ASTM G154-2006 非金属材料紫外线曝光用荧光设备使用标准惯例 cn
- 格式:doc
- 大小:60.50 KB
- 文档页数:16
4.Summary of Practice4.1Specimens are exposed to repetitive cycles of light and moisture under controlled environmental conditions.4.1.1Moisture is usually produced by condensation of water vapor onto the test specimen or by spraying the speci-mens with demineralized/deionized water.4.2The exposure condition may be varied by selection of: 4.2.1Thefluorescent lamp,4.2.2The lamp’s irradiance level,4.2.3The type of moisture exposure,4.2.4The timing of the light and moisture exposure,4.2.5The temperature of light exposure,and4.2.6The temperature of moisture exposure,and4.2.7The timing of a light/dark cycle.4.3Comparison of results obtained from specimens exposed in same model of apparatus should not be made unless reproducibility has been established among devices for the material to be tested.4.4Comparison of results obtained from specimens exposed in different models of apparatus should not be made unless correlation has been established among devices for the material to be tested.5.Significance and Use5.1The use of this apparatus is intended to induce property changes associated with the end use conditions,including the effects of the UV portion of sunlight,moisture,and heat.These exposures may include a means to introduce moisture to the test specimen.Exposures are not intended to simulate the deterioration caused by localized weather phenomena,such as atmospheric pollution,biological attack,and saltwater expo-sure.Alternatively,the exposure may simulate the effects of sunlight through window glass.Typically,these exposures would include moisture in the form of condensing humidity. N OTE2—Caution:Refer to Practice G151for full cautionary guidance applicable to all laboratory weathering devices.5.2Variation in results may be expected when operating conditions are varied within the accepted limits of this practice. Therefore,no reference shall be made to results from the use of this practice unless accompanied by a report detailing the specific operating conditions in conformance with the Section 10.5.2.1It is recommended that a similar material of known performance(a control)be exposed simultaneously with the test specimen to provide a standard for comparative purposes. It is recommended that at least three replicates of each material evaluated be exposed in each test to allow for statistical evaluation of results.6.Apparatus6.1Laboratory Light Source—The light source shall be fluorescent UV lamps.A variety offluorescent UV lamps can be used for this procedure.Differences in lamp intensity or spectrum may cause significant differences in test results.A detailed description of the type(s)of lamp(s)used should be stated in detail in the test report.The particular testing application determines which lamp should be used.See Ap-pendix X1for lamp application guidelines.N OTE3—Do not mix different types of lamps.Mixing different types of lamps in afluorescent UV light apparatus may produce major inconsis-tencies in the light falling on the samples,unless the apparatus has been specifically designed to ensure a uniform spectral distribution.N OTE4—Manyfluorescent lamps age significantly with extended use. Follow the apparatus manufacturer’s instructions on the procedure neces-sary to maintain desired irradiance(1,2).6.1.1Actual irradiance levels at the test specimen surface may vary due to the type or manufacturer of the lamp used,or both,the age of the lamps,the distance to the lamp array,and the air temperature within the chamber and the ambient laboratory temperature.Consequently,the use of a radiometer to monitor and control the radiant energy is recommended.6.1.2Several factors can affect the spectral power distribu-tion offluorescent UV lamps:6.1.2.1Aging of the glass used in some types of lamps can result in changes in transmission.Aging of glass can result in a significant reduction in the short wavelength UV emission of some lamp types,6.1.2.2Accumulation of dirt or other residue on lamps can affect irradiance,6.1.2.3Thickness of glass used for lamp tube can have large effects on the amount of short wavelength UV radiation transmitted,and6.1.2.4Uniformity and durability of phosphor coating. 