通信原理实验讲义基础实验
- 格式:doc
- 大小:2.74 MB
- 文档页数:136
实验一脉冲幅度调制(PAM)实验【实验性质】:验证性实验一、实验目的1、加深对取样定理的理解。
2、了解脉冲幅度调制PAM系统的工作过程二、实验预习要求主要预习通信系统原理教材中关于“脉冲模拟调制系统”这—章中的“低通信号的取样定理”、“脉冲幅度调制”等主要章节,其次预习一下PPM、PDM 调制系统。
三、实验仪器仪表:1、双踪示波器一台2、低频信号源一台3、电子与通信原理实验系统实验箱一台四、实验原理(1)、电路组成脉冲幅度调制实验系统图见图1—1所示,主要由输入电路、调制电路、脉冲发生电路、解调滤波电路、功放输出电路等五部分组成。
图1—1 脉冲振幅调制电原理框图(2)、实验电路工作原理这是一种简单的脉冲幅度调制实验,在设计上有一定的普遍性和代表性,比较清晰直观。
为了能使学生在实验时有一个感性认识和方便测试,没有采用大规模集成电路,而是采用分离元件与集成电路相结合的设计。
为了便于学生熟悉整体与部分、分离与集成以及实验中任意改变元件的数值,加强理论与实践相结合。
下面就将电路中五部分的工作原理介绍如下:1、输入电路该电路由低通滤波、陷幅电路等组成,其中低通滤波器主要用在发端的波形编码电路中,即所谓的发端通道电路中,见图1--2。
因此,该电路还用于PCM、增量调制编码电路中。
在其他实验中,遇到该电路将不再介绍。
特别注意后继电路中有二个陷幅二极管D1、D2组成双向陷幅电路,主要防止外加输入信号过大而损坏后面调制电路中的场效应管器件。
图1--2 (PAM、PCM、增量调制)发送通道输入电路电原理图2、调制电路调制电路采用单管调,由场效应管3DJ6F来担任,利用其阻抗高的特点和控制灵敏的优越性,能很好的满足调制要求。
取样脉冲由该管的S极加入,D极输入音频信号,由于场效应管良好的开关特性,在TP602处便可以测到理想的脉冲幅度调制信号,该信号为双极性脉冲幅度信号,不含直流分量。
脉冲序列可表示为:SN(t)=∑P(t-KTS),其傅氏变换FS(W)=∑C k F(w-kwK),由此可见,成周期性上、下边带频谱信号。
实验一 AMT、HDB3编译码综合实验一、实验目的了解由二进制单极性码变换为AMI码HDB3码的编码译码规则,掌握它的工作原理和实验方法。
二、实验内容1.伪随机码基带信号实验2.AMI码实验① AMI码编码实验② AMI码译码实验③ AMI码位同步提取实验3.HDB3编码实验4.HDB3译码实验5.HDB3位同步提取实验6.AMI和HDB3位同步提取比较实验三、基本原理PCM信号在电缆信道中传输时一般采用基带传输方式,尽管是采用基带传输方式,但也不是将PCM编码器输出的单极性码序列直接送入信道传输,因为单极性脉冲序列的功率谱中含有丰富的直流分量和较多的低频分量,不适于直接送人用变压器耦合的电缆信道传输,为了获得优质的传输特性,一般是将单数性脉冲序列进行码型变换,以适应传输信道的特性。
(一)传输码型的选择在选择传输码型时,要考虑信号的传输信道的特性以及对定时提取的要求等。
归结起来,传输码型的选择,要考虑以下几个原则:1.传输信道低频截止特性的影响在电缆信道传输时,要求传输码型的频谱中不应含有直流分量,同时低频分量要尽量少。
原因是PCM端机,再生中继器与电缆线路相连接时,需要安装变压器,以便实现远端供电(因设置无人站)以及平衡电路与不平衡电路的连接。
图3一1是表示具有远端供电时变压器隔离电源的作用,以保护局内设备。
由于变压器的接入,使信道具有低频截止特性,如果信码流中存在直流和低频成分,则无法通过变压器,否则将引起波形失真。
2.码型频谱中高频分量的影响一条电缆中包含有许多线对,线对间由于电磁辐射而引起的串话是随着频宰的升高而加剧,因此要求频谱中高频分量尽量少,否则因串话会限制信号的传输距离或传播容量。
3.定时时钟的提取Array码型频谱中应含有定时时钟信息,以便再生中继器接收端提取必需的时钟信息。
4.码型具有误码检测能力若传输码型有一定的规律性,那么就可根据这一规律性来检测传输质量,以便图3.1变压器的隔离作用做到自动监测。
网络工程信息安全_通信原理实验讲义一、实验目的1.掌握通信原理的基本概念和原理;2.了解数字通信系统的构成和工作原理;3.学习通信系统中各部件的工作特点及性能指标的测量方法。
二、实验仪器信号发生器、示波器、数字存储示波器、多用测试仪等。
