第3章 第5节 二次函数的图像和性质
- 格式:ppt
- 大小:965.00 KB
- 文档页数:19
《二次函数的图像和性质》说课稿尊敬的老师、亲爱的同学们:大家好!今天我说课的题目是《二次函数的图像和性质》,这是九年级下册第26章的内容。
下面我将围绕本节课“教什么?”、“怎样教?”、“为什么这样教?”三个问题,从教材内容、教法学法、教学过程这三个方面逐一分析说明。
一、教材内容分析:1、本节课内容在整个教材中的地位和作用。
概括地讲,二次函数的图像在教材中起着承上启下的作用,它的地位体现在它的思想的基础性。
一方面,本节课是对一次函数有关内容的推广,为后面进一步学习二次函数的性质打下基础;另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图像由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的能力。
2、教学目标定位。
根据教学大纲要求、新课程标准精神和初中学生心理认知特征,我确定了三个层面的教学目标。
第一个层面是基础知识与能力目标:理解二次函数的图像中a、b、c、k的作用,能熟练地对二次函数的一般式进行配方,会对图像进行平移变换,领会研究二次函数图像的方法,培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,提高运算和作图能力;第二个层面是过程和方法:让学生经历作图、观察、比较、归纳的学习过程,使学生掌握类比、化归等数学思想方法,养成即能自主探索,又能合作探究的良好学习习惯;第三个层面是情感、态度和价值观:在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。
3、教学重难点。
重点是二次函数各系数对图像和形状的影响,利用二次函数图像平移的特例分析过程,培养学生数形结合的思想和划归思想。
难点是图像的平移变换,关键是二次函数顶点式中k的正负取值对函数图像平移变换的影响。
二、教法学法分析:数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,感受数学的自然美。
第五节二次函数的图象及性质年份题型题号考查点考查内容分值总分2022解答24 二次函数的图象及性质给出抛物线经过x轴上两点坐标:(1)判断字母符号;(2)确定解析式;(3)探索点的坐标12 122022解答25 二次函数的图象及图象的平移给出抛物线经过两点坐标:(1)求解析式;(2)求平移后字母的范围;(3)分类讨论以某边为底的等腰三角形12 122022填空15 二次函数的性质根据性质求字母范围4解答23 二次函数的图象根据图象求:(1)顶点坐标;(2)直线解析式;(3)直线与抛物线交点坐标10 142022选择10 二次函数的图象及性质根据图象确定最大值、最小值3解答25 二次函数的图象及性质根据图象上的点的坐标求:(1)二次函数解析式;(2)四边形的面积;12 15(3)探索存在性2011填空14 开放性问题写出满足条件的二次函数的表达式4解答21 二次函数的图象根据图象及点的坐标求:(1)字母的值;(2)点的坐标;(3)满足某一条件的点的坐标10 14命题规律纵观贵阳市5年中考,二次函数图象及性质在中考中一般设置1~2道题,分值为12~15分,在解答、选择、填空均有涉及,但在解答题当中必然出现且分值10~12分.命题预测预计2022年贵阳中考,二次函数图象及性质是必考内容,涉及内容为已知抛物线上的点的坐标,求解析式及探索其他问题,学生务必加大训练力度.,贵阳五年中考真题及模拟) 二次函数的图象及性质(8次)1.(2011贵阳14题4分)写出一个开口向下的二次函数的表达式________.2.(2022贵阳15题4分)已知二次函数y=x2+2mx+2,当x>2时,y的值随x值的增大而增大,则实数m 的取值范围是________.3.(2022贵阳10题3分)已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当-5≤x≤0时,下列说法正确的是( )A.有最小值-5、最大值0B.有最小值-3、最大值6C.有最小值0、最大值6D.有最小值2、最大值64.(2011贵阳21题10分)如图所示,二次函数y=-x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交点C.(1)求m的值;(2)求点B的坐标;(3)该二次函数图象上有一点D(x,y)(其中x>0,y>0)使S△ABD=S△ABC,求点D的坐标.5.(2022贵阳23题10分)已知:直线y =ax +b 过抛物线y =-x 2-2x +3的顶点P ,如图所示: (1)顶点P 的坐标是________;(2)若直线y =ax +b 经过另一点A(0,11),求出该直线的表达式;(3)在(2)的条件下,若有一条直线y =mx +n 与直线y =ax +b 关于x 轴成轴对称,求直线y =mx +n 与抛物线y =-x 2-2x +3的交点坐标.6.(2022贵阳25题12分)如图,二次函数y =12x 2-x +c 的图象与x 轴分别交于A 、B 两点,顶点M 关于x 轴的对称点是M′.(1)若A(-4,0),求二次函数的关系式; (2)在(1)的条件下,求四边形AMBM′的面积;(3)是否存在抛物线y =12x 2-x +c ,使得四边形AMBM′为正方形?若存在,请求出此抛物线的函数关系式;若不存在,请说明理由.7.(2022贵阳25题12分)如图,经过点A(0,-6)的抛物线y =12x 2+bx +c 与x 轴相交于B(-2,0),C 两点.(1)求此抛物线的函数关系式和顶点D 的坐标;(2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m(m >0)个单位长度得到新抛物线y 1,若新抛物线y 1的顶点P 在△ABC 内,求m 的取值范围.(3)在(2)的结论下,新抛物线y 1上是否存在点Q ,使得△QAB 是以AB 为底边的等腰三角形?请分析所有可能出现的情况,并直接写出相对应的m 的取值范围.8.(2022贵阳24题12分)如图,经过点C(0,-4)的抛物线y =ax 2+bx +c(a≠0)与x 轴相交于A(-2,0),B 两点.(1)a________0,b 2-4ac________0(选填“>”或“<”); (2)若该抛物线关于直线x =2对称,求抛物线的函数表达式;(3)在(2)的条件下,连接AC ,E 是抛物线上一动点,过点E 作AC 的平行线交x 轴于点F.是否存在这样的点E ,使得以A ,C ,E ,F 为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E 的坐标;若不存在,请说明理由.,中考考点清单)二次函数的概念及表达式1.定义:一般地,如果两个变量x 和y 之间的函数关系,可以表示成y =ax 2+bx +c(a ,b ,c 是常数,且a ≠0),那么称y 是x 的二次函数,其中,a 叫做二次项系数,b 叫做一次项系数,c 叫做常数项.2.三种表示方法:(1)一般式:y =ax 2+bx +c(a≠0);(2)顶点式:y =a(x -h)2+k(a≠0),其中二次函数的顶点坐标是(h ,k);(3)交点式:y =a(x -x 1)(x -x 2)(a≠0),其中x 1,x 2为抛物线与x 轴交点的横坐标. 3.三种表达式之间的关系 顶点式――→确定一般式――→因式分解两点式 4.二次函数表达式的确定(1)求解二次函数表达式的方法一般用待定系数法,根据所给条件的不同,要灵活选用函数表达式:A .当已知抛物线上任意三点时,通常设为一般式y =ax 2+bx +c 形式;B .当已知抛物线的顶点或对称轴时,通常设为顶点式y =a(x -h)2+k 形式;C .当已知抛物线与x 轴的交点或交点横坐标时,通常设为两点式y =a(x -x 1)(x -x 2).(2)步骤:①设二次函数的表达式;②根据已知条件,得到关于待定系数的方程组;③解方程组,求出待定系数的值,从而写出函数的表达式.二次函数的图象及性质(高频考点)5.图象性质函数二次函数y =ax 2+bx +c(a ,b ,c 为常数,a ≠0)图象对称轴 直线x =①________ 直线x =-b2a顶点 坐标(-b 2a ,4ac -b24a) (-b 2a ,4ac -b 24a) 增减性在对称轴的左侧,即x <-b2a时,y 随x 的增大而减小;在对称轴的右侧,即当x >-b 2a 时,y 随x 的增大而增大,在对称轴的左侧,即当x <-b2a时,y 随x 的增大而增大;在对称轴的右侧,即当x >-b 2a时,y 随x 的增大而减小,简记为左减右增简记为左增右减最值抛物线有最低点,当②________时,y有最小值,y最小值=4ac-b24a抛物线有最高点,当x=-b2a时,y有最大值,y最大值=③________6.系数a,b,c与二次函数的图象关系项目字母字母的符号图象的特征aa>0 开口向上a<0 ④________bb=0 对称轴为y轴ab>0(b与a同号) 对称轴在y轴左侧ab<0(b与a异号) 对称轴在y轴右侧cc=0 ⑤________c>0 与y轴正半轴相交c<0 与y轴负半轴相交b2-4acb2-4ac=0 与x轴有唯一交点(顶点)b2-4ac>0 与x轴有两个不同交点b2-4ac<0 与x轴没有交点特殊关系当x=1时,y=a+b+c当x=-1时,y=a-b+c若a+b+c>0,即x=1时,y>0若a-b+c>0,即x=-1时,y>0二次函数与一元二次方程的关系7.当抛物线与x 轴有两个交点时,两交点的横坐标就是对应的一元二次方程的两个不相等的实数根. 8.当抛物线与x 轴只有一个交点时,该交点的横坐标就是对应的一元二次方程的两个相等的实数根.9.当抛物线与x 轴没有交点时,对应的一元二次方程无实数根.,中考重难点突破)二次函数的图象及性质【例1】(2022广东中考)二次函数y =ax 2+bx +c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是( )A .函数有最小值B .对称轴是直线x =12C .当x <12,y 随x 的增大而减小 D .当-1<x <2时,y >0【解析】A .由抛物线的开口向上,可知a >0,函数有最小值,正确,故A 选项不符合题意;B .由图象可知,对称轴为x =12,正确,故B 选项不符合题意;C .因为a >0,∴当x <12时,y 随x 的增大而减小,正确,故C 选项不符合题意;D .由图象可知,当-1<x <2时,y <0,错误,故D 选项符合题意.【学生解答】1.(2022原创)如图,函数y =ax 2+bx +c 的图象与x 轴交于A ,B 两点(A 点在B 点左侧),与y 轴交于点C ,若A 点坐标为(-1,0),B 点坐标为(3,0),则下列说法正确的是( )A .b >0B .