6.1.3Spectral Irradiance:N OTE5—Fluorescent UV A lamps are available with a choice of spectral power distributions that vary significantly.The more common may be identified as UV A-340and UV A-351.These numbers represent the characteristic nominal wavelength(in nm)of peak emission for each of these lamp types.The actual peak emissions are at343and350nm, respectively.6.1.3.1Spectral Irradiance of UVA-340Lamps for Daylight UV—The spectral power distribution of UV A-340fluorescent lamps shall comply with the requirements specified in Table1. N OTE6—The main application for UV A-340lamps is for simulation of the short and middle UV wavelength region of daylight.6.1.3.2Spectral Irradiance of UVA-351Lamps for Daylight UV Behind Window Glass—The spectral power distribution of UV A-351lamp for Daylight UV behind Window Glass shall comply with the requirements specified in Table2.N OTE7—The main application for UV A-351lamps is for simulation of the short and middle UV wavelength region of daylight which has been filtered through window glass(3).6.1.3.3Spectral Irradiance of UVB-313Lamps—The spec-tral power distribution of UVB-313fluorescent lamps shall comply with the requirements specified in Table2.N OTE8—Fluorescent UVB lamps have the spectral distribution of radiation peaking near the313-nm mercury line.They emit significant amounts of radiation below300nm,the nominal cut on wavelength of global solar radiation,that may result in aging processes not occurring e of this lamp is not recommended for sunlight simulation. See Table3.6.2Test Chamber—The design of the test chamber may vary,but it should be constructed from corrosion resistant material and,in addition to the radiant source,may provide for means of controlling temperature and relative humidity.When required,provision shall be made for the spraying of wateronthe test specimen for the formation of condensate on the exposed face of the specimen or for the immersion of the test specimen in water.6.2.1The radiant source(s)shall be located with respect tothe specimens such that the uniformity of irradiance at the specimen face complies with the requirements in Practice G151.6.2.2Lamp replacement,lamp rotation,and specimen repo-sitioning may be required to obtain uniform exposure of all specimens to UV radiation and temperature.Follow manufac-turer’s recommendation for lamp replacement and rotation.6.3Instrument Calibration—To ensure standardization and accuracy,the instruments associated with the exposure appa-ratus(for example,timers,thermometers,wet bulb sensors,dry bulb sensors,humidity sensors,UV sensors,and radiometers) require periodic calibration to ensure repeatability of test results.Whenever possible,calibration should be traceable to national or international standards.Calibration schedule and procedure should be in accordance with manufacturer’s in-structions.6.4Radiometer—The use of a radiometer to monitor and control the amount of radiant energy received at the sample is recommended.If a radiometer is used,it shall comply with the requirements in Practice G151.6.5Thermometer—Either insulated or un-insulated black or white panel thermometers may be used.The un-insulated thermometers may be made of either steel or aluminum.Thermometers shall conform to the descriptions found in Practice G151.6.5.1The thermometer shall be