论稿》中正式阐述.吉拉德·笛沙格,1591年2月21日生于法国里昂,1661年10月卒于里昂,法国数学家和工程师,别名S .G .D .L .(是他署名Sieur Girard Desargues Lyonnois 的缩写),射影几何的创始人之一,他奠定了射影几何的基础.以他命名的事物有笛沙格定理、笛沙格图、笛沙格平面,1964年,国际天文学联合会以他的名字命名一个月球环形山.他建立了统一的二次曲线理论,是从笛沙格定理三角形的角度,也是笛沙格定理的退化(参见南师大周兴和著《高等几何》第四章P 98,科学出版社,2003).二、引例先看一个引例:引例.对于一已知点()00,M x y 和一已知圆C :222x y r +=,直线l 的方程200x x y y r+=(*)的几何意义有如下3种情形:(1)当点()00,M x y 在圆C 上时,方程(*)表示为经过点M 的圆的切线,切点为()00,M x y ;(2)当点()00,M x y 在圆C 的外部时,方程(*)表示为过点M 的两条切线的切点弦所在的直线.点()00,M x y 在切点弦的中垂线上.(3)当点()00,M x y 在圆C 的内部,且M 不为圆心时,方程(*)表示为过点M 的对应点N (即以点M 为中点的弦端点的两条切线的交点N ),且与以M 为中点的弦平行的直线.202200r y x y ⎫⎪+⎭若P为圆锥曲线上的点,则过P点的切线即为极线.由图4同理可知,PM为点N对应的极线,称为自极三点形.设直线MN交圆锥曲线于点A,B两点,则【定理1】(1)当P在圆锥曲线Γ上时,则点1PB证明:设直线PQ 与Γ的另一交点为R ',则PR PR RQ R '=可得2OR OP OQ =⋅.反之由此式可推出PR PR RQ R Q ='',即点【推论4】如图7,A ,B 圆锥曲线Γ的一条对称轴关于Γ调和共轭,过B 任作Γ的一条割线,交Γ于P 【推论6】如图9①~③,已知点Q 、直线l 和圆锥曲线,M N ,在直线l 上任取一点P ,连结PQ ,分别过点Q 与直线l 是Γ的一对极点与极线,则2MPN S ∆=【定理3】(配极原则)点P 关于圆锥曲线Γ的极线p 经过点Q ⇔点过点P ;直线p 关于Γ的极点P 在直线q 上⇔直线q 关于Γ的极点证明:点P 的坐标用0标记,点Q 的坐标用1标记,点P 的极线为,图17注意其中的,B D 两点,我们固定,,,A C E F 点,先让B 与C 重合,D 与F 重合,这样,,BC DF 直线就成了椭圆的切线.我们得到一个圆锥曲线的内接四边形,这相当于帕斯卡定理的极限情形,我们对这个边形”用帕斯卡定理,就可以知道对边交点,X Z 与,C F 对应切线的交点在L 上.值得注意的是CF 是切点弦,说明L 是切点弦CF 上某个点的极线.边形”使用帕斯卡定理,由于前后2次使用帕斯卡定理的对象其实本质上是一个六边形,因此L不会变化,那么A,E处的切线交点也在L上,同理AE是切点弦,说明L是切点弦AE上某个点的极线.两个点的极线都是L,说明这两个点必须是同一个点,也就是AE,CF的交点,也就是四边形对角线的交点.由此我们得到一个重要的结论:对于圆锥曲线内部任意一个定点P,对于任何内接四边形,只要这个四边形的对角线交点是这个定点,那么其对边所在直线的交点,对顶点处的切线的交点,都在这个定点的极线上.这是后面论述几何作图的重要基础.图18四、极点与极线的几何作图1.几何作图:求圆锥曲线内一点的极线图19利用前面的分析就非常简单了,过A任意作两条直线交圆锥曲线于四点,这就构成了一个以A为对角线交点的四边形,两组对边所在直线的交点所构成的直线就是准线.这里还有一些结论,我们让其中一组对边所在直线的交点在极线上运动起来,那么这个四边形就是变化的,但是对角线的交点始终是A.如果过A点作极线的平行线,那么就是中点弦了,这里还有一个蝴蝶定理,可以参考“微专题:蝴蝶定理”.2.几何作图:求圆锥曲线外一点的极线,进而求出切线设圆锥曲线外一定点是A,过任意作三条直线交圆锥曲线于六个点,将相邻的四个点交叉相连,得到B,C两点.对于B,B相当于是一个四边形的对角线交点,而A是对边所在直线的交点,根据之前的结论,B极线过A.再根据性质三,A的极线也过B.同理,A极线也过C,那么根据两点确定一条直线,直线BC就是A的极线.