三、实验内容1.信号的频谱分析根据实验要求,使用信号发生器产生不同频率的正弦信号,利用示波器和频谱分析仪进行信号的波形和频谱分析。
2.信号的调制与解调根据实验要求,利用信号发生器产生调制信号,使用示波器和调制解调器进行信号的调制和解调。
3.数字通信系统根据实验要求,使用数字通信系统测试仪,对数字通信系统中的激励特性、传输特性和性能进行测量和分析。
4.通信原理实验综合实验根据实验要求,使用多种仪器和设备,完成一个完整的通信系统的实验。
四、实验原理1.信号的频谱分析信号的频谱是指信号在频率轴上的分布情况,频谱分析是对信号进行频率分解和频谱推导的过程。
常用的频谱分析方法有时域分析和频域分析。
2.信号的调制与解调调制是将低频信号转换为高频信号的过程,解调是将高频信号转换为低频信号的过程。
调制技术有幅度调制、频率调制和相位调制等。
3.数字通信系统数字通信系统是将模拟信号转换为数字信号进行传输和处理的系统。
它包括激励特性、传输特性和性能等方面的参数,通过测试仪器进行测量和分析。
五、实验步骤1.信号的频谱分析a.根据实验要求,使用信号发生器产生不同频率的正弦信号;b.连接示波器和频谱分析仪,将信号输入示波器,并观察信号的波形;c.将信号输入频谱分析仪,利用频谱分析仪进行信号的频谱分析。
2.信号的调制与解调a.根据实验要求,使用信号发生器产生调制信号;b.将调制信号输入调制解调器,利用示波器观察信号的调制和解调效果。
3.数字通信系统a.连接数字通信系统测试仪,按照实验要求进行设置;b.测量和分析数字通信系统的激励特性、传输特性和性能等参数。
4.通信原理实验综合实验a.根据实验要求,准备所需的仪器和设备;b.进行通信原理实验的综合实验,使用多种仪器和设备完成一个完整的通信系统的实验。
通信原理实验教程一、实验内容通信原理实验通常包括以下内容:1. 信号的产生与调制:实验通过信号发生器产生不同频率的正弦波信号,然后通过调制电路将正弦波信号调制成不同调制方式的信号,如调频、调幅、调相等。
2. 信号解调与恢复:实验通过解调电路将调制信号进行解调,恢复成原始的信息信号,然后通过滤波电路对信号进行滤波处理,使其更加稳定。
3. 通信系统的性能分析:实验通过各种测试仪器对通信系统进行性能分析,包括信噪比、误码率等指标的测试和分析。
4. 数字通信系统的实验:实验通过数字信号发生器产生数字信号,然后通过数字调制解调技术将数字信号传输到接收端,并对接收信号进行解码等操作。
二、实验仪器设备通信原理实验需要使用的主要仪器设备包括:1. 信号发生器:用于产生各种信号,包括正弦波信号、方波信号、三角波信号等。
2. 示波器:用于观察和测量信号波形,包括幅度、频率、相位等参数。
3. 信号调制解调实验箱:用于进行信号的调制解调实验操作,包括调幅、调频、调相等。
4. 滤波器:用于对信号进行滤波处理,去除杂波,使信号更加稳定。
5. 锁相环电路:用于信号的同步处理,提高信号的稳定性和抗干扰性。
6. 数字信号发生器:用于产生数字信号,进行数字通信系统实验。
三、实验步骤通信原理实验一般按以下步骤进行:1. 信号产生与调制实验:(1) 将信号发生器设置为正弦波形式,并调节频率和幅度。
(2) 将信号通过调制电路进行调幅、调频、调相等操作。
(3) 在示波器上观察和测量调制后的信号波形。
2. 信号解调与恢复实验:(1) 将调制后的信号通过解调电路进行解调操作,恢复成原信号。
(2) 使用示波器观察解调后的信号波形,并进行滤波处理。
(3) 对信号进行稳定性测试,包括信噪比、误码率等指标的测量和分析。
3. 数字通信系统实验:(1) 使用数字信号发生器产生数字信号,并进行数字调制操作。
(2) 将数字信号通过数字调制解调技术传输到接收端,并对接收信号进行解码等操作。
一、实验目的1. 理解通信系统的基本组成和工作原理。
2. 掌握信号调制与解调的基本方法。
3. 熟悉MATLAB在通信系统仿真中的应用。
4. 分析通信系统性能,评估信号传输质量。
二、实验原理通信系统通常由信源、信道、信宿和传输介质组成。
信源产生待传输的信息,信道负责传输信号,信宿接收并处理信号,传输介质是信号传输的物理通道。
本实验主要研究以下通信原理:1. 模拟调制与解调:包括调幅(AM)、调频(FM)和调相(PM)。
2. 数字调制与解调:包括幅度键控(ASK)、频率键控(FSK)和相位键控(PSK)。
3. 信号频谱分析:利用傅里叶变换分析信号频谱,了解信号带宽和能量分布。
三、实验内容1. 模拟调制与解调:(1)使用MATLAB生成模拟信号,如正弦波、方波等。
