2019精选教育冀教版初三数学上册中位数与众数知识点.doc
- 格式:doc
- 大小:14.04 KB
- 文档页数:3
初三上册23 章 数据解析23.1 平均数和加权平均数1、一般地,我们把n 个数 x 1, x 2 ,..., x n 的和与 n 的比,叫做这 n 个数的算术平均数,简称平均数,记作 x ,读作 “x 拔〞,即x 1 (x 1...x n ).n2、 n 个数 x 1, x 2 ,..., x n ,假设 w 1 , w 2 ,..., w n 为一组正数,那么把x 1w 1 x 2 w 2 ... x n w nn 个 数 x 1 , x 2 ,..., x n 的 加 权 平 均 数 ,w 1 w 2 叫 做 ...w nw 1 , w 2 ,..., w n 分别叫做这 n 个数的权重,简称权。
23.2 中位数和众数1、一般地,将 n 个数据按大小序次排列,若是n 为奇数,那么把处于中间地址的数据叫做这组数据的 中位数;若是 n 为偶数,那么把处于中间地址的两个数据的平均数叫做这组数据的中位数。
2、一般地,把一组数据中出现次数最多的那个数据叫做众数。
一组数据的众数可能不仅一个,也可能没有众数。
23.3 方差设 n 个数据 x 1 , x 2 ,..., x n 的平均数为 x ,各个数据与平均数偏差的平方分别是( x 1 x)2 ,( x 2 x)2 ,..., ( x n x) 2 。
偏差平方的平均数叫做这组数据的方差,用 s 2 表示,即s 21 (x 1 x)2 ( x 2 x) 2... (x n x) 2n当数据分布比较分别时,方差较大;当数据分布比较集中时,方差较小。
因此,方差的大小反响了数据颠簸〔或失散程度〕的大小。
23.4 用样本估计整体由于抽样的任意性, 即即是同样的样本容量, 不同样样本的平均数一般也不同样; 当样本容量较小时, 差异可能还较大。
但是当样本容量增大时, 样本的平均数的波动变小,逐渐趋于牢固,且与整体的平均数比较凑近。
因此,在实质中经常用样本的平均数估计整体的平均数。
数据的中位数和众数在统计学中,数据的中位数和众数是衡量数据集中趋势的两个重要指标。
它们可以帮助我们了解数据的分布和集中程度,从而对数据进行更深入的分析和解释。
本文将详细介绍中位数和众数的概念、计算方法以及它们在实际应用中的意义。
一、中位数中位数是指将一组数据按照大小顺序排列后,处于中间位置的数值。
也就是说,在有奇数个数据的情况下,中位数就是中间那个数;而在有偶数个数据的情况下,中位数是中间两个数的平均值。
通过计算中位数,我们可以得到一组数据的中间值,从而把数据集合分为两个相等的部分。
计算中位数的方法相对简单,首先需要将数据集合按照大小进行排序,然后根据奇偶性确定中位数的位置,并进行相应的计算。
举个例子来说,假设我们有一组数据:1,2,3,4,5。
这组数据的中位数就是3,因为它处于中间的位置。
又如,假设我们有一组数据:1,2,3,4,5,6。
这组数据的中位数就是3.5,因为中间两个数的平均值为3.5。
中位数的计算可以更直观地反映出数据的中心趋势,尤其对于存在离群值或极端值的数据集合而言。
在实际应用中,中位数常被用来代替平均值,以避免极端值对平均值的影响。
例如,在薪资数据中,存在极高或极低的薪水水平可能会导致平均工资偏离真实水平,此时中位数可以更准确地反映大多数人的实际收入水平。
二、众数众数是指在一组数据中出现次数最多的数值。
它可以揭示数据的集中趋势,帮助我们了解数据中最常见或最重要的数值。
与中位数不同的是,众数可能不唯一,一个数据集合可以有多个众数,也可以没有众数。
计算众数的方法相对简单,可以通过统计每个数值在数据集中出现的次数来确定众数。
最大的次数对应的数值,即为众数。
举个例子来说,假设我们有一组数据:1,2,3,3,4,5。
这组数据中出现次数最多的是3,因此3为众数。
又如,假设我们有一组数据:1,2,3,3,4,5,5。
这组数据中出现次数最多的是3和5,因此这组数据有两个众数。
众数可以帮助我们发现数据中的常见模式或特征。
《23.2 中位数和众数(一)》一、填空题(共2小题,每小题4分,满分8分)1.将n个数据按照从小到大(或从大到小)的顺序排列,如果n为奇数,那么处于______位置的数叫做这组数据的中位数;如果n为偶数,那么中间位置两个数据的______叫做这组数据的中位数.2.一组数据中出现次数______的那个数据叫做众数.3.有5个从小到大排列的正整数,中位数是3,唯一的众数是8,则这5个数的和为______.4.在2013年的体育中考中,某校6名学生的分数分别是27、28、29、28、26、28,这组数据的众数是______.5.若一组2,﹣1,0,2,﹣1,a的众数为2,则这组数据的平均数为______.二、选择题(共8小题,每小题4分,满分32分)6.气候宜人的省级度假胜地吴川吉兆,测得一至五月份的平均气温分别为17、17、20、22、24(单位:℃),这组数据的中位数是()A.24 B.22 C.20 D.177.