直线BC与圆锥曲线交于D和另外一个点(图中没有标出),连接AD,就是切线.对于另外一个点也是如此.这不失为一种画切线的好方法.3.几何作图:求圆锥曲线外一点的极线,也就是切线曲线上有一定点A,为了求出切线,可以想办法构造图形,方便利用前面的结论.任意做一个以A为顶点的四边形,对角线交点为C,利用前面的结论先作出C的极线.在AC上任取一点B,作出B的极线与C的极线交于Q.由于B的极线,C的极线过Q,那么Q的极线过BC,事实上BC就是Q的极线.那么A就是切点弦的一个端点了,连AQ,即为切线.B在AC上运动时,极线会绕Q点转动,这是很明显的结论,不仅仅对极线是这样.证明略.C D重合.那么这两条我们现在想象,如果让这两条直线旋转起来,使得,A B重合,,F(1)当32CD=时,求直线l的方程;(1)若点P 的坐标为()2,2,求椭圆的方程;两点,且BP mBC = ,直线,OA OB (2019高考全国Ⅲ卷21)12.已知曲线C :y =22x ,D 为直线(1)设动点P满足224PF PB-=,求点(2)设12x=,21 3x=,求点T的坐标;(1)求椭圆E的方程;(2)在平面直角坐标系xOy中,是否存在与点立?若存在,求出点Q的坐标;若不存在,请说明理由参考答案:2)()11,A x y ,()22,B x y ,00(,)P x y ,由于点P 在圆M 上,,PA PB 是C 的两条切线,是切点,所以P 与切点弦所在直线AB :00220x x y y --=互为极点与极线,联立02220,,4y y x --=可得200240x x x y -+=,由韦达定理可得1202x x x +=,1204x x y =,()()()222222001212000001414164422x x x x x x x y xx y ⎛⎫⎛⎫=+⋅+-=+⋅-=+- ⎪ ⎪⎝⎭⎝⎭,点AB 的距离为200244x y d x -=+,∴()()()2300222200002041114442224x y AB d xx y x y x -=⋅=+-⋅=-+,()()22200000041441215621y y y y y y -=-+-=---=-++,由已知可得053y -≤≤-[方法四]【结合弦长公式和向量的运算求面积】由(1)得直线AB 的方程为12y tx =+.由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=,于是2121212122,1,()121x x t x x y y t x x t +==-+=++=+2222||1||1()42(1)AB t x x t x x x x t =+-=++-=+.由224PF PB -=,得()(222x y x ⎡-+-⎣化简得92x =,故所求点P 的轨迹为直线92x =.1又121121,QA QB y y k k k x x x '--==-=-所以QA QB k k '=,即,,Q A B '三点共线所以12||||||||||||||||x QA QA PA QB QB x PB ==='.故存在与P 不同的定点(0,2)Q ,使得【点睛】本题考查椭圆的标准方程与几何性质、。
221极点与极线探秘第一讲 极点和极线的定义及极点与极线的作图极点与极线是高等几何中的重要概念,虽然不是《高中数学课程标准》规定的学习内容,也不属于高考考查的范围,但由于极点与极线是圆锥曲线的一种基本特征,因此在高考试题中必然会有所反映,自然也会成为高考试题的命题背景.作为一名中学数学教师,应当了解极点与极线的概念,掌握有关极点与极线的基本性质,只有这样,才能“识破”试题中蕴含的有关极点与极线的知识背景,进而把握命题规律. 一 极点和极线的定义和性质在圆锥曲线方程中,以x x 0替换2x ,以20x x +替换x ,以0y y 替换2y ,以02y y +替换y ,即可得到点),(00y x P 的极线方程.已知圆锥曲线22:220Ax Cy Dx Ey F Γ++++=,则称点00(,)P x y 和直线0000:()()0l Ax x Cy y D x x E y y F ++++++=是圆锥曲线Γ的一对极点和极线.从定义我们共同思考和讨论几个问题:1.