(2)进行调幅、调频和调相调制,观察调制后的信号波形。
(3)对调制信号进行解调,恢复原始信号。
(4)分析调制和解调过程中的信号质量。
2. 数字调制与解调:(1)使用MATLAB生成数字信号,如二进制序列。
(2)进行ASK、FSK和PSK调制,观察调制后的信号波形。
(3)对调制信号进行解调,恢复原始数字信号。
(4)分析调制和解调过程中的信号质量。
3. 信号频谱分析:(1)对模拟和数字信号进行傅里叶变换,观察信号频谱。
(2)分析信号带宽和能量分布,评估信号传输质量。
四、实验步骤1. 模拟调制与解调:(1)在MATLAB中生成模拟信号,如正弦波、方波等。
(2)进行调幅调制,观察调制后的信号波形。
(3)对调幅信号进行解调,恢复原始信号。
(4)重复步骤2和3,进行调频和调相调制与解调。
2. 数字调制与解调:(1)在MATLAB中生成数字信号,如二进制序列。
(2)进行ASK调制,观察调制后的信号波形。
(3)对ASK信号进行解调,恢复原始数字信号。
(4)重复步骤2和3,进行FSK和PSK调制与解调。
3. 信号频谱分析:(1)对模拟和数字信号进行傅里叶变换,观察信号频谱。
实验一模拟线性调制系统仿真实验1实验目的掌握常规AM调制、DSB调制、单边带调制(SSB)的原理和方法,并验证这三种方法的可行性。
并掌握Commsim的常用使用方法。
2实验内容和结果2.1模拟线性调制系统(AM)2.2抑制载波双边带调制(DSB)2.3单边带调制(SSB)3 实验分析3.1模拟线性调制系统(AM)的分析:任意AM 已调信号可以表示为Sam(t)=c(t)m(t)当)()(0t f A t m +=,)cos()(0θω+=t t c c 且A0不等于0时称为常规调幅,其时域表达式为:)cos()]([)()()(00θω++==t t f A t m t c t s c am 3.2抑制载波双边带调制(DSB ):任意DSB 已调信号都可以表示为DSB S )()()(t m t c t =当)()(0t f A t m +=;)cos()(0θω+=t t c c 且A 0等于0时称为抑制载波双边带调制。
其时域表达式为t t f t m t c t s c DSB ωcos )()()()(==;频域表达式为:C DSB F t s ωω+=([)(C F ωω-+()2)]÷3.3单边带调制(SSB ):设调制信号为单边带信号f(t)=A m cosωm t ,载波为c(t)=cosωc t 则调制后的双边带时域波形为:2/])cos()cos([cos cos )(t A t A t t A t S m c m m c m c m m DSB ωωωωωω-++==保留上边带,波形为:2/)sin sin cos (cos 2/])cos([)(t t t t A t A t S m c m c m m c m USB ωωωωωω-=+=保留下边带,波形为:2/)sin sin cos (cos 2/])cos([)(t t t t A t A t S m c m c m m c m LSB ωωωωωω+=-=4 实验体会通过此次实验我进一步理解了AM 、DSB 、SSB 的调制方法的原理和方法,以及如何通过Commsim 软件来模拟这一调制的过程。
南京工程学院教案【封面】南京工程学院教案【教学单元首页】南京工程学院教案【教学单元内容】实验一、AM模拟调制信号的产生与解调一、实验目的1、熟悉使用System View软件,了解各部分功能模块的操作和使用方法。
2、通过实验进一步观察、了解模拟信号AM调制、解调原理。
3、掌握AM调制信号的主要性能指标。
4、比较、理解AM调制的相干解调和非相干解调原理。
二、实验内容用System View构造一个AM调制、解调系统,观察各模块输出波形,了解AM调制系统的调制、解调原理,理解相干解调和非相干解调的区别,掌握AM调制信号的主要性能指标,即带宽和功率谱。
三、实验要求1、观察原始基带信号、已调信号、经过信道后加入噪声的已调信号以及解调信号的波形,理解AM调制系统的调制、解调原理。
2、观察以上四种信号的功率谱密度,理解它们之间的区别,说明原因。
3、观察以上四种信号的带宽,理解它们的之间的区别,说明原因。
4、调节噪声的大小,观察解调器输出波形的变化,说明原因。
5、比较相干解调和非相干解调,理解门限效应。
