(2)分析法寻找证明思路:
由结论逆推,探寻结论成立所需要的条件,进而打通证明思路.
(3)作辅助线联通已知和未知:
紧扣题目中的关键条件添加辅助线,联通已知和未知.如针对中点倍长中线,针对角
平分线作垂线段或截长补短等.
19
【变式训练】
1.(2024·牡丹江中考)如图,△ABC中,D是AB上一点,CF∥AB,D,E,F三点共线,请添加
求证:△ABC≌△AED.
14
【证明】∵∠BAE=∠CAD,
∴∠BAE+∠CAE=∠CAD+∠CAE,即∠BAC=∠EAD,
=
在△ABC与△AED中, ∠ = ∠ ,
=
∴△ABC≌△AED(SAS).
15
考点2
全等三角形的判定与性质
【例2】(2024·内江中考)如图,点A,D,B,E在同一条直线上,AD=BE,AC=DF,BC=EF.
∴∠AEB=∠CFD,
∴AE∥CF.
添加条件③无法证明△ABF≌△CDE.
38
8.(2024·青岛三模)如图,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作
DE∥AC交BC于点F,连接BE,且∠DFB=∠ABE,求证:△ABC≌△DEB.
39
【证明】∵AC∥DE,
∴∠A=∠BDE,∠C=∠BFD,
1或7
点A运动,设点P的运动时间为t秒,当t的值为__________时,以A,B,P为顶点的三角
形和△DCE全等.
35
7.(2024·淄博中考)如图,已知AB=CD,点E,F在线段BD上,且AF=CE.
请从①BF=DE;②∠BAF=∠DCE;③AF=CF中,选择一个合适的选项作为已知条件,