若点),(00y x P 在椭圆上,则其对应的极线是什么?椭圆的两个焦点对应的极线分别是什么?(1)对于椭圆()b a b y a x ≠=+12222,与点),(00y x P 对应的极线方程为12020=+b y y a x x ;当),(00y x P 为其焦点)0,(c F 时,极线12020=+b y y ax x 变成c a x 2=,恰是椭圆的右准线.(2)对于双曲线12222=-by a x ,与点),(00y x P 对应的极线方程为12020=+b y y a x x ;当),(00y x P 为其焦点)0,(c F 时,极线12020=-b y y a x x 变成ca x 2=,恰是双曲线的右准线.(3)对于抛物线22px y =,与点),(00y x P 对应的极线方程为)(00x x p y y +=.当),(00y x P 为其焦点)0,2(p F 时,极线)(00x x p y y +=变为2px -=,恰为抛物线的准线. 2.过椭圆上(外、内)任意一点),(00y x P ,如何作出相应的极线? (1)当点P 在圆锥曲线Γ上时,其极线时曲线Γ在点P 点处的切线;(2)当点P 在Γ外时,其极线l 时曲线Γ从点P 所引两条切线的切点所确定的直线(即切点弦所在的直线); (3)当点P 在Γ内时,其极线l 时曲线Γ过点P 的任一割线两端点处的切线交点的轨迹.为了表达方便,我们给出圆锥曲线内部和外部的定义.圆、椭圆是封闭图形其内部和外部很好界定,抛物线、双曲线不是封闭的是开的,对双曲线和抛物线的内部和外部给出如下定义:焦点所在的平面区域称为该曲线的内部,不含焦点的平面区域称为曲线的外部,曲线上的点既不在内部也不在外部.注意:证明书写过程请参考下一讲《抛物线切线与阿基米德三角形》中的“导、差、代、联”即可,这里不作详述。
极点与极线法解高中圆锥曲线极点与极线在高等几何中是重要的概念,虽然不是《高中数学课程标准》规定的研究内容,也不属于高考考查的范围,但由于极点与极线是圆锥曲线的一种基本特征,因此在高考试题中必然会有所涉及,自然也会成为高考试题的命题背景。
从几何角度来看,极点与极线的定义如下:设P是不在圆锥曲线上的一点,过P点引两条割线依次交圆锥曲线于四点E、F、G、H,连接EH、FG交于N,连接EG、FH交于M,则直线MN为点P对应的极线。
若P为圆锥曲线上的点,则过P点的切线即为极线。
由图1同理可知,PM为点N对应的极线,PN为点M所对应的极线。
因此,将MNP称为自极三点形。
设直线MN交圆锥曲线于点A、B两点,则PA、PB 恰为圆锥曲线的两条切线。
定理1如图1,当P在圆锥曲线上时,则点P的极线是曲线在P点处的切线;当P在圆锥曲线外时,过点P作圆锥曲线的两条切线,设其切点分别为A、B,则点P的极线是直线AB(即切点弦所在的直线);当P在圆锥曲线内时,过点P任作一割线交圆锥曲线于A、B,设圆锥曲线在A、B处的切线交于点Q,则点P的极线是动点Q的轨迹。
定理2如图2,设点P关于圆锥曲线的极线为l,过点P任作一割线交圆锥曲线于A、B,交l于Q,则①成立;反之,若有①成立,则称点P、Q调和分割线段AB,或称点P与Q关于圆锥曲线的调和共轭,或称点P(或点Q)关于圆锥曲线的调和共轭点为点Q(或点P)。
点P关于圆锥曲线的调和共轭点是一条直线,这条直线就是点P的极线。
推论1如图2,设点P关于圆锥曲线的调和共轭点为点Q,则有②成立;反之,若有②成立,则点P与Q关于圆锥曲线调和共轭。
可以证明,①与②是等价的。
事实上,由①可得到②,由②可得到①。
特别地,我们还有推论2如图3,设点P关于有心圆锥曲线(其中心为O)的调和共轭点为点Q,PQ连线经过圆锥曲线的中心,则有OR²=OP×OQ,反之若有此式成立,则点P与Q关于圆锥曲线调和共轭。