该抛物线的对称轴是直线x =-1C .当x =-3与x =5时,y 值相等D .若y >0,则-1<x <3抛物线y =ax 2+bx +c(a≠0)的图象与a ,b ,c 的关系【例2】(2022天津中考)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,且关于x的一元二次方程ax2+bx+c-m=0没有实数根,有下列结论:①b2-4ac>0;②abc<0;③m>2.其中,正确结论的个数是( ) A.0 B.1 C.2 D.3【解析】本题考查二次函数图象的性质以及与系数a、b、c的关系.由图可知三个结论都正确,下面对三个结论一一证明:序号正误逐项分析①√∵二次函数y=ax2+bx+c的图象与x轴有两个不同的交点,∴b2-4ac>0②√∵抛物线的开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴-b2a>0,∴b>0,∵抛物线与y轴的交点在y轴正半轴,∴c>0,∴abc<0③√如果抛物线的图象向下平移2个单位,那么抛物线与x轴只有一个交点,∴当抛物线向下平移d个单位,当d>2时,抛物线与x轴没有交点.∵一元二次方程ax2+bx+c-m=0没有实数根.∴二次函数y=ax2+bx+c-m中,m>2【学生解答】2.(2022烟台中考)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x =2.下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>-1时,y的值随x值的增大而增大.其中正确的结论有( )A.1个B.2个C.3个D.4个二次函数表达式的确定【例3】(2022宁波中考)如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,-1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.【解析】(1)根据二次函数y=ax2+bx+c的图象过A(2,0),B(0,-1)和C(4,5)三点,代入得出关于a,b,c的三元一次方程组,求得a,b,c,从而得出二次函数的解析式;(2)令y=0,解一元二次方程,求得x的值,从而得出与x轴的另一个交点坐标;(3)画出图象,再根据图象直接得出答案.【学生解答】3.(2022贵阳模拟)如图,抛物线y=x2+bx+c经过A(-1,0),B(4,5)两点,请解答下列问题:(1)求抛物线的解析式;(2)若抛物线的顶点为D,对称轴交x轴于点E,连接AD,点F是AD的中点,求出线段EF的长;(3)若点P是抛物线上异于A、D的另外一点,且S△AEP=S△AED,求点P的坐标.。
韦达定理、二次函数的图像与性质知识要点:1.韦达定理: 一元二次方程的根和系数的关系; 2.求二次函数的图象的顶点坐标、对称轴方程及最值的方法 知识点回顾:1. 如何求一元二次方程x 2 -2x-8=0的根?有几种方法?2.二次函数解析式的几种形式:①一般式: ②顶点式: ③交点式: 3.二次函数的图像及性质探索1:方程x 2 -2x-8=0的两根之和,两根之积。
观察方程两个根与方程的系数之间的关系,你有什么发现?对于一元二次方程2x 2-3x+1=0是否也具备这个特征? x 1+x 2=_______,x 1·x 2=________,由此得出,一元二次方程的根与系数的关系.—韦达定理结论: 如果ax 2+bx+c=0(a ≠0)的两个根是x 1,x 2, 韦达(法国1540-1603) 那么x 1+x 2=_______,x 1·x 2=________。
对应练习 1.判断对错1)2x 2-11x+4=0两根之和为11,两根之积为4。
2)4x 2+3x=5两根之和为43-,两根之积为45。
3)x 2+x+1=0两根之和为-1,两根之积为1。
2. 1)关于x 的方程x 2-2x +m=0 的一根为2 ,求另一根和m 的值。
2)已知方程 3x 2+mx+n=0 的两根为1,2,求m,n 的值。
探究2. 二次函数求抛物线的顶点、对称轴和最值的方法探究3.若方程ax 2+bx+c=0(a ≠0)的两根为x 1,x 2,则函数y ax bx c =++2(a ≠0)的图象与x 轴的两交点坐标为 , ;此时二次函数y ax bx c =++2(a 、b 、c 为常数,a ≠0)的顶点和对称轴如何表示?典型例题例1. 二次函数y ax bx c =++2的图象如图所示,对称轴为x =1,则下列结论中正确的是( )A. ac >0B. b <0C. b ac 240-<D. 20a b +=例2. (1)二次函数y=-x 2+6x+3的图像顶点为_________对称轴为_________。
第三章函数 5.二次函数的图象和性质一、选择题1、(2019·衢州)二次函数y=(x-1)2+3图象的顶点坐标是()A. (1,3)B. (1,-3)C. (-1,3)D. (-1,-3)2、(2019·重庆)抛物线y=-3x2+6x+2的对称轴是()A. 直线x=2B. 直线x=-2C. 直线x=1D. 直线x=-13、(2019·河南)已知抛物线y=-x2+bx+4经过(-2,n)和(4,n)两点,则n的值为()A. -2B. -4C. 2D. 44、(2019·兰州)已知点A(1,y1),B(2,y2)在抛物线y=-(x+1)2+2上,则下列结论正确的是()A. 2>y1>y2B. 2>y2>y1C. y1>y2>2D. y2>y1>25、(2019·哈尔滨)将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线对应的函数解析式为()A. y=2(x+2)2+3B. y=2(x-2)2+3C. y=2(x-2)2-3D. y=2(x+2)2-36、(2019·西藏)要得到函数y=-12(x-1)2+1的图象,可以把函数y=-12x2的图象()A. 向左平移1个单位长度,再向下平移1个单位长度B. 向左平移1个单位长度,再向上平移1个单位长度C. 向右平移1个单位长度,再向上平移1个单位长度D. 向右平移1个单位长度,再向下平移1个单位长度7、(2019·百色)要得到抛物线y=x2+6x+7,可把抛物线y=x2()A. 先向左平移3个单位长度,再向下平移2个单位长度B. 先向左平移6个单位长度,再向上平移7个单位长度C. 先向左平移3个单位长度,再向上平移2个单位长度D. 先回右平移3个单位长度,再向上平移2个单位长度8、(2019·雅安)在平面直角坐标系中,对于二次函数y=(x-2)2+1,下列说法错误的是()A. y的最小值为1B. 图象顶点坐标为(2,1),对称轴为直线x=2C. 当x<2时,y的值随x值的增大而增大,当x≥2时,y的值随x值的增大而减小D. 它的图象可以由y=x2的图象先向右平移2个单位长度,再向上平移1个单位长度得到9、(2019·淄博)将二次函数y=x2-4x+a的图象向左平移1个单位长度,再向上平移1个单位长度,若得到的函数图象与直线y=2有两个交点,则a的取值范围是()A. a>3B. a<3C. a>5D. a<510、(2019·河池)如图,抛物线y=ax2+bx+c的对称轴为直线x=1,则下列结论中,错误的是()A. ac<0B. b2-4ac>0C. 2a-b=0D. a-b+c=011、(2019·成都)如图,二次函数y=ax2+bx+c的图象经过点A(1,0),B(5,0),下列说法正确的是()A. c<0B. b2-4ac<0C. a-b+c<0D. 图象的对称轴是直线x=312、(2019·沈阳)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是()A. abc<0B. b2-4ac<0C. a-b+c<0D. 2a+b=013、(2019·娄底)二次函数y=ax2+bx+c的图象如图所示,下列结论:①abc<0;②b2-4ac<0;③2a>b;④(a+c)2<b2.其中正确的有()A. 1个B. 2个C. 3个D. 4个14、(2019·鄂州)二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc<0;②3a+c>0;③(a+c)2-b2<0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为()A. 1B. 2C. 3D. 415、(2019·通辽)在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示.有下列结论:①abc<0;②c+2a<0;③9a-3b+c=0;④a-b≥m(am+b)(m为实数);⑤4ac-b2<0.其中错误结论的个数是()A. 1B. 2C. 3D. 416、(2019·葫芦岛)二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象大致是()A. B. C. D.17、(2019·呼和浩特)二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()A. B. C. D.18、(2019·湖州)已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx 与一次函数y2=ax+b的大致图象不可能是()A. B. C. D.19、(2019·陕西)在同一平面直角坐标系中,若抛物线y=x2+(2m-1)x+2m-4与y=x2-(3m+n)x+n关于y轴对称,则符合条件的m,n的值为()A. 57,-187B. 5,-6C. -1,6D. 1,-220、(2019·贵阳)如图,在平面直角坐标系中,已知点A(-1,0),点B(1,1)都在直线y=12x+12上,若抛物线y=ax2-x+1(a≠0)与线段AB有两个不同的交点,则a的取值范围是()A. a≤-2B. a<9 8C. 1≤a<98或a≤-2 D. -2≤a<9821、(2019·玉林)如图,抛物线C:y=12(x-1)2-1,顶点为D,将C沿水平方向向右(或向左)平移m个单位长度,得到抛物线C1,顶点为D1,C与C1相交于点Q,若∠DQD1=60°,则m的值为()A. B. C. -2或 D. -4或22、(2019·宜宾)已知抛物线y=x2-1与y轴交于点A,与直线y=kx(k为任意实数)相交于B,C两点,则下列结论不正确的是()A. 存在实数k,使得△ABC为等腰三角形B. 存在实数k,使得△ABC的内角中有两角分别为30°和60°C. 任意实数k,使得△ABC都为直角三角形D. 