mounted on the specimen rack so that its surface is in the same relative position and subjected to the same influences as the test specimens.6.5.2Some specifications may require chamber air tempera-ture control.Positioning and calibration of chamber air tem-perature sensors shall be in accordance with the descriptions found in Practice G151.N OTE9—Typically,these devices control by black panel temperature only.6.6Moisture—The test specimens may be exposed to mois-ture in the form of water spray,condensation,or high humidity.6.6.1Water Spray—The test chamber may be equipped witha means to introduce intermittent water spray onto the test specimens under specified conditions.The spray shall be uniformly distributed over the samples.The spray system shall be made from corrosion resistant materials that do not con-taminate the water used.6.6.1.1Spray Water Quality—Spray water shall have a conductivity below5µS/cm,contain less than1-ppm solids, and leave no observable stains or deposits on the specimens.TABLE1Relative Spectral Power Distribution Specification forUVA-340Lamps for Daylight UVBandpass,nm Fluorescent UVA-340Lamp A Sunlight B Ultraviolet Wavelength RegionIrradiance as a percentage of total irradiance from260to400nm260–2700.0%0271–2800.0%0281–2900.0%0291–300<0.2%0301–320 6.2–8.6% 5.6%321–34027.1–30.7%18.5%341–36034.2–35.4%21.7%361–38019.5–23.7%26.6%381–400 6.6–7.8%27.6% Ultraviolet and Visible Wavelength RegionIrradiance as a percentage of total irradiance from300to800nm C300–40087.3%D11%E401–70012.7%D72%EA UVA-340data—The ranges given are based on spectral power distribution measurements made for lamps of different ages and operating at different levels of controlled irradiance.The ranges given are based on three sigma limits from the averages of this data.B Sunlight data—The sunlight data is for global irradiance on a horizontal surface with a air mass of1.2,column ozone0.294atm cm,30%relative humidity,altitude 2100m(atmopsheric pressure of787.8mb),and an aerosol represented by an optical thickness of0.81at300nm and0.62at400nm.C Data from701to800nm is not shown.D UVA-340data—Because the primary emission offluorescent UV lamps is concentrated in the300-to400-nm bandpass,there are limited data available for visible light emissions offluorescent UV lamps.Therefore,the data in this table are based on very few measurements and are representative only.E Sunlight data—The sunlight data is from Table4of CIE Publication Number85, global solar irradiance on a horizontal surface with an air mass of1.0,column ozone of0.34atm cm, 1.42-cm precipitable water vapor,and an aerosol represented by an optical thickness of0.1at500nm.TABLE2Relative Spectral Power Distribution Specification for UVA-351Lamps for Daylight UV Behind Window GlassBandpass,nm Fluorescent UVA-351Lamp AEstimated Window GlassFiltered Sunlight BUltraviolet Wavelength RegionIrradiance as a percentage of total irradiance from260to400nm260–2700.0%0%271–2800.0%0%281–2900.0%0%290–300<0.1%0%301–3200.9–3.3%0.1–1.5%321–34018.3–22.7%9.4–14.8%341–36042.7–44.5%23.2–23.5%361–38024.8–28.2%29.6–32.5%381–400 5.8–7.6%30.9–34.5%Ultraviolet and Visible Wavelength RegionIrradiance as a percentage of total irradiance from300to800nm C 300–40090.1%D9.0–11.1%E401–7009.9%D71.3–73.1%EA UVA-351data—The ranges given are based on spectral power distribution measurements made for lamps of different ages and operating at different levels of controlled irradiance.The ranges given are based on three sigma limits from the averages of this data.B Sunlight data—The sunlight data is for global irradiance on a horizontal surface with an air mass of1.2,column ozone0.294atm cm,30%relative humidity, altitude2100m(atmospheric pressure of787.8mb),and an aerosol represented by an optical thickness of0.081at300nm