四、电路构成1、AM调制解调系统模型模块说明:Token3:产生原始基带信号,即周期性正弦波(参数设置:幅度=1V,频率=10HZ)。
Token1 :AM调制器(参数设置:专业库中选择Comm——Modulators——DSB-AM,幅度=1V,频率=1000Hz)Token5:加法器Token6:产生高斯白噪声(参数设置:Source——Gauss Noise Std=0.1V Mean=0V)Token8:乘法器Token9:产生载波信号,即周期性正弦波(参数设置:幅度=1V,频率=1000HZ)Token10、14:产生低通滤波器(参数设置:Operator——Filters/Systems——Linear SysFilters 选择Analog——Butterworth、Lowpass——Lowcutoff=50Hz)Token13:产生半波整流器(参数设置:Function——Non Linear——Half Rctfy)Token2、4、7、11、15:产生示波器系统定时设置:Start Time:0 ,Stop Time:0.6,Sample Rate:10000HZ五、实验结果1、原始基带信号波形2、AM调制后输出波形3、经过信道后加入噪声的波形4、经过相干解调后低通滤波器输出波形5、经过包络解调后低通滤波器输出波形6、原始基带信号功率谱7、AM调制信号功率谱8、经过相干解调后输出信号功率谱9、经过包络解调后输出信号功率谱南京工程学院教案【教学单元末页】南京工程学院教案【教学单元首页】南京工程学院教案【教学单元内容】实验二、数字信号基带传输系统实现及眼图的观察一、实验目的1、熟悉使用System View软件,了解各功能模块的操作和使用方法。
通信原理实验二实验二:调制与解调一、实验目的1. 理解调制与解调的基本概念;2. 掌握调幅(AM)、调频(FM)以及解调的原理;3. 实现AM、FM的信号调制与解调。
二、实验原理1. 调制原理调制是指在通信过程中将信息信号调制到载波上,以便传输的过程。
调制是将信息信号的某些特征参数随时间变化的过程。
1.1 调幅(AM)调制调幅是指通过改变载波的振幅来传输信息的一种调制方式。
调幅信号能够改变载波的背景亮度,使其随着信息信号的变化而变化。
1.2 调频(FM)调制调频是通过改变载波的频率来传输信息的一种调制方式。
调频信号能够改变载波的频率,使其频率随着信息信号的变化而变化。
2. 解调原理解调是指将调制信号中的信息还原出来的过程。
解调过程是调制的逆过程。
2.1 调幅(AM)解调调幅解调是从调幅信号中还原出原始信号的过程。
调幅信号在传输过程中会叠加一定的噪声,因此解调时需要采取一定的处理方法,如包络检波、同步检波等。
2.2 调频(FM)解调调频解调是从调频信号中还原出原始信号的过程。
调频信号在传输过程中对噪声具有较好的抵抗能力,因此解调过程较为简单,常采用频率鉴别解调等方法。
三、实验内容1. 实现AM调制与解调2. 实现FM调制与解调四、实验步骤1. 搭建AM调制电路,将音频信号与载波信号进行调制;2. 实现AM解调,将调制后的信号还原为音频信号;3. 搭建FM调制电路,将音频信号与载波信号进行调制;4. 实现FM解调,将调制后的信号还原为音频信号;5. 测试与观测调制与解调过程中的信号波形变化。
五、实验数据记录与分析(根据实际实验情况填写数据并进行相应的分析)六、实验总结通过本次实验,我们学习了调制与解调的原理,并实际搭建电路进行了AM和FM的调制与解调。
通过观测信号波形变化,我们加深了对调制与解调过程的理解,并掌握了相关的实验操作技巧。
本次实验对我们理解通信原理中的调制与解调起到了很好的辅助作用。
通信原理实验通信原理实验是电子通信专业学生必修的一门实验课程。
这门课程主要涉及通信系统的基本原理和实践操作。
学生通过实验学习,可以深入了解通信原理、了解通信器材的结构、功能和使用方法。
本文将从实验设备、实验内容、实验过程和实验结果几个方面进行介绍。
一、实验设备实验设备是通信原理实验教学的核心。
通信原理实验主要需要用到如下设备:1.信号发生器:信号发生器是通信原理实验中使用最多的一种设备。
它可以产生不同频率、不同型式的信号。
在实验中,主要用于产生调制信号和输入信号。
2.示波器:示波器是实验中常用的一种观测设备。
它可以观测信号形状、波形图、幅度、频率等参数。
在实验中,示波器主要用于观测信号的形状、波形、频率、幅度等参数。
3.功率计:功率计是实验中用于测量信号功率的设备。