存在实数k,使得△ABC为等边三角形23、(2019·福建)若二次函数y=|a|x2+bx+c的图象经过不同的五点A(m,n),B(0,y1),C(3-m,n),D(2,y2),E(2,y3),则y1,y2,y3的大小关系是()A. y1<y2<y3B. y1<y3<y2C. y3<y2<y1D. y2<y3<y124、(2019·资阳)如图是函数y=x2-2x-3(0≤x≤4)的图象,直线l∥x轴且过点(0,m),将该函数在直线l上方的图象沿直线l向下翻折,在直线l下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m的取值范围是()A. m≥1B. m≤0C. 0≤m≤1D. m≥1或m≤025、(2019·岳阳)对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1,x2,且x1<1<x2,那么c的取值范围是()A. c<-3B. c<-2C. c<14D. c<1二、填空题26、(2019·哈尔滨)二次函数y=-(x-6)2+8的最大值是______.27、(2019·荆州)二次函数y=-2x2-4x+5的最大值是______.28、(2019·白银)将二次函数y=x2-4x+5化成y=a(x-h)2+k的形式为______.29、(2019·凉山州)将抛物线y=(x-3)2-2向左平移______个单位长度后经过点A(2,2).30、(2019·宜宾)将抛物线y=2x2的图象,向左平移1个单位长度,再向下平移2个单位长度,所得图象对应的函数解析式为______.31、(2019·广元)如图,抛物线y=ax2+bx+c(a≠0)过点(-1,0),(0,2),且顶点在第一象限,设M=4a+2b+c,则M的取值范围是______.32、(2019·天水)二次函数y=ax2+bx+c的图象如图所示,若M=4a+2b,N=a-b.则M,N的大小关系为M______N(填“>”“<”或“=”).33、(2019·荆门)抛物线y=ax2+bx+c(a,b,c为常数)的顶点为P,且抛物线经过点A(-1,0),B(m,0),C(-2,n)(1<m<3,n<0).下列结论:①abc>0;②3a+c<0;③a (m-1)+2b>0;④当a=-1时,存在点P使△P AB为直角三角形.其中正确的为______(填序号).34、(2019·镇江)已知抛物线y=ax2+4ax+4a+1(a≠0)过点A(m,3),B(n,3)两点,若线段AB的长不大于4,则代数式a2+a+1的最小值是______.35、(2019·内江)若x,y,z为实数,且2421x y zx y z+-=⎧⎨-+=⎩则代数式x2-3y2+z2的最大值是______.36、(2019·雅安)函数y=()()220x x xx x-+>⎧⎪⎨-≤⎪⎩的图象如图所示.若直线y=x+m与该图象恰有三个不同的交点,则m的取值范围为______.37、(2019·大庆)如图,抛物线y=14px2(p>0),点F(0,p),直线l:y=-p,已知抛物线上的点到点F的距离与到直线l的距离相等,过点F的直线与抛物线交于A,B两点,AA1⊥l,BB1⊥l,垂足分别为A1,B1,连接A1F,B1F,A1O,B1O.若A1F=a,B1F=b,则△A1OB1的面积为______(只用a,b表示).38、(2019·衡阳)在平面直角坐标系中,抛物线y=x2的图象如图所示.已知点A的坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4,…,依次进行下去,则点A2019的坐标为______.三、解答题39、(2019·宁波)如图,二次函数y=x2+ax+3的图象经过点P(-2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.40、(2019·永州)如图,抛物线经过两点A(-3,0),B(0,3),且其对称轴为直线x=-1.(1)求此抛物线对应的函数解析式;(2)若P是抛物线上点A与点B之间的动点(不包括点A,B),求△P AB面积的最大值,并求出此时点P的坐标.41、(2019·安徽)一次函数y=kx+4与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点.(1)求k,a,c的值;(2)过点A(0,m)(0<m<4)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W的最小值.42、(2019·台州)已知函数y=x2+bx+c(b,c为常数)的图象经过点(-2,4).(1)求b,c满足的关系式;(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;(3)若该函数的图象不经过第三象限,当-5≤x≤1时,函数的最大值与最小值之差为16,求b的值.43、(2019·南通)已知二次函数y=x2-4x+3a+2(a为常数).(1)请写出该二次函数的三条性质;(2)在同一直角坐标系中,若该二次函数的图象在x≤4的部分与一次函数y=2x-1的图象有两个交点,求a的取值范围.44、(2019·北京)在平面直角坐标系xOy中,抛物线y=ax2+bx-1a与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P112a⎛⎫-⎪⎝⎭,,Q(2,2).若抛物线与线段PQ恰有一个公共点,结合图象,求a的取值范围.45、(2019·天门)在平面直角坐标系中,已知抛物线C:y=ax2+2x-1(a≠0)和直线l:y=kx+b,点A(-3,-3),B(1,-1)均在直线l上.(1)若抛物线C与直线l有交点,求a的取值范围;(2)当a=-1,二次函数y=ax2+2x-1的自变量x满足m≤x≤m+2时,函数y的最大值为-4,求m的值;(3)若抛物线C与线段AB有两个不同的交点,请直接写出a的取值范围.46、(2019·上海)如图,在平面直角坐标系xOy中,抛物线y=x2-2x,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.①试求抛物线y=x2-2x的“不动点”的坐标;①平移抛物线y=x2-2x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线对应的函数解析式.47、(2019·河北)如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x-b与y轴交于点B;抛物线L:y=-x2+bx的顶点为C,且L与x轴的右交点为D.(1)若AB=8,求b的值,并求此时抛物线L的对称轴与直线a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数.第三章 函数 5.二次函数的图象和性质一、选择题1、A2、C3、B4、A5、B6、C7、A8、C9、D 10、C 11、D 12、D 13、A 14、C 15、A 16、D 17、D 18、D 19、D 20、C 21、A 22、D 23、D 24、C 25、B二、填空题26、8 27、7 28、y =(x -2)2+1 29、3 30、y =2(x +1)2-2 31、-6<M <6 32、< 33、②③ 34、74 35、26 36、0<m <14 37、4ab 38、(-1010,10102) 三、解答题39、(1)把点P (-2,3)代入y =x 2+ax +3中,得3=4-2a +3,解得a =2.∴二次函数的解析式为y =x 2+2x +3=(x +1)2+2.∴顶点坐标为(-1,2)(2)①当m =2时,n =(2+1)2+2=11②∵点Q 到y 轴的距离小于2,∴|m |<2.∴-2<m <2.∴结合图象可知,n 的取值范围为2≤n <1140、(1)∵抛物线的对称轴是直线x =-1,且经过点A (-3,0),∴由抛物线的对称性可知,抛物线还经过点(1,0).设抛物线对应的函数解析式为y =a (x -1)(x +3),把B (0,3)代入,得3=-3a ,解得a =-1.∴抛物线对应的函数解析式为y =-x 2-2x +3(2)设直线AB 对应的函数解析式为y =kx +b ,∵点A (-3,0),B (0,3)在直线y =kx +b 上,∴33k b b -+=0⎧⎨=⎩解得13.k b =⎧⎨=⎩∴直线AB 对应的函数解析式为y =x +3.过点P 作PQ ⊥x 轴于点Q ,交直线AB 于点M ,设P (x ,-x 2-2x +3),则M (x ,x +3),∴PM =-x 2-2x +3-(x +3)=-x 2-3x .∴S △P AB =12(-x 2-3x )×3=-32(x +32)2+278.当x =-32时,S △P AB 有最大值,为278,此时点P 的纵坐标为-232⎛⎫- ⎪⎝⎭-2×32⎛⎫- ⎪⎝⎭+3=154,∴△P AB 面积的最大值为278,此时点P 的坐标为31524⎛⎫- ⎪⎝⎭, 41、(1)根据题意,得二次函数y =ax 2+c 的图象的顶点坐标为(0,c ).将点(0,c ),(1,2)代入一次函数的解析式,得424c k =⎧⎨=+⎩解得42.c k =⎧⎨=-⎩将点(1,2)代入y =ax 2+4,得2=a +4,解得a =-2.∴k 的值为-2,a 的值为-2,c 的值为4(2)由(1)可知,二次函数的解析式为y =-2x 2+4.令y =m ,得2x 2+m -4=0,解得x设B ,C 两点的坐标分别为(x 1,m ),(x 2,m ),则BC =|x 1-x 2|=2∴W =OA 2+BC 2=m 2+4×42m -=m 2-2m +8=(m -1)2+7.∵0<m <4,∴当m =1时,W 有最小值,为7 42、(1)将点(-2,4)代入y =x 2+bx +c ,得4=4-2b +c ,即-2b +c =0,∴c =2b(2)根据题意,得m =-2b ,n =244c b -.∴b =-2m .又由(1)知,c =2b ,∴c =-4m .∴n =244c b -=21644m m --=-m 2-4m (3)如图,由(2)的结论,画出函数y =x 2+bx +c 和函数y =-x 2-4x 的图象.∵函数y =x 2+bx +c 的图象不经过第三象限,∴-4≤-2b ≤0.①当-4≤-2b ≤-2,即4≤b ≤8时,如图①.当x =1时,函数取到最大值,为1+3b ;当x =-2b 时,函数取到最小值,为284b b -.∴1+3b -284b b -=16,即b 2+4b -60=0,解得b 1=6,b 2=-10(不合题意,舍去).②当-2<-2b ≤0,即0≤b <4时,如图②.当x =-5时,函数取到最大值,为25-3b ;当x =-2b 时,函数取到最小值,为284b b -,∴25-3b -284b b -=16,即b 2-20b +36=0,解得b 1=2,b 2=18(不合题意,舍去).综上所述,b 的值为2或643、(1)答案不唯一,如①图象开口向上;②图象的对称轴为直线x =2;③当x >2时,y 随x 的增大而增大(2)∵二次函数的图象与一次函数y=2x-1的图象有两个交点,∴x2-4x+3a+2=2x-1,即x2-6x+3a+3=0.