and0.62at400nm.The range is determined by multiplying solar irradiance by the upper and lower limits for transmission of single strength window glass samples used for studies conducted by ASTM Subcommittee G03.02.C Data from701to800nm is not shown.D UVA-351data—Because the primary emission offluorescent UV lamps is concentrated in the300-to400-nm bandpass,there are limited data available for visible light emissions offluorescent UV lamps.Therefore,the data in this table are based on very few measurements and are representative only.E Sunlight data—The sunlight data is from Table4of CIE Publication Number85, global solar irradiance on a horizontal surface with an air mass of1.0,column ozone of0.34atm cm, 1.42-cm precipitable water vapor,and an aerosol represented by an optical thickness of0.1at500nm.The range is determined by multiplying solar irradiance by the upper and lower limits for transmission of single strength window glass samples used for studies conducted by ASTM Subcommit-teeG03.02.Very low levels of silica in spray water can cause significantdeposits on the surface of test specimens.Care should be takento keep silica levels below 0.1ppm.In addition to distillation,a combination of deionization and reverse osmosis can effec-tively produce water of the required quality.The pH of thewater used should be reported.See Practice G 151for detailedwater quality instructions.6.6.2Condensation —The test chamber may be equippedwith a means to cause condensation to form on the exposedface of the test specimen.Typically,water vapor shall begenerated by heating water and filling the chamber with hotvapor,which then is made to condense on the test specimens.6.6.3Relative Humidity —The test chamber may beequipped with a means to measure and control the relativehumidity.Such instruments shall be shielded from the lampradiation.6.7Specimen Holders —Holders for test specimens shall bemade from corrosion resistant materials that will not affect thetest results.Corrosion resistant alloys of aluminium or stainlesssteel have been found acceptable.Brass,steel,or copper shallnot be used in the vicinity of the test specimens.6.8Apparatus to Assess Changes in Properties —The nec-essary apparatus required by ASTM or ISO relating to thedetermination of the properties chosen for monitoring shall beused (see also ISO 4582).7.Test Specimen 7.1Refer to Practice G 151.8.Test Conditions 8.1Any exposure conditions may be used as long as the exact conditions are detailed in the report.Appendix X2shows some representative exposure conditions.These are not neces-sarily preferred and no recommendation is implied.These conditions are provided for reference only.9.Procedure 9.1Identify each test specimen by suitable indelible mark-ing,but not on areas used in testing.9.2Determine which property of the test specimens will be evaluated.Prior to exposing the specimens,quantify the appropriate properties in accordance with recognized ASTM or international standards.If required (for example,destructive testing),use unexposed file specimens to quantify the property.See ISO 4582for detailed guidance.9.3Mounting of Test Specimens —Attach the specimens to the specimen holders in the equipment in such a manner that the specimens are not subject to any applied stress.To assure uniform exposure conditions,fill all of the spaces,using blank panels of corrosion resistant material if necessary.N OTE 10—Evaluation of color and appearance changes of exposed materials shall be made based on comparisons to unexposed specimens of the same material which have been stored in the dark.Masking or shielding the face of test specimens with an opaque cover for the purpose of showing the effects of exposure on one panel is not recommended.Misleading results may be obtained by this