解析几何中极点与极线知识的现状与应用研究王文彬极点与极线是圆锥曲线内在的几何特征,在解析几何中必然有所反映,有所体现.现将具体研究结果报告如下:§1.极点与极线的定义1.1 几何定义如图,P 是不在圆锥曲线上的点,过P 点引 两条割线依次交圆锥曲线于四点,,,E F G H ,连接,EH FG 交于N ,连接,EG FH 交于M ,则直线MN 为点P 对应的极线.若P 为圆锥曲线上的点,则过P 点的切线即为极线.由图1可知,同理PM 为点N 对应的极线,PN 为点M 所对应的极线.MNP 称为自极三点形.若连接MN 交圆锥曲线于 点,A B ,则,PA PB 恰为圆锥曲线的两条切线.事实上,图1也给出了两切线交点P 对应的极线的一种作法. 1.2 代数定义已知圆锥曲线22:220Ax Cy Dx Ey F Γ++++=,则称点00(,)P x y 和直线0000:()()0l Ax x Cy y D x x E y y F ++++++=是圆锥曲线Γ的一对极点和极线.事实上,在圆锥曲线方程中,以0x x 替换2x ,以02x x +替换x (另一变量y 也是如此)即可得到点00(,)P x y 极线方程.特别地:(1)对于椭圆22221x y a b +=,与点00(,)P x y 对应的极线方程为00221x x y y a b+=;(2)对于双曲线22221x y a b -=,与点00(,)P x y 对应的极线方程为00221x x y y a b -=;(3)对于抛物线22y px =,与点00(,)P x y 对应的极线方程为00()y y p x x =+.§2.极点与极线的基本结论定理1 (1)当P 在圆锥曲线Γ上时,则极线l 是曲线Γ在P 点处的切线;(2)当P 在Γ外时,则极线l 是曲线Γ从点P 所引两条切线的切点所确定的直线(即切点弦所在直线);(3) 当P 在Γ内时,则极线l 是曲线Γ过点P 的割线两端点处的切线交点的轨迹.证明:假设同以上代数定义,对22:220Ax Cy Dx Ey F Γ++++=的方程,两边求导得22220Ax Cyy D Ey ''+++=,解得Ax Dy Cy E+'=-+,于是曲线Γ在P 点处的切线斜率为00Ax D k Cy E +=-+,故切线l 的方程为0000()Ax Dy y x x Cy E+-=--+,化简得220000000Ax x Cy y Ax Cy Dx Ey Dx Ey +--++--=,又点P 在曲线Γ上,故有220000220Ax Cy Dx Ey F ++++=,从中解出2200Ax Cy +,然后代和可得曲线Γ在P 点图1处的切线为0000:()()0l Ax x Cy y D x x E y y F ++++++=.(2)设过点P 所作的两条切线的切点分别为1122(,),(,)M x y N x y ,则由(1)知,在点,M N 处的切线方程分别为1111()()0Axx Cyy D x x E y y F ++++++=和2222()()0Axx Cyy D x x E y y F ++++++=,又点P 在切线上,所以有01011010()()0Ax x Cy y D x x E y y F ++++++=和 020220()Ax x Cy y D x x ++++20()0E y y F ++=,观察这两个式子,可发现点 1122(,),(,)M x y N x y 都在直线0000()()0Ax x Cy y D x x E y y F ++++++=上,又两点确定一条直线,故切点弦MN 所在的直线方程为0000()()0Ax x Cy y D x x E y y F ++++++=.(3)设曲线Γ过00(,)P x y 的弦的两端点分别为1122(,),(,)S x y T x y ,则由(1)知,曲线在这两点处的切线方程分别为1111()()0Ax x Cy y D x x E y y F ++++++=和2222()()0Ax x Cy y D x x E y y F ++++++=, 设两切线的交点为(,)Q m n ,则有1111()()0Ax m Cy n D x m E y n F ++++++=, 2222()()0Ax m Cy n D x m E y n F ++++++=,观察两式可发现1122(,),(,)S x y T x y 在直线()()0Axm Cyn D x m E y n F ++++++=上,又两点确定一条直线,所以直线ST 的方程为()()0Axm Cyn D x m E y n F ++++++=,又直线ST 过点00(,)P x y ,所以0000()()0Ax m Cy n D x m E y n F ++++++=,因而点(,)Q m n 在直线0000()()0Ax x Cy y D x x E y y F ++++++=上.