∴Δ=36-4(3a+3)=-12a+24>0,解得a<2.∵二次函数的图象在x≤4的部分与一次函数y=2x-1的图象有两个交点,∴二次函数y=x2-6x+3a+3的图象与x轴x≤4的部分有两个交点.结合图象(图略)可知,当x=4时,x2-6x+3a+3≥0.∴当x=4时,x2-6x+3a+3=3a-5≥0,解得a≥53.∴当二次函数的图象在x≤4的部分与一次函数y=2x-1的图象有两个交点时,a的取值范围为53≤a<244、(1)由题意,得A1a⎛⎫-⎪⎝⎭,,又∵将点A向右平移2个单位长度,得到点B,∴B12a⎛⎫-⎪⎝⎭,(2)∵点A1a⎛⎫-⎪⎝⎭,与点B12a⎛⎫-⎪⎝⎭,关于直线x=1对称,点A,B均在抛物线上,∴抛物线的对称轴为直线x=1(3)①当a>0时,则-1a<0.结合图象(图略)可知,此时线段PQ与抛物线没有交点.②当a<0时,则-1a>0.结合图象(图略)可知,此时-1a≤2,解得a≤-12.综上所述,当a≤-12时,抛物线与线段PQ恰有一个公共点45、(1)将点A(-3,-3),B(1,-1)代入y=kx+b,得133k bk b+=-⎧⎨-+=-⎩解得123.2kb⎧=⎪⎪⎨⎪=-⎪⎩∴直线l对应的函数解析式为y=12x-32.联立y=ax2+2x-1与y=12x-32,得2ax2+3x+1=0.∵抛物线C与直线l有交点,∴Δ=9-8a≥0,解得a≤98.又∵a≠0,∴a的取值范围为a≤98且a≠0(2)根据题意,得二次函数的解析式为y=-x2+2x-1=-(x-1)2.∵-1<0,∴二次函数的图象开口向下,对称轴为直线x=1.∵当m≤x≤m+2时,y有最大值-4,∴当y=-4时,有-(x-1)2=-4,解得x=-1或x=3.①当x<1时,y随x的增大而增大,∴当x=m+2=-1时,y有最大值-4,此时m=-3;②当x>1时,y随x的增大而减小,∴当x=m=3时,y有最大值-4.综上所述,m的值为-3或3(3)49≤a<98或a≤-246、(1)对于抛物线y=x2-2x=(x-1)2-1,其开口向上,顶点A的坐标为(1,-1);当x>1时,y随x的增大而增大;当x<1时,y随x的增大而减小(2)①设抛物线“不动点”坐标为(t ,t ),则t =t 2-2t .解得t =0或3.∴“不动点”的坐标为(0,0)或(3,3)①∵新抛物线顶点B 为“不动点”,则设点B (m ,m ),∴新抛物线的对称轴为直线x =m ,与x 轴的交点C 的坐标为(m ,0).∵四边形OABC 是梯形,∴直线x =m 在y 轴左侧.∵BC 与OA 不平行,∴OC ∥AB. 又∵点A 的坐标为(1,-1),点B 的坐标为(m ,m ),∴m =-1.∴新抛物线是由抛物线y =x 2-2x 向左平移2个单位长度得到的.∴新抛物线对应的函数表达式为y =(x +1)2-147、(1)当x =0时,y =x -b =-b ,∴点B 的坐标为(0,-b ).∵AB =8,而点A 的坐标为(0,b ),∴b -(-b )=8.解得b =4.∴抛物线L 对应的函数解析式为y =-x 2+4x .∴抛物线L 的对称轴为直线x =2.当x =2时,y =x -4=-2.∴抛物线L 的对称轴与直线a 的交点坐标为(2,-2)(2)∵y =-x 2+bx =-22b x ⎛⎫- ⎪⎝⎭+24b ,∴抛物线L 的顶点C 的坐标为224b b ⎛⎫ ⎪⎝⎭,.∵点C 在l 下方,∴C 与l 的距离为b -24b =-14(b -2)2+1≤1.∴点C 与l 距离的最大值为1 (3)由题意,得y 3=122y y +,即y 1+y 2=2y 3,得b +x 0-b =2(-x 20+bx 0).解得x 0=0或x 0=b -12.但x 0≠0,取x 0=b -12.对于L ,当y =0时,得0=-x 2+bx ,即0=-x (x -b ).解得x 1=0,x 2=b .∵b >0,∴右交点D 的坐标为(b ,0).∴点(x 0,0)与点D 间的距离为b -12b ⎛⎫- ⎪⎝⎭=12(4)①当b =2019时,抛物线L 对应的函数解析式为y =-x 2+2019x ,直线a 对应的函数解析式为y =x -2019.联立上述两个解析式,可得x 1=-1,x 2=2019.∴可知每一个整数x 的值都对应的一个整数y 值,且-1和2019之间(包括-1和-2019)共有2021个整数.∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线,∴线段和抛物线上各有2021个整数点.∴总计4042个整数点.∵这两段图象交点有2个点重复,∴美点”的个数为4042-2=4040;①当b =2019.5时,抛物线L 对应的函数解析式为y =-x 2+2019.5x ,直线a 对应的函数解析式为y =x -2019.5.联立上述两个解析式,可得x 1=-1,x 2=2019.5,∴当x 取整数时,在一次函数y =x -2019.5上,y 取不到整数值.∴在该图象上“美点”的个数为0.∵在二次函数y =x 2+2019.5x 的图象上,当x 为偶数时,函数值y 可取整数,可知-1到2019.5之间有1010个偶数,∴“美点”共有1010个.综上所述,当b =2019时,“美点”的个数为4040;当b =2019.5时,“美点”的个数为1010。
第五节二次函数的图象与性质基础分点练(建议用时:60分钟)考点1二次函数的图象与性质1.抛物线y=x2-2x+2的顶点坐标为()A.(1,1)B.(-1,1)C.(1,3)D.(-1,3)2.[2020福建]已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2-2ax上的点,下列命题正确的是()A.若|x1-1|>|x2-1|,则y1>y2B.若|x1-1|>|x2-1|,则y1<y2C.若|x1-1|=|x2-1|,则y1=y2D.若y1=y2,则x1=x23.[2020浙江温州]已知(-3,y1),(-2,y2),(1,y3)是抛物线y=-3x2-12x+m上的点,则()A.y3<y2<y1B.y3<y1<y2C.y2<y3<y1D.y1<y3<y24.[2020石家庄长安区质量检测]老师给出了二次函数y=ax2+bx+c(a≠0)的部分对应值如下表:x…-3-20135…y…70-8-9-57…同学们讨论得出了下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2;③当-2<x<4时,y>0;④x=3是方程ax2+bx+c+5=0的一个根;⑤若A(x1,5),B(x2,6)在抛物线上,且点A在点B左侧,则x1<x2.其中正确的结论是()A.①③④B.②③④C.①④⑤D.③④⑤5.[2020江苏无锡]请写出一个函数表达式,使其图象的对称轴为y轴:.6.[2020吉林长春]如图,在平面直角坐标系中,点A的坐标为(0,2),点B的坐标为(4,2).若抛物线y=-(x-h)2+k(h,k为常数)与线段AB交于C,D两点,且CD=AB,则k的值为.7.已知二次函数y=x2-2mx+1,当x≤1时,y随x的增大而减小,则m的取值范围是.考点2二次函数图象与系数a,b,c的关系8.[2020山东青岛]已知在同一平面直角坐标系中,二次函数y=ax2+bx和反比例函数y=的图象如图所示,则一次函数y=x-b的图象可能是()9.[2020四川达州]如图,直线y1=kx与抛物线y2=ax2+bx+c交于A,B两点,则y=ax2+(b-k)x+c的图象可能是()10.[2020山东德州]二次函数y=ax2+bx+c的部分图象如图所示,则下列选项错误的是()A.若(-2,y1),(5,y2)是图象上的两点,则y1>y2B.3a+c=0C.方程ax2+bx+c=-2有两个不相等的实数根D.当x≥0时,y随x的增大而减小11.[2020唐山路北区一模]已知二次函数y=ax2+bx+c的图象如图所示,其对称轴是直线x=1.下列结论:①abc>0,②2a+b=0,③b2-4ac<0,④4a+2b+c>0,其中正确的是()A.①③B.只有②C.②④D.③④考点3二次函数解析式的确定(含平移)12.[2020黑龙江哈尔滨]将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的抛物线的解析式为()A.y=(x+3)2+5B.y=(x-3)2+5C.y=(x+5)2+3D.y=(x-5)2+313.[2020唐山路北区一模]如图,将函数y=(x+3)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(-4,m),B(-1,n)平移后的对应点分别为点A',B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.y=(x+3)2-2B.y=(x+3)2+7C.y=(x+3)2-5D.y=(x+3)2+414.[2020陕西]在平面直角坐标系中,将抛物线y=x2-(m-1)x+m(m>1)沿y轴向下平移3个单位长度,则平移后得到的抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限15.[2020浙江宁波]如图,在平面直角坐标系中,二次函数y=ax2+4x-3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.考点4二次函数与一元二次方程、不等式(组)的关系16.[2020贵州贵阳]已知二次函数y=ax2+bx+c的图象经过(-3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3,则关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根是()A.-2或0B.-4或2C.-5或3D.-6或417.[2020湖北武汉]抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(-4,0)两点.下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=-4;②若点C(-5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a-b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是(填写序号).18.根据下列要求,解答相关问题.(1)请补全以下求不等式-2x2-4x≥0的解集的过程.①构造函数,画出图象:根据不等式特征构造二次函数y=-2x2-4x;抛物线的对称轴为直线,开口向下,顶点坐标为,与x轴的交点是;用三点法画出二次函数y=-2x2-4x的图象如图(1)所示;②数形结合,求得界点:当y=0时,求得方程-2x2-4x=0的解为;③借助图象,写出解集:由图象可得不等式-2x2-4x≥0的解集为.