孔明同学参加暑假军事训练的射击成绩如下表:射击第一次第二次第三次第四次次序成绩9 8 7 9(环)则孔明射击成绩的中位数是()A.6 B.7 C.8.5 D.98.端午节期间,某市一周每天最高气温(单位:℃)情况如图所示,则这组表示最高气温数据的中位数是()A.22 B.24 C.25 D.279.在一次环保知识问答中,一组学生成绩统计如表:则该组学生成绩的中位数是()A.70 B.75 C.80 D.8510.已知一组从小到大的数据:0,4,x,10的中位数是5,则x=()A.5 B.6 C.7 D.811.在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m)分别为:1.71,1.85,1.85,1.95,2.10,2.31,则这组数据的众数是()A.1.71 B.1.85 C.1.90 D.2.3112.学业考试体育测试结束后,某班体育委员将本班50名学生的测试成绩制成如下的统计表.这个班学生体育测试成绩的众数是()21 22 23 24 25 26 27 28 29 301 2 4 5 6 5 8 10 6 2 A.30分B.28分C.25分D.10人13.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据:组别 1 2 3 4 5 6 7分值90 95 90 88 90 92 85这组数据的中位数和众数分别是()A.88,90 B.90,90 C.88,95 D.90,95三、解答题(共3小题,满分44分)14.某校八(1)班50名学生参加市数学质量监控考试,全班学生的成绩统计如下表:成绩(分)71 74 78 80 82 83 85 86 88 90人数 1 2 3 5 4 5 3 7 8 4请根据表中提供的信息解答下列问题:(1)该班学生考试成绩的众数是______;(2)该班学生考试成绩的中位数是______;(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.15.为纪念辛亥革命100周年,某校八年级(1)班全体学生举行了“首义精神耀千秋”的知识竞赛.根据竞赛成绩(得分为整数.满分为100分)绘制了频数分布直方图(如图所示),根据频数分布直方图解答下列问题:(1)求该班的学生人数:(2)若成绩不少于80分为优秀,且该班有3名学生的成绩为80分,则学生成绩的优秀率是多少?(3)若该班超过82分的学生有22人,则学生成绩的中位数可能是多少分?(直接写出答案即可)16.某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1﹣8这8个整数,现提供统计图的部分信息如图,请解答下列问题:(1)根据统计图,求这50名工人加工出的合格品数的中位数;(2)写出这50名工人加工出的合格品数的众数的可能取值;(3)厂方认定,工人在单位时间内加工出的合格品数不低于3件为技能合格,否则,将接受技能再培训.已知该厂有同类工人400名,请估计该厂将接受技能再培训的人数.初中数学试卷灿若寒星制作。
第1课时中位数和众数的认识课时目标1.理解中位数、众数的概念和意义,会求一组数据的中位数和众数.2.会利用平均数、中位数、众数作为数据的代表值,对数据进行分析,选择恰当的数据代表值描述一组数据的特征,进而做出自己的判断,并在具体问题情境中加以应用.3.培养学生互相交流的能力,增强学生的数学应用意识.学习重点中位数、众数的概念和意义,会求一组数据的中位数和众数.学习难点选择恰当的数据代表值描述数据的特征.课时活动设计回顾引入在前边的学习中,我们知道平均数可作为一组数据的代表值,但是有的时候,用平均数作为一组数据的代表值也会存在局限性,这个时候我们就需要引入新的数据作为一组数据的代表值,这就是本节课我们要学习的中位数和众数.设计意图:开门点题,让学生知道本节课的学习重点.探究新知探究一小琴的英语听力成绩一直很好,在六次测试中,前五次的得分(满分30分)分别为:28分,25分,27分,28分,30分.第六次测试时,因耳机出现故障只得了6分.如何评价小琴英语听力的实际水平呢?(1)用6个分数的平均数评价小琴英语听力的实际水平合理吗?(2)如果不合理,那么应该用哪个数作为评价结果呢?学生分组讨论:先独立思考,再组内交流.在学生充分讨论的基础上,学生展示,师生共同归纳.分析:一组数据中,任何一个数的变动都会引起平均数的变动.当数据中有异常值(与其他数据的大小差异很大的数)时,平均数就不是一个好的代表值了.解:(1)由于数据中出现了异常值,此时,平均数不能很好地反映听力的实际水平.(2)方法不唯一.如方法一:去掉一个最高分30分,去掉一个最低分6分,得到一组新的数据:28分,25分,27分,28分,取这组数据的平均数(28+25+27+28)÷4=27(分)作为评价结果,比较合理.方法二:如果将这6个数有小到大排列为6,25,27,28,28,30,去(27+28)÷2=27.5(分)作为评价结果,也比较合理.总结概念一般地,将n个数据按大小顺序排序,如果n为奇数,那么把处于中间位置的数据叫做这组数据的中位数;如果n为偶数,那么把处于中间位置的两个数据的平均数叫做这组数据的中位数.