method,since the masked portion of the specimen is still exposed to temperature and humidity that in many cases will affect results.9.4Exposure to Test Conditions —Program the selected test conditions to operate continuously throughout the required number of repetitive cycles.Maintain these conditions throughout the exposure.Interruptions to service the apparatus and to inspect specimens shall be minimized.9.5Specimen Repositioning —Periodic repositioning of the specimens during exposure is not necessary if the irradiance at the positions farthest from the center of the specimen area is at least 90%of that measured at the center of the exposure area.Irradiance uniformity shall be determined in accordance with Practice G 151.9.5.1If irradiance at positions farther from the center of the exposure area is between 70and 90%of that measured at the center,one of the following three techniques shall be used for specimen placement.9.5.1.1Periodically reposition specimens during the expo-sure period to ensure that each receives an equal amount of radiant exposure.The repositioning schedule shall be agreed upon by all interested parties.9.5.1.2Place specimens only in the exposure area where the irradiance is at least 90%of the maximum irradiance.9.5.1.3To compensate for test variability randomly position replicate specimens within the exposure area which meets the irradiance uniformity requirements as defined in 9.5.1.9.6Inspection —If it is necessary to remove a test specimen for periodic inspection,take care not to handle or disturb the test surface.After inspection,the test specimen shall beTABLE 3Relative Spectral Power Distribution Specification forUVB-313LampsBandpass,nm Fluorescent UVB-313Lamp AB Sunlight CUltraviolet Wavelength Region AIrradiance as a percentage of total irradiance from 260to 400nm260–270<0.1%0271–2800.1–0.7%0281–290 3.2–4.4%0291–30010.7–13.7%0301–32038.0–44.6% 5.6%321–34025.5–30.9%18.5%341–3607.7–10.7%21.7%361–380 2.5–5.5%26.6%381–4000.0–1.5%27.6%Ultraviolet and Visible Wavelength RegionIrradiance as a percentage of total irradiance from 300to 800nm D300–40088.5%E 11%F401–70011.5%E 72%FA UVB-313data—Some UVB lamps have measurable emittance at the 254-nmmercury line.This may affect test results for some materials.B UVB-313data—The ranges given are based on spectral power distributionmeasurements made for lamps of a different ages and operating at different levelsof controlled irradiance.The ranges given are based on three sigma limits from theaverages of this mps that meet this specification are available fromdifferent manufacturers.These lamps may have significantly different irradiancelevels (that is,total light output),but still have the same relative spectral powerdistribution.C Sunlight data—The sunlight data in for global irradiance on a horizontal surfacewith a air mass of 1.2,column ozone 0.294atm cm,30%relative humidity,altitude2100m (atmospheric pressure of 787.8mb),and an aerosol represented by anoptical thickness of 0.081to 300nm and 0.62at 400nm.D Data from 701to 800nm is not shown.E UVB-313data—Because the primary emission of fluorescent UV lamps isconcentrated in the 300-to 400-nm bandpass,there is limited data available forvisible light emissions of fluorescent UV lamps.Therefore,the data in this table arebased on very low measurements and are representative only.F Sunlight data—The sunlight data is from Table 4of CIE Publication Number 85,global solar irradiance on a horizontal surface with an air mass of 1.0,columnozone of 0.34atm cm, 1.42-cm precipitable water vapor,and an aerosolrepresented by an optical thickness of 0.1at 500nm.returned to the test chamber with its test surface in the same orientation as previously tested.9.7Apparatus Maintenance—The test apparatus requires periodic