图(1) 图(2)(2)利用(1)中求不等式解集的方法、步骤,求不等式x2-2x+1<4的解集.①构造函数,画出y=x2-2x+1的图象(在图(2)中画出);②数形结合,求得界点:当y=时,求得方程x2-2x+1=4的解为;③借助图象,写出解集.由图象可知,不等式x2-2x+1<4的解集是.综合提升练(建议用时:40分钟)1.[2020四川南充]如图,正方形四个顶点的坐标依次为(1,1),(3,1),(3,3),(1,3).若抛物线y=ax2的图象与正方形有公共点,则实数a的取值范围是()A.≤a≤3B.≤a≤1C.≤a≤3D.≤a≤12.[2020广西玉林]把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y=-a(x-1)2+4a,若(m-1)a+b+c≤0,则m的最大值是()A.-4B.0C.2D.63.[2020浙江宁波]如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=-1.则下列选项中正确的是()A.abc<0B.4ac-b2>0C.c-a>0D.当x=-n2-2(n为实数)时,y≥c4.[2020四川南充]关于二次函数y=ax2-4ax-5(a≠0)的三个结论:①对任意实数m,都有x=2+m与x=2-m对应的函数值相等;②若3≤x≤4时,对应的y的整数值有4个,则-<a≤-1或1≤a<;③若抛物线与x轴交于不同的两点A,B,且AB≤6,则a<-或a≥1.其中正确的结论是()A.①②B.①③C.②③D.①②③5.[2020河南]如图,抛物线y=-x2+2x+c与x轴正半轴、y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.6.[2019北京]在平面直角坐标系xOy中,抛物线y=ax2+bx-与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(,-),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围. 答案第五节二次函数的图象与性质基础分点练(建议用时:60分钟)考点1二次函数的图象与性质1.抛物线y=x2-2x+2的顶点坐标为( A)A.(1,1)B.(-1,1)C.(1,3)D.(-1,3)2.[2020福建]已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2-2ax上的点,下列命题正确的是( C)A.若|x1-1|>|x2-1|,则y1>y2B.若|x1-1|>|x2-1|,则y1<y2C.若|x1-1|=|x2-1|,则y1=y2D.若y1=y2,则x1=x23.[2020浙江温州]已知(-3,y1),(-2,y2),(1,y3)是抛物线y=-3x2-12x+m上的点,则( B)A.y3<y2<y1B.y3<y1<y2C.y2<y3<y1D.y1<y3<y24.[2020石家庄长安区质量检测]老师给出了二次函数y=ax2+bx+c(a≠0)的部分对应值如下表:x…-3-20135…y…70-8-9-57…同学们讨论得出了下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2;③当-2<x<4时,y>0;④x=3是方程ax2+bx+c+5=0的一个根;⑤若A(x1,5),B(x2,6)在抛物线上,且点A在点B左侧,则x1<x2.其中正确的结论是( C)A.①③④B.②③④C.①④⑤D.③④⑤5.[2020江苏无锡]请写出一个函数表达式,使其图象的对称轴为y轴:y=x2(答案不唯一,正确即可) .6.[2020吉林长春]如图,在平面直角坐标系中,点A的坐标为(0,2),点B的坐标为(4,2).若抛物线y=-(x-h)2+k(h,k为常数)与线段AB交于C,D两点,且CD=AB,则k的值为.7.已知二次函数y=x2-2mx+1,当x≤1时,y随x的增大而减小,则m的取值范围是m≥1.考点2二次函数图象与系数a,b,c的关系8.[2020山东青岛]已知在同一平面直角坐标系中,二次函数y=ax2+bx和反比例函数y=的图象如图所示,则一次函数y=x-b的图象可能是( B)9.[2020四川达州]如图,直线y1=kx与抛物线y2=ax2+bx+c交于A,B两点,则y=ax2+(b-k)x+c的图象可能是( B)10.[2020山东德州]二次函数y=ax2+bx+c的部分图象如图所示,则下列选项错误的是( D)A.若(-2,y1),(5,y2)是图象上的两点,则y1>y2B.3a+c=0C.方程ax2+bx+c=-2有两个不相等的实数根D.当x≥0时,y随x的增大而减小11.[2020唐山路北区一模]已知二次函数y=ax2+bx+c的图象如图所示,其对称轴是直线x=1.下列结论:①abc>0,②2a+b=0,③b2-4ac<0,④4a+2b+c>0,其中正确的是( C)A.①③B.只有②C.②④D.③④考点3二次函数解析式的确定(含平移)12.[2020黑龙江哈尔滨]将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的抛物线的解析式为( D)A.y=(x+3)2+5B.y=(x-3)2+5C.y=(x+5)2+3D.y=(x-5)2+313.[2020唐山路北区一模]如图,将函数y=(x+3)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(-4,m),B(-1,n)平移后的对应点分别为点A',B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( D)A.y=(x+3)2-2B.y=(x+3)2+7C.y=(x+3)2-5D.y=(x+3)2+414.[2020陕西]在平面直角坐标系中,将抛物线y=x2-(m-1)x+m(m>1)沿y轴向下平移3个单位长度,则平移后得到的抛物线的顶点一定在( D)A.第一象限B.第二象限C.第三象限D.第四象限15.[2020浙江宁波]如图,在平面直角坐标系中,二次函数y=ax2+4x-3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.解:(1)把B(1,0)代入y=ax2+4x-3,得0=a+4-3,解得a=-1,∴y=-x2+4x-3=-(x-2)2+1,∴点A的坐标为(2,1).∵抛物线的对称轴为直线x=2,B(1,0),∴C(3,0),∴当y>0时,x的取值范围是1<x<3.(2)对于y=-x2+4x-3,令x=0,得y=-3,∴D(0,-3),∴将抛物线向右平移2个单位长度,再向上平移4个单位长度,点D移到点A处,故平移后图象所对应的二次函数的表达式为y=-(x-4)2+5.考点4二次函数与一元二次方程、不等式(组)的关系16.[2020贵州贵阳]已知二次函数y=ax2+bx+c的图象经过(-3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3,则关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根是( B)A.-2或0B.-4或2C.-5或3D.-6或417.[2020湖北武汉]抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(-4,0)两点.下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=-4;②若点C(-5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a-b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是①③(填写序号).18.根据下列要求,解答相关问题.(1)请补全以下求不等式-2x2-4x≥0的解集的过程.①构造函数,画出图象:根据不等式特征构造二次函数y=-2x2-4x;抛物线的对称轴为直线x=-1,开口向下,顶点坐标为(-1,2) ,与x轴的交点是(0,0),(-2,0) ;用三点法画出二次函数y=-2x2-4x的图象如图(1)所示;②数形结合,求得界点:当y=0时,求得方程-2x2-4x=0的解为x1=0,x2=-2;③借助图象,写出解集:由图象可得不等式-2x2-4x≥0的解集为-2≤x≤0.图(1) 图(2)(2)利用(1)中求不等式解集的方法、步骤,求不等式x2-2x+1<4的解集.①构造函数,画出y=x2-2x+1的图象(在图(2)中画出);②数形结合,求得界点:当y=4时,求得方程x2-2x+1=4的解为x1=-1,x2=3 ;③借助图象,写出解集.由图象可知,不等式x2-2x+1<4的解集是-1<x<3.综合提升练(建议用时:40分钟)1.[2020四川南充]如图,正方形四个顶点的坐标依次为(1,1),(3,1),(3,3),(1,3).若抛物线y=ax2的图象与正方形有公共点,则实数a的取值范围是( A)A.≤a≤3B.≤a≤1C.≤a≤3D.≤a≤12.[2020广西玉林]把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y=-a(x-1)2+4a,若(m-1)a+b+c≤0,则m的最大值是( D)A.-4B.0C.2D.63.[2020浙江宁波]如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=-1.则下列选项中正确的是( D)A.abc<0B.4ac-b2>0C.c-a>0D.当x=-n2-2(n为实数)时,y≥c4.[2020四川南充]关于二次函数y=ax2-4ax-5(a≠0)的三个结论:①对任意实数m,都有x=2+m与x=2-m对应的函数值相等;②若3≤x≤4时,对应的y的整数值有4个,则-<a≤-1或1≤a<;③若抛物线与x轴交于不同的两点A,B,且AB≤6,则a<-或a≥1.其中正确的结论是( D)A.①②B.①③C.②③D.①②③5.[2020河南]如图,抛物线y=-x2+2x+c与x轴正半轴、y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.解:(1)∵抛物线y=-x2+2x+c与y轴正半轴交于点B,∴点B的坐标为(0,c),c>0.∵OA=OB,且点A在x轴正半轴上,∴点A的坐标为(c,0).∵抛物线y=-x2+2x+c经过点A,∴-c2+2c+c=0,解得c1=0(舍去),c2=3,∴抛物线的解析式为y=-x2+2x+3.∵y=-x2+2x+3=-(x-1)2+4,∴抛物线顶点G的坐标为(1,4).(2)抛物线y=-x2+2x+3的对称轴为直线x=1.∵点M,N到对称轴的距离分别为3个单位长度和5个单位长度,∴点M的横坐标为-2或4,点N的横坐标为-4或6,∴点M的纵坐标为-5,点N的纵坐标为-21.又∵点M在点N的左侧,∴当点M的坐标为(-2,-5)时,点N的坐标为(6,-21),∴-21≤y Q≤4.当点M的坐标为(4,-5)时,点N的坐标为(6,-21),∴-21≤y Q≤-5.6.[2019北京]在平面直角坐标系xOy中,抛物线y=ax2+bx-与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(,-),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围. 解:(1)当x=0时,y=-,∴点A的坐标为(0,-),故将点A向右平移2个单位长度,得到的点B的坐标为(2,-).(2)由抛物线经过点A(0,-)和点B(2,-),可知抛物线的对称轴为直线x==1.(3)当a>0时,-<0,如图(1),易得此时线段PQ与抛物线没有交点.图(1) 图(2)当a<0时,->0,如图(2).∵抛物线不可能同时经过点A和点P,∴当点Q在点B上方或与点B重合时,抛物线与线段PQ恰有一个公共点,即-≤2,解得a≤-.综上所述,当a≤-时,抛物线与线段PQ恰有一个公共点.。