在实验中,主要用于测量输出功率和输入功率。
4.音频发生器:音频发生器是实验中产生音频信号的设备。
在实验中,主要用于产生音频信号。
5.数字存储示波器:数字存储示波器是一种数字化示波器,它采用电子脉冲技术传输信号。
在实验中,主要用于观测高频信号。
二、实验内容通信原理实验的内容较为广泛。
通信原理实验课程的主要实验内容如下:1.幅调实验:幅度调制(AM)是一种调制方式,它通过改变载波的幅度来传输模拟信息信号。
在实验中,可以使用调幅电路,尝试对普通信号进行幅度调制并进行观测。
2.频调实验:频率调制(FM)是一种常见的调制方式,它通过改变载波频率的大小来传输模拟信息信号。
在实验中,可以使用频率调制电路,对普通信号进行频率调制并进行观测。
3.数字通信实验:学生可以学习数字通信的原理和实验。
数字通信与模拟通信不同,数字通信是指对数字信号进行编码和解码的过程。
数字信号传输的优点是抗干扰性强,并且可以被数字计算机处理。
4.天线实验:天线是传输和接收无线电信号的重要设备。
在实验中,可以尝试不同天线的设置,观测其电信号强度和频率响应等参数。
5.其他实验:学生可以根据自己的兴趣,设计不同的实验方案并进行实验。
通信原理实验通信原理是现代通信领域的基础知识,通过实验可以更加直观地了解通信原理的相关概念和技术。
本次实验将涉及到模拟调制解调实验、数字调制解调实验以及信道编码和解码实验。
首先,我们将进行模拟调制解调实验。
模拟调制是指利用模拟信号进行调制的过程,而模拟解调则是将调制后的信号还原成原始信号的过程。
在实验中,我们将学习调幅调制(AM)、调频调制(FM)和调相调制(PM)的原理,并通过实验验证调制后的信号特性和解调的效果。
接下来,我们将进行数字调制解调实验。
数字调制是指利用数字信号进行调制的过程,而数字解调则是将调制后的信号还原成原始数字信号的过程。
在实验中,我们将学习脉冲编码调制(PCM)、正交振幅调制(QAM)和频移键控(FSK)等数字调制技术,并通过实验验证数字调制解调的原理和性能。
最后,我们将进行信道编码和解码实验。
信道编码是为了提高通信系统抗干扰能力和改善信道传输质量而对数字信号进行编码的过程,而信道解码则是将经过编码的信号进行解码还原的过程。
在实验中,我们将学习卷积码和纠错码的原理,以及信道编码和解码的实际应用。
通过以上实验,我们可以更加深入地理解通信原理的基本原理和技术,为今后的学习和研究打下坚实的基础。
希望大家能够认真对待本次实验,积极参与实验操作,加深对通信原理的理解和掌握,为将来的学习和工作打下坚实的基础。
总结,通过本次实验,我们对通信原理的模拟调制解调、数字调制解调以及信道编码和解码等方面有了更深入的了解。
希望大家能够在实验中认真学习,掌握相关技术,为今后的学习和工作打下坚实的基础。
同时也希望大家能够在实验中加强合作,共同进步,共同提高。
谢谢大家的参与!。
通信原理实验讲义通信原理实验辽宁⼤学信息学院2005年5⽉⽬录实验⼀数字基带信号实验(AMI/HDB3) (3)实验⼆数字调制实验 (7)实验三模拟锁相环与载波同步实验 (11)实验四数字解调实验 (14)实验五全数字锁相环与位同步实验 (18)实验六帧同步实验 (22)实验七数字基带通信系统实验 (25)实验⼋ 2DPSK、2FSK通信系统实验 (29)实验九 AM调制解调通信系统实验 (30)实验⼗ PAM调制解调实验 (33)实验⼗⼀ PCM编译码实验 (36)实验⼗⼆ ADPCM编译码实验 (42)实验⼗三 CVSD调制解调实验 (47)实验⼗四话⾳信号多编码通信系统实验 (51)实验⼗五码型变换实验(CPLD开放模块实验) (53)实验⼗六时分复⽤实验(CPLD开放模块实验) (56)实验⼗七计算机通信实验(CPLD开放模块实验) (59)实验⼗⼋ 5B6B编译码实验(CPLD开放模块实验) (61)实验⼀数字基带信号实验⼀、实验⽬的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。
2、掌握AMI、HDB3的编码规则。
3、掌握从HDB3码信号中提取位同步信号的⽅法。
4、掌握集中插⼊帧同步码时分复⽤信号的帧结构特点。
5、了解HDB3(AMI)编译码集成电路CD22103。
⼆、实验内容1、⽤⽰波器观察单极性⾮归零码(NRZ)、传号交替反转码(AMI)、三阶⾼密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。