(x3+x4).如图所示,图1中5个数据的中位数为x3,图2中6个数据的中位数为12图1图2归纳:求中位数的一般步骤:(1)排序;(2)判断数据个数;(3)按定义求解.设计意图:通过实际问题,使学生认识到当数据中存在极端异常值或者数据的波动较大的时候,平均数的代表性就会变差,给学生独立思考和交流的时间,让学生发表各自的观点,体会中位数出现的必要性,从而引起中位数的概念.探究二某班用无记名投票的方式选班长,5名候选人分别编为1号,2号,3号,4号,5号.投票结果如下表:思考1:在这个问题中,(1)我们会关注这组数据的平均数吗?(2)我们会关注这组数据的中位数吗?(3)我们最关注的应该是什么?学生分组讨论:先独立思考,再组内交流.在学生充分讨论的基础上,学生展示,师生共同归纳.解:(1)不会.(2)不会.(3)出现次数最多的那个数据.总结概念一般地,把一组数据中出现次数最多的那个数据叫做众数.思考2(可自主思考,也可小组之间探讨、交流):(1)一组数据中众数一定只有一个吗?(2)一组数据中一定会有众数吗?(3)若一组数据中有众数,众数一定是该组数据中的数吗?解:(1)不一定.(2)不一定.(3)不一定.归纳:一组数据的众数可能不止一个,也可能没有众数; 众数是一组数据中出现次数最多的数据而不是数据出现的次数.设计意图:通过解决具体问题,揭示众数出现的必要性,总结出众数的概念;通过思考,让学生能够体会到,一组数据中,众数可能不止一个,也可能没有众数,同时众数可能是数值、数字、文字和字母等,一定注意众数是研究的原始数据(或者原始对象).典例精讲例统计全班45名学生每天上学路上所用的时间.如果时间取最接近5的倍数的整数,那么整理后的数据如下表:求所用时间的平均数、中位数和众数.解:45个数据的平均数为:x=1×(5×2+10×6+15×14+20×12+25×8+30×3)=18(min).45将这45个数据由小到大排列,第23个数据是20 min,所以中位数是20 min.所用时间出现最多的是15 min,所以众数是15 min.设计意图:通过例题,学生能够熟悉求平均数、中位数和众数的方法,并进行比较.巩固训练1.学校团委组织“阳光助残”捐款活动,九年一班学生捐款情况如下表:则学生捐款金额的中位数是(D)A.13人B.12人C.10元D. 20元2.11名同学参加数学竞赛初赛,他们的得分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的(B)A.平均数B.中位数C.众数D.方差3.某校女子排球队12名队员的年龄分布如下表所示:则该校女子排球队12名队员年龄的众数、中位数分别是(C)A.13岁,14岁B.14岁,15岁C.15岁,15岁D.15岁,14岁4.某中学由6名师生组成一个排球队,他们的年龄(单位:岁)如下:151617171740(1)这组数据的平均数为20.33岁,中位数为17岁,众数为17岁.(2)用哪个值作为他们年龄的代表值较好?解:用中位数或众数作为年龄的代表值比平均数好.5.(1)数据3,5,3,5,3,6,5,7中,众数是3和5.(2)数据3,4,6,5,7,8,9,2中,存在众数吗?为什么?解:该组数据中每个数据各出现一次,所以这组数据没有众数.设计意图:通过练习,巩固求平均数、中位数和众数的方法.课堂8分钟.1.教材第15页习题A组第1,2题,习题B组第2题.2.七彩作业.第1课时中位数和众数一、定义:中位数:一般地,将n个数据按大小顺序排列,如果n为奇数,那么把处于中间位置的数据叫做这组数据的中位数;如果n为偶数,那么把处于中间位置的两个数据的平均数叫做这组数据的中位数.(x3+x4)如图所示,图1中5个数据的中位数为x3,图2中6个数据的中位数为12图1图2众数:一般地,把一组数据中出现次数最多的那个数据叫做众数.二、中位数求解的一般步骤:(1)排序;(2)判断数据个数;(3)按定义求解.例:教学反思第2课时“三数”的综合应用课时目标1.进一步体会平均数、中位数和众数都可以反映一组数据的集中趋势.2.会利用平均数、中位数和众数作为数据的代表值,对数据进行分析,选择恰当的数据代表值对数据作出自己的判断,并在具体问题情境中加以应用.3.培养学生互相交流的能力,增强学生的数学应用意识.学习重点平均数、中位数、众数的概念和意义,会求一组数据的平均数、中位数和众数.学习难点选择恰当的数据代表值描述数据的特征. 课时活动设计情境引入前面我们学习了三个重要的统计量:平均数、中位数和众数,一起来思考下列问题:有6户家庭的年收入(单位:万元)分别为:4,5,5,6,7,50.你认为这6户家庭的年收入水平大概是多少?学生讨论,交流. 解:(1)用平均数估计:x —=4+5+5+6+7+506≈12.83(万元);(2)用中位数估计:中位数=5+62=5.5(万元);(3)用众数估计:众数=5万元.教师:用哪一个统计量来反映6户家庭的年收入水平呢?这就是这节课要学习的内容.设计意图:开门点题,引出本节课所学——选择合适的数据代表值描述数据的特征.探究新知某公司销售部统计了14名销售人员6月份销售某商品的数量,结果如下表:(1)求销量的平均数、中位数和众数. 