二次函数的图像和性质知识点一:图像函数性质a>0定义域x∈R(个别题目有限制的,由解析式确定)值域a>0 a<0y∈[4ac-b24a,+∞) y∈(-∞,4ac-b24a]奇偶性b=0时为偶函数,b≠0时既非奇函数也非偶函数a<0单调性a>0a<0x∈(-∞,-b2a]时递减,x∈[-b2a,+∞)时递增x∈(-∞,-b2a]时递增,x∈[-b2a,+∞)时递减图像特点①对称轴:x=-b2a;②顶点:(-b2a,4ac-b24a)例:1、求函数1352++-=xxy图象的顶点坐标、对称轴、最值及它的单调区间。
2、如果cbxxxf++=2)(对于任意实数t都有)3()3(tftf-=+,那么()(A))4()1()3(fff<<(B))4()3()1(fff<<(C))1()4()3(fff<<(D))1()3()4(fff<<3、求函数522--=xxy在给定区间]5,1[-上的最值。
4、已知函数1)2(2-+-=nxxny是偶函数,试比较)2(f,)2(f,)5(-f的大小。
5、求当k为何值时,函数kxxy++-=422的图象与x轴(1)只有一个公共点;(2)有两个公共点;(3)没有公共点.6、抛物线642--=xaxy的顶点横坐标是-2,则a=7、已知二次函数bxay+-=2)1(有最小值–1,则a与b之间的大小关系是()A .a <bB .a=bC .a >bD .不能确定 8、二次函数y=(x-k )2与直线y=kx(k>0)的图像大致是( )知识点二:(1)当Δ=b2-4ac=0,方程有两个相等的实根,这时图象与x 轴只有一个公共点; (2)当Δ=b2-4ac>0,方程有两个不相等的实根,这时图象与x 轴有两个公共点; (3)当Δ=b2-4ac<0,方程有两个不相等的实根,这时图象与x 轴无公共点;课堂练习: 一.选择题1.二次函数522+-=x x y 的值域是( )A.)4∞+, [ B.),4(∞+ C.(4, ∞-] D.)4,( -∞2.如果二次函数452++=mx x y 在区间)1,(--∞上是减函数,在区间),1[+∞-上是增函数,则=m ( )A.2 B.-2 C.10 D.-103.如果二次函数)3(2+++=m mx x y 有两个不相等的实数根,则m 的聚值范围是( ) A.),6()2,(+∞⋃--∞ B.)6,2(- C.)6,2[- 0 D.}6,2{- 4.函数3212-+=x x y 的最小值是( ) A.-3. B..213- C.3 D..2135.函数2422---=x x y 具有性质( ) A.开口方向向上,对称轴为1-=x,顶点坐标为(-1,0)B.开口方向向上,对称轴为1=x ,顶点坐标为(1,0) C.开口方向向下,对称轴为1-=x ,顶点坐标为(-1,0) D.开口方向向下,对称轴为1=x,顶点坐标为(1,0)6.函数(1)3422-+=x x y ;(2)3422++=x x y ;(3)3632---=x x y ;(4)3632-+-=x x y 中,对称轴是直线1=x 的是( )A.(1)与(2) B.(2)与(3) C.(1)与(3) D.(2)与(4) 7.对于二次函数x x y 822+-=,下列结论正确的是( )A.当2=x 时,y 有最大值8 B.当2-=x 时,y 有最大值8 C.当2=x 时,y 有最小值8 D.当2-=x 时,y 有最小值8 8.如果函数)0(2≠++=a c bx ax y ,对于任意实数t 都有)2()2(t f t f -=+,那么下列选项中正确的是( )A.)4()1()2(f f f <-< B.)4()2()1(f f f <<- C.)1()4()2(-<<f f f D.)1()2()4(-<<f f f二.填空1.若函数12)(2-+=x x x f ,则)(x f 的对称轴是直线2.若函数322++=bx x y 在区间]2,(-∞上是减函数,在区间],2(+∞是增函数,则=b3.函数9322--=x x y 的图象与y 轴的交点坐标是 ,与x 轴的交点坐标是 、 4.已知6692+-=x x y ,则y 有最 值为 5.已知12842++-=x x y ,则y 有最 值为 三.解答题1.已知二次函数342-+-=x x y(1)指出函数图象的开口方向;(2)当x 为何值时0=y ;(3)求函数图象的顶点坐标、对称轴和最值。
二次函数图像和性质教学设计二次函数的性质和图像教学设计篇一《二次函数的性质和图像》教学设计一、设计理念:本节课遵循“探索—研究——运用“亦即“观察——思维——迁移”的三个层次要素,侧重学生的“思”、“探”、“究”的自主学习,由旧知识类比得新知识,自主探究二次函数图象及其性质。
学生动脑思和究,动手探。
教师的“诱”要在点上,在精不用多。
通过本节学习,学生更进一步的掌握二次函数性质及其图象特征。
二、学情分析:学生在初中学习中,已有二次函数的基础,了解二次函数图象及其相关性质,接受起来较快。
基于此,教师应在学生原有基础上拓宽知识面,引入新概念,帮助学生加深并提高对二次函数的认识。
三、教学目标(一)、知识目标1、使学生掌握研究二次函数的一般方法——配方法。
进一步掌握二次函数y=ax2+bx+c(a)的图象的顶点坐标,对称轴方程,单调区间和最值的求法。
2、会用描点法画出二次函数图像,能通过图像认识二次函数的性质3、通过具体例子,在探索二次函数图像和性质的过程中,学会利用配方法将数字系数的二次函数表达式表示成:y=a(x-h)^2+k的形式,从而确定二次函数图像的顶点和对称轴。
4、通过一般式与顶点式的互化过程,了解互化的必要性。
培养学生认识“事物都是相互联系、相互制约”的辩证唯物主义观点。
5、在经历“观察、猜测、探索、验证、应用”的过程中,渗透从“形”到“数”和从“数”到“形”的转化,培养了学生的转化、迁移能力,实现感性到理性的升华。
(二)、情感目标1、通过主动操作、合作交流、自主评价,改进学生的学习方式及学习质量,激发学生的兴趣,唤起好奇心与求知欲,点燃起学生智慧的火花,使学生积极思维,勇于探索,主动获取知识。
2、让学生在猜想与探究的过程中,体验成功的快乐,培养他们主动参与的意识、协同合作的意识、勇于创新和实践的科学精神。
(三)、能力目标1、拟通过本节课的学习,培养学生的观察能力、探索能力、数形结合能力、归纳概括能力,综合培养学生的思维能力及创新能力。
第5讲二次函数的图像与性质1.理解二次函数的概念,能用待定系数法确定二次函数的解析式;2.并结合图像理解抛物线、对称轴、顶点、开口方向等概念;3..经历探索二次函数图象及性质紧密联系的过程,能运用二次函数的图象和性质解决简单的实际问题,深刻理解数学建模思想以及数形结合的思想.知识点01 二次函数y=ax2(a≠0)的图像及性质1.二次函数y=ax2(a≠0)的图像用描点法画出二次函数y=ax2(a≠0)的图像,如图,它是一条关于y轴对称的曲线,这样的曲线叫做抛物线.因为抛物线y=x2关于y轴对称,所以y轴是这条抛物线的对称轴,对称轴与抛物线的交点是抛物线的顶点,从图上看,抛物线y=x2的顶点是图像的最低点。
因为抛物线y=x2有最低点,所以函数y=x2有最小值,它的最小值就是最低点的纵坐标.2.二次函数y=ax2(a≠0)的图像的画法用描点法画二次函数y=ax2(a≠0)的图像时,应在顶点的左、右两侧对称地选取自变量x的值,然后计算出对应的y值,这样的对应值选取越密集,描出的图像越准确.特别说明:二次函数y=ax2(a≠0)的图像.用描点法画二次函数y=ax2(a≠0)的图像,该图像是轴对称图形,对称轴是y轴.y=ax2(a≠0)是最简单的二次函数,把y=ax2(a≠0)的图像左右、上下平行移动可以得到y=ax2+bx+c(a≠0)的图像.画草图时应抓住以下几点:1)开口方向,2)对称轴,3)顶点,4)与x轴的交点,5)与y 轴的交点.3.二次函数y=ax2(a≠0)的图像的性质二次函数y=ax2(a≠0)的图像的性质,见下表:函数图像开口方向顶点坐标对称轴函数变化最大(小)值知识精讲目标导航特别说明:顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. │a │相同,抛物线的开口大小、形状相同. │a │越大,开口越小,图像两边越靠近y 轴,│a │越小,开口越大,•图像两边越靠近x 轴.【知识拓展1】画函数212y x =-的图像.【即学即练1】画出二次函数y =x 2的图像.【知识拓展2】y=ax 2a>0向上 (0,0) y 轴 x>0时,y 随x 增大而增大; x<0时,y 随x 增大而减小.当x=0时,y 最小=0y=ax 2a<0向下 (0,0) y 轴 x>0时,y 随x 增大而减小; x<0时,y 随x 增大而增大.当x=0时,y 最大=0如图所示四个二次函数的图像中,分别对应的是① y=ax2;② y=bx2;③ y=cx2;④ y=dx2.则a、b、c、d的大小关系为_____.【即学即练1】如图,已知点A(-4,8)和点B(2,n)在抛物线y=ax2上.求a的值及点B的坐标.【知识拓展3】函数y=ax2(a≠0)与直线y=2x-3的图像交于点(1,b).求:(1)a和b的值;(2)求抛物线y=ax2的开口方向、对称轴、顶点坐标;(3)作y=ax2的草图.【即学即练】已知函数是关于x的二次函数.(1)求m的值.(2)当m 为何值时,该函数图像的开口向下? (3)当m 为何值时,该函数有最小值,最小值是多少?【知识拓展4】已知22(1)ky k x -=+是关于x 的二次函数.(1)求满足条件的k 的值;(2)k 为何值时,抛物线有最低点?求出这个最低点.