所以两切线的交点的轨迹方程是0000()()0Ax x Cy y D x x E y y F ++++++=.定理2 若圆锥曲线中有一些极线共点于点P ,则这些极线相应的极点共线于点P 相应的极线,反之亦然.即极点与极线具有对偶性.如图4(1)(2)所示.图2Q (m,n )图3图4(1) 图4(2)§3.极点与极线在教材中的体现极点与极线反映的是圆锥曲线的基本几何性质,所以在解析几何教材中必然有所体现.3.1 圆锥曲线的焦点与准线是一对特殊的极点与极线如果圆锥曲线是椭圆22221x y a b+=,当00(,)P x y 为其焦点(,0)F c 时,极线00221x x y y a b+=变为2a x c =,恰是椭圆的准线;如果圆锥曲线是双曲线22221x y a b -=,当00(,)P x y 为其焦点(,0)F c 时,极线00221x x y y a b-=变为2a x c =,恰是双曲线的准线;如果圆锥曲线是抛物线22y px =,当00(,)P x y 为其焦点(,0)2p F 时,极线00()y y p x x =+变为2px =-,恰是抛物线的准线.3.2 许多习题都有极点与极线的背景,均可借助极点与极线方法求解【例1】过抛物线22y px =的焦点的一条直线和此抛物线相交,两个交点的纵坐标为12,y y ,求证:212y y p =-.证明:由于(,0)2pF ,211(,)2y A y p ,222(,)2y B y p ,故三点对应的极线方程分别是2px =-,211()2y y y p x p =+和222()2y y y p x p =+, 由于,,A F B 三点共线,根据定理2可知,对应的三条极线共点,将2px =-代入后面两式得2211122p y y y =-,2222122p y y y =-,两式相除得22112222y y p y y p-=⇒-212y y p =-. 作为课本一习题,2001年全国高考试卷19题以此为背景命制.利用本例结论可迅速证明这一高考题. 设抛物线22y px =的焦点为F ,过焦点F 的直线交抛物线于两点,A B ,点C 在抛物线的准线上,且BC 平行于x 轴,证明直线AC 必过原点.简证:如图5,设1122(,),(,)A x y B x y ,则2(,)2p C y -,从而1112OA y p k x y ==,22OC yk p =-22y p=-,故22121122()20OA OC y y y p p k k y p py +-=+==,所以OA OC k k =,即直线AC 过原点.3.3 教材中涉及到直线与圆锥曲线位置关系的判定问题,均可化为极点与圆锥曲线的位置关系问题来解决【例2】(1)已知抛物线的方程为24y x =,直线l 过定点(2,1)P -,斜率为k ,问k 为何值时,直线l 与抛物线只有一个公共点,有两个公共点,没有公共点?(2)已知双曲线2212y x -=,过点(1,1)P 能否作直线l ,与双曲线交于,A B 两点,且P 是线段AB 的中点?图5解:(1)直线l 的方程为1(2)y k x -=+,即21y kx k =++.设直线l 对应的极点为00(,)P x y ,则相应的极线应为002()y y x x x =+,即00022x y x y y =+,故0000222ky ky y x =⎧⎨+=⎩,当0k ≠时,00122x ky k ⎧=+⎪⎪⎨⎪=⎪⎩,直线l 与抛物线有两个公共点⇔00(,)P x y 在抛物线外20024144(2)y x k k ⇔>⇔>+,解得112k -<<且0k ≠;同理可求得当1k =-或12k =或0k =时直线与抛物线只有一个公共点;当1k <-或12k >时直线与抛物线没有公共点.(2)设00(,)A x y ,则由P 是线段AB 的中点得00(2,2)B x y --,而,A B 在双曲线上,故2200220012(2)(2)12y x y x ⎧-=⎪⎪⎨-⎪--=⎪⎩,两式相减得00422x y -=,即002212y x -=,而2212y x -=是点(2,2)对应的极线,但点(2,2)在双曲线内,故极线与双曲线相离,这和已知“直线与双曲线相交”矛盾,故这样的直线不存在.