学生分组讨论:先独立思考,再组内交流.在学生充分讨论的基础上,学生展示,师生共同归纳. 解:(1)平均数:(1500+1360+500×5+460×4+400×3)14=840014=600(件).由表可知,一共有14名销售人员,排第7和第8的分别销售500件和460件,=480(件).所以中位数为500+4602由表格看出销售500件的人数最多,所以众数为500件.(2)公司在制订销售人员月销量定额时,有以下三种观点:观点一:平均数是数据的代表值,应该用平均数作为销量定额;观点二:只有两人的销量超过平均数,应该用中位数作为销量定额;观点三:众数出现的次数最多,应该用众数作为销量定额;你认为哪种观点比较合理些?解:在这个具体的问题中,由于有两个异常大的数据会使得平均数偏大,若用平均数600件作为定额,根据过去的销售情况,则只有两个人能够完成定额,显然不合适,用中位数480件或者众数500件作为定额比较合理,约有半数员工能够完成定额.因此,观点二、三比较合理.归纳:对于大多数实际问题,如果数据分布比较正常(没有异常数据),平均数是一个较好的代表值.例如,在考虑农作物产量时,知道平均产量就可以知道总产量;对某企业员工的工资情况调查,知道平均工资就知道工资总额.但平均数易受异常值的情况,当数据中有异常值时,平均数的代表性变差.当我们描述“中间位置”或“中等水平”时,可以选择中位数,中位数受异常值的影响较小.设计意图:通过实际问题,让学生计算平均数、中位数和众数,以巩固学生对平均数、中位数和众数的计算方法,并结合问题的实际背景和数据特点展开讨论,能够选择合适的数据代表值描述数据特征;教师总结,加深学生选择合适的数据代表值去描述数据特征的合理性.典例精讲例某企业50名职工的月工资分为5个档次,分布情况如下表:(1)求月工资的平均数和中位数.(2)企业经理关心哪个数?普通职工关心哪个数?解:(1)月工资的平均数为:1×(2 500×6+3 000×12+3 500×18+4 000×10+4 500×4)=3 440(元).5050个数由小到大排列,最中间的两个数均为3 500,所以中位数为3 500.(2)企业经理关心平均工资,知道平均工资就知道了工资总额.普通职工关心中位数,知道了中位数,就知道自己工资水平大概的位置.设计意图:通过例题的教学,让学生在不同的背景、不同的角度下,体会平均数和中位数的意义和作用.巩固训练1.九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”,乙说:“二班同学投中次数大约每个同学3个.”上面两名同学的议论分别反映出的统计量是(A)A.众数和平均数B.众数和中位数C.中位数和平均数D.中位数和众数2.在奥运会男子50 m步枪射击决赛中,某著名选手10次射击的成绩(单位:环)为:9.410.49.310.49.510.19.99.410.00其中第10次射击意外地射向别人的靶子,痛失金牌.(1)分别求这组数据的平均数和中位数.(2)平均数、中位数哪个更能反映这名选手的真实射击水平?解:(1)这组数据的平均数为1×(9.4+10.4+9.3+10.4+9.5+10.1+9.9+9.4+10.0+0)=8.84(环),1010次射击成绩重新排列为0,9.3,9.4,9.4,9.5,9.9,10.0,10.1,10.4,10.4,=9.7(环).所以这组数据的中位数为9.5+9.92(2)中位数更能反映这名选手的真实射击水平.设计意图:通过练习,学生能够选择合适的数据代表值去描述数据的特征.课堂小结思考:用平均数、中位数和众数描述一组数据的“集中趋势”,各有哪些优缺点呢?总结:平均数计算要用到所有的数据,任何一个数据的变动都会相应引起平均数的变动,它能够充分利用所有的数据信息,但它受极端值的影响较大.众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,缺点是当众数有多个且众数的频数相对较小时可靠性小,局限性大.数仅与数据的排列位置有关,不易受极端值影响,中位数可能出现在所给数据中,也可能不在所给的数据中.当一组数据中的个别数据变动较大时,可用中位数描述其趋势,中位数的计算很少.设计意图:通过思考,鼓励学生能够列举出更多的实际例子,并结合不同问题的背景、目的和任务说明平均数、中位数和众数的优缺点.课堂8分钟.1.教材第17页练习,习题A组第2题,习题B组第2题.2.七彩作业.第2课时“三数”的综合应用例:平均数、中位数和众数的优缺点:教学反思。
23章 数据分析23.1平均数和加权平均数1、一般地,我们把n 个数n x x x ,...,,21的和与n 的比,叫做这n 个数的算术平均数,简称平均数,记作-x ,读作“x 拔”,即)....(11n x x nx ++=-2、已知n 个数n x x x ,...,,21,若n w w w ,...,,21为一组正数,则把nnn w w w w x w x w x ......212211+++++叫做n 个数n x x x ,...,,21的加权平均数,n w w w ,...,,21分别叫做这n 个数的权重,简称权。