当x 为何值时,y 的值随x 值的增大而增大? (3)k 为何值时,函数有最大值?最大值是多少?当x 为何值时,y 的值随x 值的增大而减小?【即学即练1】已知 是二次函数,且函数图像有最高点.(1)求k 的值;(2)求顶点坐标和对称轴,并说明当x 为何值时,y 随x 的增大而减少.【即学即练2】已知函数y =(k ﹣2)245kk x-+是关于x 的二次函数,求:(1)满足条件的k 的值;(2)当k 为何值时,抛物线有最高点?求出这个最高点,这时,x 为何值时,y 随x 的增大而增大?(3)当k 为何值时,函数有最小值?最小值是多少?这时,当x 为何值时,y 与x 的增大而减小?【知识拓展5】如图,梯形ABCD 的顶点都在抛物线2y x =-上,且////AB CD x 轴.A 点坐标为(a,-4),C 点坐标为(3,b ).(1)求a ,b 的值; (2)求B ,D 两点的坐标; (3)求梯形的面积.【即学即练1】在平面直角坐标系中,若抛物线22y x =与直线1y x =+交于点(,)A a b 和点(,)B c d ,其中a c >,点O 为原点,求ABO ∆的面积.【即学即练2】抛物线y =ax 2(a >0 )上有A 、B 两点,A 、B 两点的横坐标分别为-1,2.求a 为何值时,△AOB 为直角三角形.知识点02二次函数y=ax 2+k(a ≠0)的图像及性质1.二次函数y=ax 2+k(a ≠0)的图像 (1)0a >(2)0a <jxOy()20y ax k k =+>cjyxOc()20y ax k k =+<jyxOc()0y ax k k =+>jyxOc()20y ax k k =+<2.二次函数y=ax 2+k(a ≠0)的图像的性质关于二次函数y=ax 2+k(a ≠0)的性质,主要从抛物线的开口方向、顶点、对称轴、函数值的增减性以及函数的最大值或最小值等方面来研究.下面结合图像,将其性质列表归纳如下:函数2(a 0,k 0)y ax k =+>> 2(a 0,k 0)y ax k =+<>图像开口方向 向上 向下 顶点坐标 (0,k) (0,k) 对称轴 y 轴y 轴函数变化 当0x >时,y 随x 的增大而增大; 当0x <时,y 随x 的增大而减小.当0x >时,y 随x 的增大而减小;当0x <时,y 随x 的增大而增大.最大(小)值 当0x =时,=y k 最小值当0x =时,=y k 最大值3.二次函数()20y ax a =≠与y=ax 2+k(a ≠0)之间的关系;(上加下减).()20y ax a =≠的图像向上(k >0)【或向下(k <0)】平移│k │个单位得到y=ax 2+k(a ≠0)的图像.特别说明:抛物线y=ax 2+k(a ≠0)的对称轴是y 轴,顶点坐标是(0,c),与抛物线2(0)y ax a =≠的形状相同.函数y=ax 2+k(a ≠0)的图像是由函数2(0)y ax a =≠的图像向上(或向下)平移k 个单位得到的,顶点坐标为(0,k).抛物线y =ax 2(a ≠0)的对称轴、最值与顶点密不可分,其对称轴即为过顶点且与x 轴垂直的一条直线,其顶点横坐标x =0,抛物线平移不改变抛物线的形状,即a 的值不变,只是位置发生变化而已.【知识拓展1】如图,已知抛物线24y x =-+.(1)该抛物线顶点坐标为________;(2)在坐标系中画出此抛物线y 的大致图像(不要求列表);(3)该抛物线24y x =-+可由抛物线2y x =-向________平移________个单位得到; (4)当0y >时,求x 的取值范围. \【即学即练1】已知二次函数2y ax =与22y x c =-+.(1)随着系数a 和c 的变化,分别说出这两个二次函数图像的变与不变;(2)若这两个函数图像的形状相同,则a =______;若抛物线2y ax =沿y 轴向下平移2个单位就能与22y x c =-+的图像完全重合,则c =______. (3)二次函数22y x c =-+中x 、y 的几组对应值如下表:x2- 1 5ym np表中m 、n 、p 的大小关系为______.(用“<”连接). 【即学即练2】在同一平面直角坐标系中画出函数和21y x =-+的图像,并根据图像回答下列问题:(1)抛物线21y x =-+经过怎样的平移才能得到抛物线2y x =-?(2)函数21y x =-+,当x_______时,y 随x 的增大而减小;当x________时,函数有最大值,最大值是_____________;其图像与y 轴的交点坐标是______,与x 轴的交点坐标是________________. (3)试说出抛物线2132y x =-的开口方向、对称轴和顶点坐标.【知识拓展2】已知二次函数y =ax 2与y =﹣2x 2+c .(1)随着系数a 和c 的变化,分别说出这两个二次函数图像的变与不变;(2)若这两个函数图像的形状相同,则a = ;若抛物线y =ax 2沿y 轴向下平移2个单位就能与y =﹣2x 2+c 的图像完全重合,则c = ; (3)二次函数y =﹣2x 2+c 中x 、y 的几组对应值如表:表中m 、n 、p 的大小关系为 (用“<”连接).【即学即练2】在同一直角坐标系中画出二次函数2113=+y x 与二次函数2113=--y x 的图形.(1)从抛物线的开口方向、形状、对称轴、顶点等方面说出两个函数图像的相同点与不同点; (2)说出两个函数图像的性质的相同点与不同点.【即学即练2】二次函数图像上部分点的横坐标x ,纵坐标y 的对应值如下表:(1)m = ;(2)在图中画出这个二次函数的图像;(3)当5y ≥时,x 的取值范围是 ; (4)当41x -<<时,y 的取值范围是 .【知识拓展3】如图,在平面直角坐标系中,y 轴上一点A (0,2),在x 轴上有一动点B ,连结AB ,过B 点作直线l ⊥x 轴,交AB 的垂直平分线于点P(x,y),在B 点运动过程中,P 点的运动轨迹是________,y 关于x 的函数解析式是________.【即学即练1】在线段BG 上取点C ,分别以BC 、CG 为边在BG 的同一侧构造正方形ABCD 和正方形ECGF ,点P 、Q 分别是BC 、EF 的中点,连接PQ ,若8BG =,则线段PQ 的最小值为______.【即学即练2】请你写出一个二次函数,其图像满足条件:①开口向下;②与y 轴的交点坐标为(0,3).此二次函数的解析式可以是______________【即学即练3】写出一个对称轴是y 轴的二次函数的解析式_____.知识点03函数2()(0)y a x h a =-≠与函数2()(0)y a x h k a =-+≠的图像与性质 1.函数2()(0)y a x h a =-≠的图像与性质2.函数2()(0)y a x h k a =-+≠的图像与性质 特别说明:二次函数2()+(0y a x h k a =-≠)的图像常与直线、三角形、面积问题结合在一起,借助它的图像与性质.运用数形结合、函数、方程思想解决问题. 2.性质: 二次函数的平移 1.平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()0h , x=hx h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0. 0a <向下 ()0h ,x=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0.a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()h k , x=hx h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值k .0a < 向下 ()h k ,x=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值k .⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:2.平移规律:在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 特别说明:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿x 轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)【知识拓展1】已知二次函数经过点(0,3),且当1x =时,函数y 有最大值4. (1)求二次函数的解析式;(2)直接写出一个与该函数图像开口方向相反,形状相同,且经过点(0,3)的二次函数解析式.【即学即练1】已知函数()()27322m y m x m -=-++-是二次函数.(1)求m 的值;(2)求这个二次函数的解析式,并指出开口方向、对称轴和顶点坐标.【即学即练2】已知二次函数y =-x 2+4x .(1)用配方法把该二次函数化为y =a (x -h )2+k 的形式,并指出函数图像的对称轴和顶点坐标; (2)求这个函数图像与x 轴的交点的坐标.【即学即练3】 已知抛物线2()y a x h =-,当2x =时,有最大值,且抛物线过点(1,3)-.(1)求抛物线的解析式;(2)当y 随x 的增大而增大时,求x 的取值范围; (3)求抛物线与y 轴的交点坐标.【知识拓展2】已知二次函数20.50.5y x x =--,求顶点坐标,小明的计算结果与其他同学的不同,小明的计算过程:20.50.5y x x =--221x x =--……①; 22111x x =-+--……②;()212x =--……③;∴顶点坐标是()1,2-……④;(1)请你帮他检查一个,在标出的①②③④几个步骤中开始出现错误的是________________步.(2)请写出此题正确的求顶点的计算过程.【即学即练1】确定下列函数图像的开口方向、对称轴及顶点坐标. (1)()221y x =+; (2)()245y x =--.【知识拓展3】把二次函数y=2x 2的图像向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为____________.【即学即练1】抛物线y =3(x -2)2的开口方向是______,顶点坐标为______,对称轴是______.当x ______时,y 随x 的增大而增大;当x =______时,y 有最______值是______,它可以由抛物线y =3x 2向______平移______个单位得到.【即学即练2】将二次函数y=2x 2﹣1的图像沿y 轴向上平移2个单位,所得图像对应的函数表达式为________. 【知识拓展4】一条抛物线经过点A(-2,0)且抛物线的顶点是(1,-3),求满足此条件的函数解析式.【即学即练1】将抛物线y=﹣2(x+1)2+1绕其顶点旋转180°后得到抛物线的解析式为______; 将抛物线y=﹣2(x+1)2+1绕原点旋转180°后得到抛物线的解析式为______. 【即学即练2】已知二次函数的顶点为(2,2)-且过点(1,3)-,求该函数解析式.【即学即练3】 求符合下列条件的抛物线2(1)y a x =-的函数关系式,(1)通过点(3,8);(2)与212y x =的开口大小相同,方向相反。