maintenance to maintain uniform exposure conditions. Perform required maintenance and calibration in accordance with manufacturer’s instructions.9.8Expose the test specimens for the specified period of exposure.See Practice G151for further guidance.9.9At the end of the exposure,quantify the appropriate properties in accordance with recognized ASTM or interna-tional standards and report the results in conformance with Practice G151.N OTE11—Periods of exposure and evaluation of test results are addressed in Practice G151.10.Report10.1The test report shall conform to Practice G151.11.Precision and Bias11.1Precision:11.1.1The repeatability and reproducibility of results ob-tained in exposures conducted according to this practice will vary with the materials being tested,the material property being measured,and the specific test conditions and cycles that are used.In round-robin studies conducted by Subcommittee G03.03,the60°gloss values of replicate PVC tape specimens exposed in different laboratories using identical test devices and exposure cycles showed significant variability(3).The variability shown in these round-robin studies restricts the use of“absolute specifications”such as requiring a specific prop-erty level after a specific exposure period(4,5).11.1.2If a standard or specification for general use requiresa definite property level after a specific time or radiant exposure in an exposure test conducted according to this practice,the specified property level shall be based on results obtained in a round-robin that takes into consideration the variability due to the exposure and the test method used to measure the property of interest.The round-robin shall be conducted according to Practice E691or Practice D3980and shall include a statistically representative sample of all labo-ratories or organizations that would normally conduct the exposure and property measurement.11.1.3If a standard or specification for use between two or three parties requires a definite property level after a specific time or radiant exposure in an exposure test conducted accord-ing to this practice,the specified property level shall be based on statistical analysis of results from at least two separate, independent exposures in each laboratory.The design of the experiment used to determine the specification shall take into consideration the variability due to the exposure and the test method used to measure the property of interest.11.1.4The round-robin studies cited in11.1.1demonstrated that the gloss values for a series of materials could be ranked with a high level of reproducibility between laboratories.When reproducibility in results from an exposure test conducted according to this practice have not been established through round-robin testing,performance requirements for materials shall be specified in terms of comparison(ranked)to a control material.The control specimens shall be exposed simulta-neously with the test specimen(s)in the same device.The specific control material used shall be agreed upon by the concerned parties.Expose replicates of the test specimen and the control specimen so that statistically significant perfor-mance differences can be determined.11.2Bias—Bias can not be determined because no accept-able standard weathering reference materials are available. 