23.2中位数和众数1、一般地,将n 个数据按大小顺序排列,如果n 为奇数,那么把处于中间位置的数据叫做这组数据的中位数;如果n 为偶数,那么把处于中间位置的两个数据的平均数叫做这组数据的中位数。
2、一般地,把一组数据中出现次数最多的那个数据叫做众数。
一组数据的众数可能不止一个,也可能没有众数。
23.3方差 设n个数据n x x x ,...,,21的平均数为-x ,各个数据与平均数偏差的平方分别是22221)(,...,)(,)(------x x x x x x n 。
偏差平方的平均数叫做这组数据的方差,用2s 表示,即⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-++-+-=---222212)(...)()(1x x x x x x n s n当数据分布比较分散时,方差较大;当数据分布比较集中时,方差较小。
因此,方差的大小反映了数据波动(或离散程度)的大小。
23.4用样本估计总体由于抽样的任意性,即使是相同的样本容量,不同样本的平均数一般也不同;当样本容量较小时,差异可能还较大。
但是当样本容量增大时,样本的平均数的波动变小,逐渐趋于稳定,且与总体的平均数比较接近。
因此,在实际中经常用样本的平均数估计总体的平均数。
同样的道理,我们也用样本的方差估计总体的方差。
24章 一元二次方程 24.1一元二次方程1、只含有一个未知数,并且未知数的最高次数为2的整式方程,叫做一元二次方程。
《中位数和众数》知识全解一、课标要求1.了解中位数、众数的概念.2.会求中位数、众数,并体会它们在实际问题中的意义.3.会利用平均数、中位数、众数解决一些简单的实际问题.4.经历数据的收集与整理的过程,会根据定义求中位数、众数.5.体会中位数、众数的代表作用,在数据的整理过程中养成细心、认真的好习惯,认识到学而有用.二、知识结构⎩⎨⎧众数的应用中位数平均数众数的定义中位数平均数、、、、 三、内容解析(1)中位数的定义:一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数)叫做这组数据的中位数.①中位数是一个位置代表值,利用中位数分析数据可以获得一些信息,如果已知一组数据的中位数,那么可以知道,小于或大于这个中位数的数据各占一半.②给定一组数据,那么描述这组数据的“中等水平”的量就是中位数,一组数据的中位数可以出现在原数据中,也可以是这组数据以外的数.③将一组数据按照从小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数据就是这组数据的中位数;如果数据的个数是偶数,则中间的两个数据的平均数就是这组数据的中位数.(2)众数的定义:一组数据中出现次数最多的数据就是这组数据的众数. ①给定一组数据,那么描述这组数据的“多数水平”的量就是众数.②众数与数据出现的次数有关,如果一组数据中有两个数据(或几个数据)的频数一样,并且比其他数据出现的频数都多,那么这两个(或几个)数据都是这组数据的众数. ③当一组数据有较多的重复数据时,众数往往是人们所关心的一个量.④求一组数据的众数时,关键是分清各个数据出现的次数,但不能把次数当作众数.四、重点难点本节的重点是:认识中位数、众数这两种数据代表,了解平均数、中位数、众数之间的差异.本节的难点是:利用中位数、众数分析数据信息做出决策,灵活运用平均数、中位数、众数这三个数据代表解决问题.教学重点的解决方法:理解平均数、中位数、众数之间的差异之后灵活运用这三个数据代表解决问题.采用学生自主交流、合作学习、教师点拨,并进行感悟、归纳、领会知识的真谛.教学难点的解决方法:采用练—讲—练的学习方式,并多次设置反思活动,引导学生自我监控,合理对问题进行归类,提炼思想方法,力争学例得类,豁然贯通.五、教法导引由已学过的平均数的知识出发设计一个例题引导学生进行进行讨论,最后得出中位数、众数的定义及特征.六、学法建议根据生活中的例子了解中位数、众数、平均数的概念,理解它们的统计意义及在统计中的作用。
冀教版数学九年级上册23.2《中位数和众数》教学设计一. 教材分析冀教版数学九年级上册23.2《中位数和众数》是本册教材中的重要内容,主要让学生了解中位数和众数的概念,掌握求一组数据的中位数和众数的方法,并能够运用中位数和众数解决实际问题。
本节课的内容对于学生来说比较抽象,需要通过具体的数据和实例来帮助学生理解和掌握。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于平均数、方差等统计量有一定的了解。
但是,对于中位数和众数的概念以及求法还比较陌生。
此外,学生对于实际问题的解决能力还有待提高。
因此,在教学过程中,需要通过具体的数据和实例来引导学生理解和掌握中位数和众数的概念和求法,并通过练习题来提高学生解决实际问题的能力。
三. 教学目标1.知识与技能:让学生了解中位数和众数的概念,掌握求一组数据的中位数和众数的方法。
2.过程与方法:通过具体的数据和实例,引导学生探究中位数和众数的求法,培养学生的动手操作能力和解决问题的能力。