3.5二次函数y=ax 2+k 的图像和性质 学案学习目标:1、会用描点法画二次函数y=ax 2+ k 的图象并探索它们的性质。
2、通过图像探索y=ax 2与y=ax 2+ k 的位置关系。
重点:二次函数y=ax 2+ k 的图象和性质。
温故: 1、二次函数y=ax 2的图像是 ,顶点坐标是 ,对称轴是 。
是 函数(奇或偶)。
2、当a>0时,抛物线y=ax 2在x 轴的 (除顶点外),它的开口 ,并且向上无限伸展;当a<0时,抛物线y=ax 2在x 轴的 (除顶点外),它的开口 ,并且向下无限伸展。
3、当a>0时,在对称轴的左侧,y 随着x 的增大而 ;即在区间[]0-,∞上是 函数。
在对称轴右侧,y 随着x 的增大而 ;即在区间[]∞+,0上是 函数。
当x=0时函数y 的值最 。
当a<0时,在对称轴的左侧,y 随着x 的增大而 ;即在区间[]0-,∞上是 函数。
在对称轴的右侧,y 随着x 增大而 ;即在区间[]∞+,0上是 函数。
当x=0时,函数y 的值最 。
4、当 | a | 的值越大时,其开口 。
课内探究:1、用描点法在同一坐标系中画出函数y =x 2, y=x 2+1与y=x 2-1的图象。
解:列表:描点、连线。
1、观察图像完成表格。
(2)观察图像抛物线y =x 2+1,y=x 2-1与抛物线y =x 2有什么位置关系? 抛物线y =x 2+1,y=x 2-1可有抛物线y=x 2分别经过怎样的变换得到?归纳:抛物线y =x 2+1,可有抛物线y =x 2向 平移 个单位而得到;抛物线y=x 2-1,可有抛物线y =x 2向 平移 个单位而得到。
练习:用描点法在同一坐标系中画出函数y=-x 2, y=-x 2+1与y=-x 2-1的图象观察图像分别指出它们的开口方向、对称轴、顶点坐标、位置、增减性、极值。
并指出它们之间的位置关系及图形间的变换。
归纳:抛物线y =-x 2+1,可有抛物线y=-x 2向 平移 个单位而得到; 抛物线y=-x 2-1,可有抛物线y=-x 2向 平移 个单位而得到。
九年级数学下册:《二次函数y=ax2的图象与性质》教学设计二次函数y=ax2的图象与性质教学目标:知识技能:1、会用描点的方法画二次函数图象。
2、结合图象分析并掌握二次函数的性质。
数学思考:通过观察二次函数图象,分析探究二次函数的性质,培养你学生的探究归纳及概括能力。
解决问题:会画二次函数图象,并能根据二次函数的图象探究其性质。
情感态度:1、让学生体会函数的三种表示方法,领会数形结合的思想方法。
2、由图象的画法和分析,体验数学活动中的探索性和创造性。
教学重难点重点:画二次函数图象,理解二次函数性质。
难点:理解二次函数的性质,并能灵活应用教学过程一:创设情境,依旧探新.1 (课件展示篮球运动图片)运动员投篮时,篮球所经过的路线是条曲线,通过今天的学习,我们可以用式子表达出来。
(设计意图:通过动画显示,引起学生浓厚的学习兴趣,同时以景激情,以请激思,使学生在不知不觉中进入学习的佳境,同时,又体现了数学来源于实际生活又服务于现实生活。
)2 根据上节课的学习,说说你对二次函数的认识k(k≠0,k为常数)的性质,我们是如何研究的?(根3对于反比例函数y=x据定义,先研究反比例函数图象的画法,再利用图象研究函数的性质)4对于二次函数y=ax2,下一步我们应研究什么?(二次函数的y=ax2图象)3你还记得画函数图象的一般步骤吗?(在自变量取值范围内去一些值,列表、描点、连线)(设计意图:通过创设问题情境,引导学生复习画反比例函数图象的知识,激发学生参与课堂学习的热情,为学习画二次函数的图象奠定基础。
)二;尝试发现,探索新知。
试一试画出二次函数y=x2的图象(找4名学生上台板演,其余学生自己动手在方格纸上画,鼓励学生之间互相讨论,相互比较,借助分析,判断,归纳,总结等手段,共同取得正确的画图经验,进而获得画二次函数图象的要领于关键点,得出二次函数y=x2 的图象,)最后展示画图过程。
1 表格2 画图(边展示,边讲解①列表取值时,x可以取任意值,为了使点具有代表性,可以以“0”为中心,向两边取值,即正负各一半,且也互为相反数,这样也便于求y值②由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确。
第5讲二次函数的图象与性质知识定位讲解用时:2分钟A、适用范围:人教版初三,基础一般B、知识点概述:本讲义主要用于人教版初三新课,本节课我们主要学习二次函数的图象与性质,本节课的重点是掌握二次函数的平移法则,能够结合二次函数图象和性质判断a、b、c的之间的关系,而难点在于二次函数的图象和性质的综合考查,需要学生能够根据二次函数的图象与性质正确分析并解决问题。
希望同学们能够认真学习并掌握,为后面二次函数的应用打好基础。
知识梳理讲解用时:25分钟二次函数的图象(1)二次函数y=ax2(a≠0)的图象的画法:①列表:先取原点(0,0),然后以原点为中心对称地选取x值,求出函数值,列表;①描点:在平面直角坐标系中描出表中的各点;①连线:用平滑的曲线按顺序连接各点;①在画抛物线时,取的点越密集,描出的图象就越精确,但取点多计算量就大,故一般在顶点的两侧各取三四个点即可,连线成图象时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接起来,画抛物线y=ax2(a≠0)的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧。
x…-223--112-0121232…2y x= (4)491140141494…(2)二次函数y=ax2+bx+c(a≠0)的图象二次函数y=ax2+bx+c(a≠0)的图象看作由二次函数y=ax2的图象向右或向左平移|ab2|个单位,再向上或向下平移|abac442-|个单位得到的。
12341234xyxyOO1212----图1图2向上()或向下()平移个单位向上()或向下()平移个单位向左()或向右()平移个单位向左()或向右()平移个单位课堂精讲精练【例题1】抛物线212y x =向左平移8个单位,再向下平移9个单位,所得的抛物线的解析式是___________________。
【答案】218232y x x =++【解析】本题考查了二次函数平移规则,根据二次函数的平移法则,“上加下减,左加右减”,可知平移后的函数解析式为()21892y x =+-,整理即为218232y x x =++讲解用时:2分钟解题思路:牢记平移法则即可。
第5讲二次函数的图象和性质一、知识点回顾1. 二次函数解析式的几种形式:①一般式:(a、b、c为常数,a≠0)②顶点式:(a、h、k为常数,a≠0),其中(h,k)为顶点坐标。
③交点式:,其中是抛物线与x轴交点的横坐标,即一元二次方程的两个根,且a≠0,(也叫两根式)。
2. 二次函数的图象①二次函数的图象是对称轴平行于(包括重合)y轴的抛物线,几个不同的二次函数,如果a相同,那么抛物线的开口方向,开口大小(即形状)完全相同,只是位置不同。
②任意抛物线可以由抛物线经过适当的平移得到,移动规律可简记为:[左加右减,上加下减],具体平移方法如下表所示。
③在画的图象时,可以先配方成的形式,然后将的图象上(下)左(右)平移得到所求图象,即平移法;也可用描点法:也是将配成的形式,这样可以确定开口方向,对称轴及顶点坐标。
然后取图象与y轴的交点(0,c),及此点关于对称轴对称的点(2h,c);如果图象与x轴有两个交点,就直接取这两个点(x1,0),(x2,0)就行了;如果图象与x轴只有一个交点或无交点,那应该在对称轴两侧取对称点,(这两点不是与y轴交点及其对称点),一般画图象找5个点。
3. 二次函数的性质函数二次函数a、b、c为常数,a≠0(a、h、k为常数,a≠0)a>0 a<0 a>0 a<0图象(1)抛物线开口向上,并向上无限延伸(1)抛物线开口向下,并向下无限延伸(1)抛物线开口向上,并向上无限延伸(1)抛物线开口向下,并向下无限延伸性 (2)对称轴是x=,顶点是()(2)对称轴是x=,顶点是()(2)对称轴是x=h,顶点是(h,k)(2)对称轴是x=h,顶点是(h,k)质(3)当时,y随x的增大而减小;当时,y随x的增大而增大(3)当时,y随x的增大而增大;当时,y随x的增大而减小(3)当时,y随x的增大而减小;当x>h时,y随x的增大而增大。
(3)当x<h时,y随x的增大而增大;当x>h时,y随x的增大而减小(4)抛物线有最低点,当时,y有最小值,(4)抛物线有最高点,当时,y有最大值,(4)抛物线有最低点,当x=h时,y有最小值(4)抛物线有最高点,当x=h时,y有最大值4. 求抛物线的顶点、对称轴和最值的方法①配方法:将解析式化为的形式,顶点坐标为(h,k),对称轴为直线,若a>0,y有最小值,当x=h时,;若a<0,y有最大值,当x=h时,。
二次函数的图像和性质一、二次函数的一般形式二次函数是一种形式为f(x)=ax2+bx+c的函数,其中a、b、c是实数且a eq0。
二、二次函数的图像1.抛物线二次函数的图像是一条抛物线。
当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。
2.判别法利用二次函数的判别式 $\\Delta = b^2 - 4ac$ 的正负性可以确定二次函数的图像开口方向和与x轴的交点情况。
3.最值点二次函数的顶点为抛物线的最值点,当a>0时,最小值在顶点处取得;当a<0时,最大值在顶点处取得。
顶点的横坐标为 $-\\frac{b}{2a}$,纵坐标为 $f\\left(-\\frac{b}{2a}\\right)$。
三、二次函数的性质1.对称轴二次函数的对称轴为直线 $x = -\\frac{b}{2a}$,即抛物线关于对称轴对称。
2.单调性当a>0时,二次函数在对称轴左侧递增,在对称轴右侧递减;当a<0时,二次函数在对称轴左侧递减,在对称轴右侧递增。
3.零点二次函数的零点为方程f(x)=0的解,可以利用求根公式 $x = \\frac{-b \\pm \\sqrt{b^2 - 4ac}}{2a}$ 求得。
4.图像的平移如f(x)=a(x−ℎ)2+k,其中(ℎ,k)为平移后的顶点坐标,抛物线上下平移,方向与a的正负有关。
四、应用二次函数在几何、物理、经济等领域有着广泛的应用。
例如几何问题中的抛物线轨迹、物体自由落体运动方程、经济学中的成本、收益关系等均可用二次函数描述。
结语二次函数作为高中数学中重要的函数类型,在图像和性质上有着独特的表现,通过对其图像和性质的深入理解,可以更好地应用于解决实际问题。
希望本文的介绍能帮助读者更好地掌握二次函数的知识。