12.Keywords12.1accelerated;accelerated weathering;durability;expo-sure;fluorescent UV lamps;laboratory weathering;light; lightfastness;non-metallic materials;temperature;ultraviolet; weatheringAPPENDIXES(Nonmandatory Information)X1.APPLICATION GUIDELINES FOR TYPICAL FLUORESCENT UV LAMPSX1.1GeneralX1.1.1A variety offluorescent UV lamps may be used in this practice.The lamps shown in this section are representa-tive of their type.Other lamps,or combinations of lamps,may be used.The particular application determines which lamp should be used.The lamps discussed in this Appendix differ in the total amount of UV energy emitted and their wavelength spectrum.Differences in lamp energy or spectrum may cause significant differences in test results.A detailed description of the type(s)of lamp(s)used shall be stated in detail in the test report.X1.1.2All spectral power distributions(SPDs)shown in this section are representative only and are not meant to be used to calculate or estimate total radiant exposure for tests in fluorescent UV devices.Actual irradiance levels at the test specimen surface will vary due to the type and/or manufacturer of the lamp used,the age of the lamps,the distance to the lamp array,and the air temperature within the chamber.N OTE X1.1—All SPDs in this appendix were measured using a spec-troradiometer with a double grating monochromator(1-nm band pass) with a quartz cosine receptor.Thefluorescent UV SPDs were measured at the sample plane in the center of the allowed sample area.SPDs for sunlight were measured in Phoenix,AZ at solar noon at the summer solstice with a clear sky,with the spectroradiometer on an equatorial follow-the-sum mount.X1.2Simulations of Direct Solar UV Radiation Exposures X1.2.1UVA-340Lamps—For simulations of directsolarUV radiation the UV A-340lamp is recommended.BecauseUV A-340lamps typically have little or no UV output below300nm (that is considered the “cut-on”wavelength forterrestrial sunlight),they usually do not degrade materials asrapidly as UVB lamps,but they may allow enhanced correla-tion with actual outdoor weathering.Tests using UV A-340lamps have been found useful for comparing different nonme-tallic materials such as polymers,textiles,and UV stabilizers.Fig.X1.1illustrates the SPD of the UV A-340lamp comparedto noon,summer sunlight.X1.2.2UVB-313Lamps —The UVB region (280to 315nm)includes the shortest wavelengths found in sunlight at theearth’s surface and is responsible for considerable polymerdamage.There are two commonly available types of UVB-313lamps that meet the requirements of this document.These areknown commercially as the UVB-313and the FS-40.Theselamps emit different amounts of total energy,but both peak at313nm and produce the same UV wavelengths in the samerelative proportions.In tests using the same cycles and tem-peratures,shorter times to failure are typically observed whenthe lamp with higher UV irradiance is used.Furthermore,testsusing the same cycles and temperatures with these two lampsmay exhibit differences in ranking of materials due to differ-ence in the proportion of UV to moisture and temperature.N OTE X1.2—The Fig.X1.2illustrates the difference between the lamps.X1.2.2.1All UVB-313lamps emit UV below the normalsunlight cut-on.This short wavelength UV can produce rapidpolymer degradation and often causes degradation by mecha-nisms that do not occur when materials are exposed to sunlight.This may lead to anomalous results.Fig.X1.2shows thespectral power distribution (SPD)of typical UVB-313lampscompared to the SPD of noon,summer sunlight.X1.3Simulations of Exposures to Solar UV RadiationThrough Window GlassX1.3.1Filtering Effect of GlassGlass of any type acts as a filter on the sunlight spectrum(see Fig.X1.3).Ordinary glass is essentially transparent tolight above about 370nm.However,the filtering effectbecomes more pronounced with decreasing wavelength.The shorter,more damaging UVB wavelengths are the most greatly affected.Window glass filters out most of the wavelengths below about 310nm.For purposes of illustration,only one type of window glass is used in the accompanying graphs.Note that glass transmission characteristics will vary due to manufac-turer,production lot,thickness,or other factors.X1.3.2UVA-351Lamps