3.情感态度与价值观:让学生体验数学与生活的联系,提高学生学习数学的兴趣。
四. 教学重难点1.重点:中位数和众数的概念,求一组数据的中位数和众数的方法。
2.难点:理解中位数和众数在实际问题中的应用。
五. 教学方法1.情境教学法:通过具体的数据和实例,引导学生理解和掌握中位数和众数的概念和求法。
2.问题驱动法:通过设置问题,引导学生探究中位数和众数的求法,培养学生的解决问题能力。
3.练习法:通过布置练习题,巩固学生对中位数和众数的理解和掌握。
六. 教学准备1.教具准备:电脑、投影仪、黑板、粉笔。
2.教学素材:中位数和众数的PPT、数据和实例。
七. 教学过程1.导入(5分钟)通过一个具体的数据实例,引导学生思考:如何找出这组数据的中位数和众数?激发学生的兴趣和思考。
2.呈现(10分钟)讲解中位数和众数的概念,通过具体的例子来说明中位数和众数的求法。
让学生分组讨论,总结中位数和众数的求法。
中位数和众数的区别及求法很多小伙伴还不清楚中位数与众数有什么区别,下面由小编为你精心准备了“中位数和众数的区别及求法”,本文仅供参考,持续关注本站将可以持续获取更多的知识点!中位数和众数的区别一、定义不同平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
二、呈现不同平均数:是一个“虚拟”的数,是通过计算得到的,它不是数据中的原始数据。
中位数:是一个不完全“虚拟”的数。
当一组数据有奇数个时,它就是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情况下,中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等,此时的中位数就是一个虚拟的数。
众数:是一组数据中的原数据,它是真实存在的。
中位数求法将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
设一组数据有n个,则当n为奇数时,中位数为第n+1/2项数;当n为偶数时,中位数为第n/2和第n+1/2项的平均数。
众数怎么求用观察法求得众数。
若数据已归类,则出现频数最多的数据即为众数;若数据已分组,则频数最多的那一组的组中值即为众数。
计算众数可以用金氏插入法:根据计算公式:MO=L+fb/fa+fb 乘以i或MO=U-fb/fa+fb乘以i式中L表示众数所在组的精确下限,U表示众数所在组的精确上限,fa为与众数组下限相邻的频数,fb为与众数组上限相邻的频数,i为组距。
还可以用皮尔逊经验法:根据计算公式:MO=ξ-3(ξ-Md)可求众数。
式中ξ为样本均值,Md为中数,用皮尔逊公司计算所得众数近似于理论众数,常称为皮尔逊近似众数。
众数是皮尔逊(Pearson,K.)最先提出并在生物统计学中使用的,以上是数据出自于离散型随机变量时求众数的方法,对于连续型随机变量ξ,若概率密度函数为f,且f 恰有一个最大值,则此最大值称为ξ的众数,有时也把f的极大值称为众数;f有两个以上极大值时,亦称复众数。
23.2中位数和众数
本节主要学习中位数、众数这两个具有代表性的数据,要通过学习了解中位数、众数的意义,并会确定一组数据的众数和中位数,明确他们所表示的是这组数据的那种特性。
体会平均数、中位数和众数三者之间的区别,能选择恰当的数据代表值描述数据的特征。
重难点
重点:①求中位数、众数;
②选择恰当的数据代表值描述数据的特征。
难点:选择恰当的数据代表值描述数据的特征。
教学目标
知识与技能
表述中位数、众数的概念和意义,会求一组数据的中位数、众数;
体会平均数、中位数和众数三者之间的区别,能选择恰当的数据代表值描述数据的特征。
过程与方法
经历数据的收集与整理的过程,会据定义求中位数、众数。
情感态度价值观
体会中位数、众数的代表作用,在数据的整理过程中养成细心、认真的好习惯,认识到学而有用;
体会到知识来源于生活又反映生活。
1。
中位数和众数的认识一、教材分析:《中位数和众数》是学生在学习了平均数这个统计量的意义以及计算方法的基础上来学习的,学生将通过丰富的实例,在收集、整理、描述、分析数据的过程中,初步掌握中位数和众数并理解它们的实际意义,从而培养学生初步的统计能力,为以后进一步学习统计打下基础。
二、教学目标:知识与技能:在丰富的现实背景中,理解并体会中位数和众数的意义;会求中位数与众数,并根据现实生活中具体的情况,选择适当的统计量表示数据的不同特征。
过程与方法:通过细心观察、自主思考与合作交流,理解体会中位数和众数的意义并会求中位数与众数。
情感与态度:培养学生具体问题具体分析的能力;体会数学服务于生活,发展数学应用意识。
三、教学重难点:教学重点:理解中位数、众数的意义,会求一组数据的中位数与众数。
教学难点:平均数、中位数、众数这三者之间的区别与联系,根据不同实际情况,选择恰当的统计量来表示。
四、教法与学法本节课以情境教学主,教师要创设丰富有趣的生活情境,引导学生想学、乐学。
在学法上,学生动眼观察,动脑思考,注重学生自主思考,集体交流。
五、教学过程:1、猜谜引入,激发兴趣。