2、⽤⽰波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。
3、⽤⽰波器观察HDB3、AMI译码输出波形。
三、基本原理本实验使⽤数字信源模块、HDB3编译码模块和可编程逻辑器件模块。
1、数字信源本模块是整个实验系统的发终端,其原理⽅框图如图1-1所⽰。
本单元产⽣NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所⽰。
帧长为24位,其中⾸位⽆定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。
实验一 仪器设备操作使用及抽样定理和脉冲调幅(PAM )实验一、 实验目的1、掌握实验用仪器设备的操作使用方法2、观察并了解PAM 信号形成、平顶展宽、解调和滤波等过程;3、验证并理解抽样定理,掌握对频谱混迭现象的分析方法;二、 实验内容⏹实验仪器的操作使用; ⏹采用专用集成抽样保持开关完成对输入信号的抽样; ⏹多种抽样时隙的产生; ⏹采用低通滤波器完成对PAM 信号的解调 ; ⏹ 测试输入信号频率与抽样频率之间的关系,观察频谱混迭现象,验证抽样定理;三、 实验原理 利用抽样脉冲把一个连续信号变为离散时间样值的过程称为抽样,抽样后的信号称为脉冲调幅(PAM )信号。
在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。
并且,从抽样信号中可以无失真地恢复出原信号。
抽样定理 抽样定理指出,一个频带受限信号)(t m 如果它的最高频率为H f [即)(t m 的频谱中没有H f 以上的分量],可以唯一地由频率大于或等于2H f 的样值序列所决定。
因此,对于一个最高频率为3400Hz 的语音信号)(t m ,可以用频率大于或等于6800Hz 的样值序列来表示。
用截止频率为H f 的理想低通滤波器可以无失真地恢复原始信号)(t m ,这就说明了抽样定理的正确性。
考虑到低通滤波器特性不可能理想,对最高频率为3400Hz 的语音信号,常采用8KHz 抽样频率,这样可以留出1200Hz 的防卫带。
如果S f <2H f ,就会出现频谱混迭的现象。
在验证抽样定理的实验中,用单一频率H f 的正弦波来代替实际的语音信号。
采用标准抽样频率S f =8KHz ,改变音频信号的频率H f ,分别观察不同频率时,抽样序列和低通滤波器的输出信号,体会抽样定理的正确性。
(一)、电源检查电源的接入点位置请参考电路板上的印刷文字及接线柱颜色,注意电源极性和大小!用万用表(或示波器)确认三组电源的电压极性和电压值为+8V 、-8V 、+15V ,在确认完全无误之前不允许把实验箱和电源连接。
通信原理实验讲义基础实验目录目录 (2)前言 (4)拨码器开关设置一览表 (5)第一部分基础实验 (9)实验1 模拟信号源实验 (9)实验2 CPLD可编程逻辑器件实验13实验3 接收滤波放大器实验 (19)第二部分原理实验 (22)实验1 抽样定理及其应用实验 (22)实验2 PCM编译码系统实验 (29)实验3 ADPCM编译码系统实验.. 35实验4 CVSD编译码系统实验 (41)实验5 FSK(ASK)调制解调实验50实验6 PSK(DPSK)调制解调实验. 57实验7 数字同步技术实验 (66)实验8 眼图观察测量实验 (72)实验9 数字频率合成实验 (79)实验10 基带信号的常见码型变换实2验 (88)实验11 AMI/HDB3编译码实验 (96)实验12 码分复用解复用实验 (103)实验13 汉明码编译码及纠错能力验证实验 (108)实验14 汉明、交织码编译码及纠错能力验证实验 (114)实验15 循环码编译码及纠错能力验证实验 (118)实验16 线路成形与频分复用实验123实验17 码分复用解复用实验 (130)3前言本通信原理实验平台由实验平台底板和实验模块组成,根据教学大纲对通信原理课程性质的定位,为广大院校师生提供了良好的教学实验条件。
我们在多年积累的教学经验和学校使用反馈意见的基础上,保留了前几款实验箱的特色实验,扩展了实验模块的功能,加强了模块间的系统性实验,大大增加了实验内容;同时为了配合实验室设备管理,我们在各模块电路板上加有有机玻璃保护罩。
整个实验平台,突出体现理论知识的系统性和教学内容的稳定性,使学生能够掌握分析研究通信系统各种部件的基本方法,强调培养学生理论联系实际和研究、开发、创新的能力。