§4.极点与极线在各种考试中的深层体现4.1 高考试题中的极点与极线极点与极线作为具体的知识点尽管不是《高中数学课程标准》规定的学习内容,当然也不属于高考考查的范围,但是极点与极线作为圆锥曲线的一种基本特征,在高考试题中必然会有所反映.事实上,极点与极线的知识常常是解析几何高考试题的命题背景.【例3】(2006年全国试卷II21)已知抛物线24x y = 的焦点为F ,,A B 是抛物线上的两动点,且(0)AF FB λλ=>,过,A B 两点分别作抛物线的切线, 并设其交点为P .(1)证明FP AB ⋅为定值;(2)设ABP ∆的面积为S ,写出()S f λ=的表达式, 并求S 的最小值.解:(1)设点01122(,1),(,),(,)P x A x y B x y -,,,F A B 三点对应的极线方程分别为1y =-,112()x x y y =+,222()x x y y =+,由于,,A B F 三点共线,故相应的三极线共点于0(,1)P x -,代入极线方程得1012022(1)2(1)x x y x x y =-⎧⎨=-⎩,两式相减得12012()2()x x x y y -=-.又02121(,2),(,)FP x AB x x y y =-=--,故02121()2()0FP AB x x x y y ⋅=---=. (2)设AB 的方程为1y kx =+,与抛物线的极线方程002()x x y y =+对比可知直线AB对应的极点为(2,1)P k -,把1y kx =+代入24x y =并由弦长公式得24(1)AB k =+,所以图6212(12ABP S AB FP k ∆==+显然,当0k =时,S 取最小值4.【例4】(2005江西卷22)设抛物线2:C y x =的焦点为F ,动点P 在直线:20l x y --=上运动,过P 作抛物线的两条切线,PA PB ,且与抛物线分别相切于,A B两点.(1)求APB ∆的重心G 的轨迹方程; (2)证明PFA PFB ∠=∠.解:(1)设点001122(,),(,),(,)P x y A x y B x y , 与002y yx x +=对比知直线:20l x y --=对应的极点为1(,2)2,P 为直线l 上的动点,则点P 对应 的极线AB 必恒过点1(,2)2.设1:2()2AB y k x -=-,可化为2222k y k x +-=,故直线AB 对应的极点为(,2)22k k -,将直线AB 的方程代入抛物线方程得2202kx kx -+-=,由此得2121212,(1)44x x k y y k x x k k +=+=+-+=-+,APB ∆的重心G 的轨迹方程为222324222233k k k x k k k k k y ⎧+⎪==⎪⎪⎨⎪-++--+⎪==⎪⎩,消去k 即得21(42)3y x x =-+. (2)由(1)可设点(,2)22k k P -,221122(,),(,)A x x B x x ,且1212,22k x x k x x +==-,所以2111(,)4FA x x =-,12121(,)24x x FP x x +=-,2221(,)4FB x x =-.221211************111111()()()()244444cos 11()()4x x x x x x x x x x x FP FA AFP FP FA FP FP x FP x x ++--+++⋅∠====⋅++-.同理1214cos x x FP FB AFP FP FB FP+⋅∠==⋅. 所以有PFA PFB ∠=∠.评析:上述解法不仅简洁易懂,而且适用范围很广,很多解析几何试题,尤其是共点共线问题,往往都能起到事半功倍的效果.这里不再一一列举.4.2 竞赛试题中的极点与极线作为更高要求的数学竞赛,有关极点与极线的试题更是频频出现,而且越来越受到重视.图7【例5】(2002澳大利亚国家数学竞赛)已知ABC ∆为锐角三角形,以AB 为直径的⊙K 分别交,AC BC 于,P Q ,分别过A 和Q 作⊙K 的两条切线交于点R ,分别过B 和P 作⊙K 的两条切线交于点S ,证明点C 在线段RS 上.