上课始,我先让同学们计算一组数的平均数,紧接着玩“猜年龄”的游戏,让孩子们初步感知:平均数受到极端数据的影响,不能反映出数据的一般水平,这样就有效地激发了他们的求知欲:用哪个量更合适呢,为本节课的教学打下基础。
2、创设情境,初步感知接着创设一个大学生朋友找工作的生活情境,让学生根据招聘广告选择一家公司,然后呈现两家公司的具体工资情况,让学生在改变选择的同时,又一次清醒地认识到平均数受到极端数据的影响不能较好地反映一组数据的水平,此时引入中位数和众数的学习可谓水到渠成。
让学生自己找出能表现公司员工工资水平的数,说出理由并为之命名,然后引导学生发现数据个数是奇数个和偶数个时找中位数的方法,并进行及时练习。
3、观察比较,认识区别让学生观察两组数据的平均数、中位数和众数,先在小组后在班内交流自己的发现,从而使他们认识到平均数易受极端数据的影响,而中位数和众数通常不受极端数的影响。
众数和中位数概念
众数:或称复数,是词素的其中一种,在没有双数概念的语言中用于标示多于一个的物件,在有双数概念的语言中表示多于两个的名词数量,在另外某些语言当中,用于标示非一个物件,包括多于一个物件和没有。
有些语言透过外部屈折将名词变为众数,如英语;有些语言则同时透过外部屈折和内部屈折将名词转为众数,如德语、俄语、阿拉伯语;而另有一部分的语言则以黏着词尾来表达复数,如维吾尔语、土耳其语、藏语、匈牙利语等;另有一部分语言以孤立的词素来标明,如汉语、越南语,虽然一般而言汉语和越南语的名词不做单复数之分。
中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
中位数特点:
(1)中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而在一定程度上提高了中位数对分布数列的代表性。
(2)有些离散型变量的单项式数列,当次数分布偏态时,中位数的代表性会受到影响。
(3)趋于一组有序数据的中间位置。
1。
冀教版初三数学上册中位数与众数知识点知识点一、平均数、中位数、众数的概念1.平均数平均数是指在一组数据中所有数据之和再除以数据的个数。
2.中位数中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数。
3.众数众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个。
二、平均数、中位数、众数的区别1.平均数的大小与一组数据里的每个数均有关系,其中任何数据的变动都会相应引起平均数的变动。
2.总数着眼于对各数据出现频率的考察,其大小只与这组数据的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量。
3.中位数仅与数据的排列有关,一般来说,部分数据的变动对中位数没有影响,当一组数据中个别数据变动较大时,可用中位数来描述其中集中的趋势。
三、平均数、中位数、众数的联系众数、中位数及平均数都是描述一组数据的集中趋势的量,其中以平均数最为重要,其应用也最为广泛。
课后练习1、判断题:(1)给定一组数据,那么描述这组数据的平均数一定只有一个.( )(2)给定一组数据,那么描述这组数据的中位数一定只有一个.( )(3)给定一组数据,那么描述这组数据的众数一定只有一个.( )(4)给定一组数据,那么描述这组数据的平均数一定位于最大值与最小值之间.( )(5)给定一组数据,那么描述这组数据的中位数一定位于最大值与最小值的正中间.( )(6)给定一组数据,如果找不到众数,那么众数一定就是0.( )2、根据所给数据,求出平均数、中位数和众数,并填入下表.(精确到0.1)数据平均数中位数众数20,20,21,24,27,30,320,2,3,4,5,5,10-2,0,3,3,3,8―6,―4,―2,2,4,6中位数与众数知识点的全部内容就是这些,更多的精彩内容请点击初三数学知识点栏目了解详情,预祝大家在新学期可以更好的学习。
中位数和众数的区别及求法很多小伙伴还不清楚中位数与众数有什么区别,下面由小编为你精心准备了“中位数和众数的区别及求法”,本文仅供参考,持续关注本站将可以持续获取更多的知识点!中位数和众数的区别一、定义不同平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
二、呈现不同平均数:是一个“虚拟”的数,是通过计算得到的,它不是数据中的原始数据。
中位数:是一个不完全“虚拟”的数。
当一组数据有奇数个时,它就是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情况下,中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等,此时的中位数就是一个虚拟的数。
众数:是一组数据中的原数据,它是真实存在的。
中位数求法将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
设一组数据有n个,则当n为奇数时,中位数为第n+1/2项数;当n为偶数时,中位数为第n/2和第n+1/2项的平均数。