本实验平台要求示波器最低配置为20M双踪模拟示波器,示波器的幅度档一般设置在2V 档,探头1X无衰减。
测量时黑色的接地夹子应先接地。
一般情况下,本实验平台上元器件的标号都是按照模块划分的。
如标号58TP01,“58TP01”中的“58”表示模块的标号,即“XXX 模块”;“01”表示编号,“TP”表示常规测试点;“位:A”表示此模块需要安置在底板的标号为“A”位置,合起来即表示“XXX模块”需安置在底板的标号为“A”位置,其中一个标号58TP01波形测量点(镀银测试针)。
另外,如标号为58P01,即表示一个信号输入(输出)连接点(铜质铆孔),如铆孔边的箭头背离铆孔,即表示是信号输出连接点;如箭头指向铆孔,即表示信号输入连接点。
本实验4平台中,所有通信信号都是通过铆孔开放出来的,实验时需在了解实验结构的基础上,用铆孔连接线连接构成所需实验系统。
进行铆孔连接时,连接线接头插入铆孔后,轻轻旋转一个小角度,接头将和铆孔锁死;拔出时,回转一个小角度即可轻松拔出,切勿使用莽力拉扯,以免插头针断在铆孔中。
实验操作前,务必预习实验内容,在弄清楚实验要求和各模块功能的基础上,进行实验系统的连接构建。
电子元器件标号首字母的意思:TP表示信号波形测量点,P表示信号输入输出铜铆孔,U 表示芯片集成电路,R表示电阻,C表示普通电容,E表示电解电容,J表示接插件,JZ表示晶振或晶体,K表示选择开关等。
拨码器开关设置一览表在本实验平台上,我们采用了红色的拨码器来设置各种实验的参数。
拨码器的白色开关:往上,记为1;往下,记为0。
一、“时钟与基带数据产生模块”5位拨码开关4SW02:S1:00000:4P01铆孔,PN15 2K,15位m序列111101*********S2:00001:4P01铆孔,PN15 32K,15位m序列111101*********S3:00010:4P01铆孔,PN31 2K,31位m序5列31位1111100110100100001010111011000S4:00011:4P01铆孔,PN31 32K,31位m序列31位1111100110100100001010111011000S5:00100:CVSD,编码速率8KS6:00101:CVSD,编码速率16KS7:00110:CVSD,编码速率32KS8:00111:CVSD,编码速率64KS9:01000:PCM,线路编码速率64KS10:01001:PCM,线路编码速率128K(或标准E1速率)S15:01110:4SW01拨码器设置数据(8bit数据)64KS16:01111:时分复用(4SW01拨码器设置数据64K,PCM编码64K、CVSD编码64K、滤波器2.65K)。
下面是常见码型变换的开关设置:S17:1X000:单极性归零编码S18:1X001:双极性不归零S19:1X010:双极性归零S20:1X011:CMIS21:1X100:曼彻斯特S22:1X101:密勒S23:1X110:PST注:1. 4P01为原始基带数据。
X=0时为4SW01拨码器设置8bit数据,X=1时为15位m序列。
4TP01为码型变换后输出数据。
2.以上实验设置的各参数可根据学校要求定制。
二、“复接/解复接、同步技术模块”的4位拨码器开关39SW011.同步、时钟提取和码型转换功能。
数据从639P01输入0001 2K时钟提取。
0010 32K DPSK时钟提取、相对码绝对码转换(对应于“时钟与基带数据产生模块”中生成的绝对码4P01、相对码4P03)。
39P06输出同步时钟,39P07输出位同步和码型转换后信号。
0011 32K PSK时钟提取、位同步。
39P06输出提取时钟,39P07输出位同步信号。
2.时分复接/解复接功能1111 实现4SW01拨码器(8bit数据)、PCM编码、CVSD编码等数据的时分复接解复接功能。
3.码分复接/解复接功能0111 实现4SW01拨码器(8bit数据)、PCM编码等数据的码分复接解复接功能。
4.外部数据的绝对码与相对码转换功能0100 绝相转换:基带绝对码输入铆孔39P02;相对码输出铆孔39P06;相绝转换:相对码输入铆孔39P01;基带绝对码输出铆孔39P07;基带绝对码速率为:2K左右(可为计算机串口数据:波特率2400)三、面板输入输出点说明7K01:非同步函数信号类型选择,正弦波、三角波、方波。
W01:非同步函数信号的频率调节,一般使用频率值范围为1~4KHZ。