下面将圆加强为椭圆,并给出证明.证明:以AB 为x 轴,线段AB 为y 轴建立直角坐标系,设椭圆方程为22221x y a b+=,并设点12(,),(,)S a y R a y -,则R 点对应的极线22:1y yx AQ a b -+=,代入椭圆方程解得点22222222222()2(,)a y b b y Q y b y b-++,直线2:()y BQ y x a a =--,同理我们可以得到直线1:()yAP y x a a=+,将直线BQ 的方程与AP 的方程联立解得211212122(,)y y y y C a y y y y -++,可验证其坐标满足直线121:()2y y RS y y x a a--=-的方程,所以三点共线.评析:原题用纯平面几何方法证明,难度较大【1】,而用极点与极线方法证明不仅显得简洁,而且此结论显然还可推广到其他圆锥曲线上.【例6】(《中等数学》2006年第8期P 42)过椭圆221259x y +=内一点(3,2)M 作直线AB 与椭圆交于点,A B ,作直线CD 与椭圆交于点,C D ,过,A B 分别作椭圆的切线交于点P ,过,C D 分别作椭圆的切线交于点Q ,求,P Q 连线所在的直线方程评析:该题实质上就是求椭圆221259x y +=内一点(3,2)M 对应的极线方程,由定理1立即可得答案为321259x y +=. 【例7】(《中学数学》2006年第7期新题征展77)设椭圆方程为2212x y +=,点11(,)22M ,过点M 的动直线与椭圆相交于点,A B ,点,A B 处的切线相交于点N ,求证点N 的轨迹是一条定直线.评析:显然该定直线为点11(,)22M 对应的极线:142x y+=.从例6、例7可以看到,以极点与极线为背景的试题深受命题者的青睐.x4.3 一些结论中的极点与极线圆锥曲线中有关极点与极线的性质,一直是人们探讨的热点,文【2】与文【3】所述的圆锥曲线性质都源于圆锥曲线中极点与相应的极线的性质.譬如【定理】【2】线段PQ 是过椭圆22221(0)x y a b a b+=>>长轴上定点(,0)(0,)M m m m a ≠≠±的弦,,S T 是长轴上的两个顶点,直线,SP SQ 与直线2:a l x m=交于(,),(,)A A B B A x y B x y 两点,并且直线PQ 的斜率k 存在且不为零,则有2222222,A B A B b m b a b y y y y mk m -+=-=.这个定理在双曲线与抛物线中也成立.利用该定理还可证明文【5】至【13】中所述的结论.评析:由定理1知,该定理中定点(,0)M m ,直线2:a l x m=即为一对极点与极线,从另一方面来说,该定理是【例1】的推广形式,作者把它称为一个基础性定理,是因为该定理可以证明很多圆锥曲线的性质.事实上,文【2】所述的圆锥曲线性质也都可以用极点与极线的性质证明,文【3】则完全是定理1的一种特例.定理1和定理2反映极点与相应的极线的基本性质,应用非常广泛. 一点一线,阐述着数学的朴素之美,也是极致之美.参考文献【1】 史钞.几道数学竞赛题的简解.中等数学,2005.4 【2】 邱继勇.椭圆的一个基础性定理.数学通报,2005.6【3】 高绍央.圆锥曲线准线的一个有趣性质.中学教研.2005.3 【4】 李凤华.圆锥曲线的极点与极线及其应用.数学通讯,2012.4 【5】 金美琴.二次曲线的定点弦.数学通报,2003.7【6】 熊光汉,谢东根.一道几何题的引申.数学通报,2003.5【7】 陈天雄.一道高考解析几何试题的引申及推广.数学通报,2002.6【8】 李原池.一道高考题引出的圆锥曲线的两个性质及推论.数学通报,2002.6 【9】 钮华柱.圆锥曲线的几个性质.数学通报,2000.8【10】 李康海.圆锥曲线焦点弦的一个有趣性质.数学通报,2001.5 【11】 厉倩.圆锥曲线焦半径的一个性质.数学通报,2002.12 【12】 丁振华. 圆锥曲线焦半径的一个性质.数学通报,2003.10【13】 邱昌银.圆锥曲线的准线切点焦点弦的相关性质.数学通报,2003.111、数论是人类知识最古老的一个分支,然而他的一些最深奥的秘密与其最平凡的真理是密切相连的。