众数怎么求用观察法求得众数。
若数据已归类,则出现频数最多的数据即为众数;若数据已分组,则频数最多的那一组的组中值即为众数。
计算众数可以用金氏插入法:根据计算公式:MO=L+fb/fa+fb 乘以i或MO=U-fb/fa+fb乘以i式中L表示众数所在组的精确下限,U表示众数所在组的精确上限,fa为与众数组下限相邻的频数,fb为与众数组上限相邻的频数,i为组距。
还可以用皮尔逊经验法:根据计算公式:MO=ξ-3(ξ-Md)可求众数。
式中ξ为样本均值,Md为中数,用皮尔逊公司计算所得众数近似于理论众数,常称为皮尔逊近似众数。
众数是皮尔逊(Pearson,K.)最先提出并在生物统计学中使用的,以上是数据出自于离散型随机变量时求众数的方法,对于连续型随机变量ξ,若概率密度函数为f,且f 恰有一个最大值,则此最大值称为ξ的众数,有时也把f的极大值称为众数;f有两个以上极大值时,亦称复众数。
中位数和众数中位数(Median)在统计学中,中位数是指将一组数据按照从小到大的顺序排列后,位于中间位置的数值。
当数据集的样本数量为奇数时,中位数为中间位置的数值;当数据集的样本数量为偶数时,中位数为中间两个数的平均值。
计算中位数的步骤如下:1.将数据集按照从小到大的顺序排列。
2.判断数据集的样本数量是奇数还是偶数。
3.如果样本数量为奇数,则中位数为排序后的中间位置的数值。
4.如果样本数量为偶数,则中位数为排序后中间两个数的平均值。
举个例子来说,对于数据集 [1, 2, 3, 4, 5],其中位数为 3,因为它位于排序后的中间位置。
众数(Mode)在统计学中,众数是指在一组数据中出现频率最高的数值。
一个数据集可能有多个众数,也可能没有众数。
计算众数的步骤如下:1.将数据集中的每个数值进行计数。
2.找到出现频率最高的数值。
3.如果有多个数值的出现频率都是最高的,则这些数值都被视为众数。
举个例子来说,对于数据集 [1, 2, 2, 3, 4, 4, 5],众数为 2 和4,因为它们的出现频率最高。
中位数与众数的应用中位数和众数是统计学中常用的概念,在数据分析、机器学习等领域有着广泛的应用。
中位数常用于描述数据的中心趋势。
与平均值不同,中位数对异常值的影响较小,能够更好地反映数据的整体分布情况。
在分析一组数据时,了解数据的中位数可以帮助我们判断数据是否存在偏斜或异常情况。
众数常用于描述数据的分布特征。
在市场调研、投资分析等领域,了解产品销售数量、用户偏好等数据的众数,可以帮助企业了解市场需求,制定相应的营销策略。
中位数与众数的计算方法在实际应用中,计算中位数和众数的方法可以通过编程语言进行实现。
下面以 Python 语言为例,展示如何使用代码计算中位数和众数:```python import statistics计算中位数data = [1, 2, 3, 4, 5] median = statistics.median(data) print(。
冀教版初三数学上册中位数与众数知识点
中位数代表一个样本、种群或概率分布中的一个数值,其可将数值集合划分为相等的上下两部分。
查字典数学网为大家提供了中位数与众数知识点,希望对大家有所帮助。
知识点
一、平均数、中位数、众数的概念
1.平均数
平均数是指在一组数据中所有数据之和再除以数据的个数。
2.中位数
中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数。
3.众数
众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个。
二、平均数、中位数、众数的区别
1.平均数的大小与一组数据里的每个数均有关系,其中任何数据的变动都会相应引起平均数的变动。
2.总数着眼于对各数据出现频率的考察,其大小只与这组数据的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量。
3.中位数仅与数据的排列有关,一般来说,部分数据的变动
对中位数没有影响,当一组数据中个别数据变动较大时,可用中位数来描述其中集中的趋势。
三、平均数、中位数、众数的联系
众数、中位数及平均数都是描述一组数据的集中趋势的量,其中以平均数最为重要,其应用也最为广泛。
课后练习
1、判断题:
(1)给定一组数据,那么描述这组数据的平均数一定只有一个.( )
(2)给定一组数据,那么描述这组数据的中位数一定只有一个.( )
(3)给定一组数据,那么描述这组数据的众数一定只有一个.( )
(4)给定一组数据,那么描述这组数据的平均数一定位于最大值与最小值之间.( )
(5)给定一组数据,那么描述这组数据的中位数一定位于最大值与最小值的正中间.( )
(6)给定一组数据,如果找不到众数,那么众数一定就是0.( )
2、根据所给数据,求出平均数、中位数和众数,并填入下表.(精确到0.1)
数据平均数中位数众数
20,20,21,24,27,30,32
0,2,3,4,5,5,10
-2,0,3,3,3,8
―6,―4,―2,2,4,6
中位数与众数知识点的全部内容就是这些,预祝大家在新学期可以更好的学习。