W02:非同步函数信号的直流电平调节,调节范围至少为0~2V,视信号幅度而定,一般调节为0V(出厂前已调好,该电位器学生可不调节)。
W03:非同步函数信号的幅度调节,一般使用峰峰值范围为0~4V。
P03:非同步函数信号的输出连接铆孔。
W04: 同步函数信号的幅度调节,一般使用峰峰值范围为0~4V。
P04:同步正弦波信号的输出连接铆孔。
P05: 标准8KHZ方波抽样输出P07:音乐信号输出P08:语音信号输出,另外配置话筒SW01:音乐信号触发开关P22:输出数字信号,由学生进行单片机开发。
P23:输出数字时钟,由学生进行单片机开发。
P24:输出脉冲信号,用于抽样定理实验W05:脉冲频率调节W07:脉冲信号占空比调节8第一部分基础实验实验1 模拟信号源实验一、实验目的1.了解本模块中函数信号产生芯片的技术参数;2.了解本模块在后续实验系统中的作用;3.熟悉本模块产生的几种模拟信号的波形和参数调节方法。
二、实验仪器1.时钟与基带数据发生模块,位号:G2.频率计1台3.20M双踪示波器1台三、实验原理本模块主要功能是产生频率、幅度连续可调的正弦波、三角波、方波等函数信号(非同步函数信号),另外还提供与系统主时钟同源的2KHZ正弦波信号(同步正弦波信号)和模拟电话接口。
在实验系统中,可利用它定性地观察通信话路的频率特性,同时用做PAM、PCM、ADPCM、CVSD( M)等实验的音频信号源。
本模块位于底板的左边。
1.非同步函数信号它由集成函数发生器XR2206和一些外围电路组成,XR2206芯片的技术资料可到网上搜索得到。
函数信号类型由三档开关K01选择,类型分别为三角波、正弦波、方波等;峰峰值幅度范围0~10V,可由W03调节;频率范围约500H Z~5KHZ,可由W02调节;直流电平可由910 W01调节(一般左旋到底)。
非同步函数信号源结构示意图,见图2-1。
图2-1 非同步函数信号源结构示意图2.同步正弦波信号 它由2KHz 方波信号源、低通滤波器和输出放大电路三部分组成。
2KHz 方波信号由“时钟与基带数据发生模块”分频产生。
U03及周边的阻容网络组成一个截止频率为2KHZ 的低通滤波器,用以滤除各次谐波,只输出一个2KHz 正弦波,在P04可测试其波形。
用其作为PAM 、PCM 、ADPCM 、CVSD ( M )等模块的音频信号源,其编码数据可在普通模拟示波器上形成稳定的波形,便于实验者观测。
W04用来改变输出同步正弦波的幅度。
同步信号源结构示意图,见图2-2。
U02图2-2 同步函数信号源结构示意图四、各可调元件及测量点的作用K01:非同步函数信号类型选择,正弦波、三角波、方波。
W01:非同步函数信号的频率调节,一般使用频率值范围为1~4KHZ 。
W02:非同步函数信号的直流电平调节,调节范围至少为0~2V ,视信号幅度而定,一般调节为0V (出厂前已调好,该电位器学生可不调节)。
W03:非同步函数信号的幅度调节,一般使用峰峰值范围为0~4V 。
P03:非同步函数信号的输出连接铆孔。
W04: 同步函数信号的幅度调节,一般使用峰峰值范围为0~4V 。
P04:同步正弦波信号的输出连接铆孔。
P05: 标准8KHZ 方波抽样输出 P07:音乐信号输出P08:语音信号输出,另外配置话筒五、实验内容及步骤1.插入有关实验模块:U04在关闭系统电源的条件下,将“时钟与基带数据发生模块”,插到底板“G”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。
注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。
2.加电:打开系统电源开关,底板的电源指示灯正常显示。
若电源指示灯显示不正常,请立即关闭电源,查找异常原因。
3. 非同步函数信号源测试:频率计和示波器监测P03测试点,按上述设置测试非同步函数信号源输出信号波形,记录其波形参数。
4.同步正弦波信号源测试:频率计和示波器监测P04测试点,按上述设置测试同步正弦波信号源输出信号波形,记录其波形参数。
六、实验报告要求1.记录非同步函数信号和同步信号的幅度、频率等参数,画出测试的波形图。
2.记录电话数字键波形,了解电话拨号的双音多频的有关技术。
实验2 CPLD可编程逻辑器件实验一、实验目的1.了解ALTERA公司的CPLD可编程器件EPM240;2.了解本模块在实验系统中的作用及使用方法;3.掌握本模块中数字信号的产生方法。