For simulations of sunlight through window glass,UV A-351lamps are recommended.The UV A-351is used for these applications because the low end cut-on of this lamp is similar to that of direct sunlight which has been filtered through window glass (Fig.X1.4).N OTE X1.3—UVB-313lamps are not recommended for simulations of sunlight through window glass.Most of the emission of UVB-313lamps is in the short wavelength UV that is filtered very efficiently by glass.Because of this,very little energy from this short wavelength region will reach materials in “behind glass”applications.This is because window glass filters out about 80%of the energy from UVB-313lamps,as shown in Fig.X1.5.As a result of filtering out these short wavelengths,its total effective energy is very limited.Further,because there is little longer wavelength energy,the glass-filtered UVB-313is actually less severe than a UV ALamp.FIG.X1.1Spectral Power Distributions of UVA-340Lamp andSunlight FIG.X1.2Spectral Power Distributions of UVB Lamps andSunlight FIG.X1.3Direct Sunlight and Sunlight Through WindowGlass。
性能检测标准1 附着力"漆膜附着力测定法"〔GB/T 1720-1979 〔1989 〕〕"色漆和清漆拉开法附着力试验"〔GB/T 5210-2006 〕〔ISO 4624:2002 〕"色漆和清漆漆膜的划格试验"〔GB/T 9286-1998 〕"用胶带试验测定附着力"〔ASTM D3359-2008 〕2 外观和透明度"清漆、清油及稀释剂外观和透明度测定法"〔GB/T 1721-2008 〕3 颜色"清漆、清油及稀释剂颜色测定法" 〔GB/T 1722-1992 〕"透明液体加氏颜色等级评定颜色第1 局部:目视法"〔GB/T 9281.1-2008 〕/ (ISO 4630-1:2004)"透明液体以铂- 钴等级评定颜色第1 局部:目视法"〔GB/T 9282.1-2008 〕/ (ISO 6271-1:2004)"透明液体的颜色〔铂钴法〕"〔ASTM D1209-2005 〕4 粘度"涂料粘度测定法"〔GB/T 1723-1993 〕"胶粘剂粘度的测定"〔GB/T 2794-1995 〕" 涂料黏度的测定斯托默黏度计法"〔GB/T 9269-2009 〕5 流出时间"色漆和清漆用流出杯测定流出时间"〔GB/T 6753.4-1998 〕6 细度"涂料细度测定法"〔GB/T 1724-1979 〔1989 〕〕"色漆、清漆和印刷油墨研磨细度的测定" 〔GB/T 6753.1-2007 〕〔ISO 1524:2000 〕7 不挥发物含量"色漆、清漆和塑料不挥发物含量的测定" 〔GB/T 1725-2007 〕/ 〔ISO 3251:2008 〕"胶粘剂不挥发物含量的测定"〔GB/T 2793-1995 〕"建筑防水涂料试验方法"〔GB/T 16777-2008 中5 〕8 遮盖力"涂料遮盖力测定法"〔GB/T 1726-1979 〔1989 〕〕9 枯燥时间"漆膜、腻子膜枯燥时间测定法"〔GB/T 1728-1979 〔1989 〕〕"涂料外表枯燥试验小玻璃球法"〔GB/T 6753.2-1986 〕"建筑防水涂料试验方法"〔GB/T 16777-2008 中16 〕10 摆杆硬度"色漆和清漆摆杆阻尼试验" 〔GB/T 1730-2007 〕"色漆和清漆摆杆阻尼试验"〔ISO 1522:2006 〕11 柔韧性"漆膜柔韧性测定法"〔GB/T 1731-1993 〕12 耐冲击性"漆膜耐冲击性测定法"〔GB/T 1732-1993 〕"色漆和清漆—快速变形( 耐冲击性试验) 第1 局部:落锤试验( 大面积冲头) "〔GB/T 20624.1-2006 〕/ "色漆和清漆快速变形〔耐冲击性〕试验第1 局部:落锤试验〔大面积冲头〕"〔ISO 6272-1:2002 〕"色漆和清漆—快速变形( 耐冲击性试验) 第2 局部:落锤试验( 小面积冲头) "〔GB/T 20624.2-2006 〕/ "色漆和清漆快速变形〔耐冲击性〕试验第2 局部:落锤试验〔小面积冲头〕"〔ISO 6272-2:2002 〕"有机涂层抗快速变形〔冲击〕的试验"〔ASTMD2794-1993(2004) 〕13 耐水性"漆膜耐水性测定法"〔GB/T 1733-1993 〕"色漆和清漆耐水性的测定浸水法"〔GB/T 5209-1985 〕14 耐热性"色漆和清漆耐热性的测定"〔GB/T 1735-2009 〕"建筑防水涂料试验方法"〔GB/T 16777-2008 中6 〕15耐湿热性"漆膜耐湿热性测定法"〔GB/T 1740-2007 〕16 灰分"色漆和清漆颜料含量的测定第2 局部:灰化法"〔GB/T 1747.2-2008 〕(ISO 14680-2:2000)17 腻子膜柔韧性"腻子膜柔韧性测定法"〔GB/T 1748-1979 〔1989 〕〕18 稠度"厚漆、腻子稠度测定法"〔GB/T 1749-1979 〔1989 〕〕19 回粘性"漆膜回粘性测定法"〔GB/T 1762-1980 〔1989 〕〕20 耐磨性"色漆和清漆—耐磨性的测定—旋转橡胶砂轮法"〔GB/T 1768-2006 〕〔ISO 7784-2:1997 〕"涂料耐磨性测定落砂法"〔GB/T 23988-2009 〕"落砂法测定有机涂层耐磨性"〔ASTM D 968-2005 〕21 打磨性"涂膜、腻子膜打磨性测定法"〔GB/T 1770-2008 〕22 耐盐雾性"色漆和清漆耐中性盐雾性能的测定" 〔GB/T 1771-2007 〕〔ASTM B117-2007 〕23人工老化" 色漆和清漆人工气候老化和人工辐射曝露滤过的氙弧辐射"〔GB/T 1865-2009 〕"色漆和清漆涂层的人工气候老化曝露曝露于荧光紫外线和水"〔GB/T 23987-2009 〕"机械工业产品用塑料、涂料、橡胶材料人工气候加速试验方法"〔GB/T 14522-2008 〕"塑料实验室光源暴露试验方法第三局部:荧光紫外灯"〔GB/T 16422.3-1997 〕"硫化橡胶人工气候老化〔荧光紫外灯〕试验方法"〔GB/T 16585-1996 〕"建筑防水材料老化试验方法"〔GB/T 18244-2000 〕"塑料实验室光源暴露方法——第三部:荧光UV 灯"〔ISO 4892-3:2006 〕"色漆和清漆涂层的人工老化——暴露于荧光紫外线和水"〔ISO 11507:2007 〕"非金属材料暴露用紫外荧光设备的操作"〔ASTM G154-2006 〕"汽车外饰材料加速暴露用紫外荧光凝露设备"〔SAE J2020-2003 〕24 邵氏硬度"塑料和硬橡胶使用硬度计测定压痕硬度( 邵氏硬度) "〔GB/T 2411-2008 〕25 耐干热性"家具外表漆膜耐干热性测定法"〔GB/T 4893.3-2005 〕26 闪点"闪点的测定快速平衡闭杯法" 〔GB/T 5208-2008 〕(ISO 3679:2004)27 耐砂浆性"铝合金建筑型材第5 局部氟碳漆喷涂型材"〔GB 5237.5-2008 中5.4.10 〕28 铅笔硬度"色漆和清漆铅笔法测定漆膜硬度" 〔GB/T 6739-2006 〕〔ISO 15184:1998 〕"用铅笔试验测定漆膜硬度"〔ASTM D3363-2005 〕29 弯曲试验"色漆和清漆弯曲试验〔圆柱轴〕" 〔GB/T 6742-2007 〕〔ISO 1519:2002 〕" 色漆和清漆弯曲试验( 锥形轴) "〔GB/T 11185-2009 〕30酸值"塑料用聚酯树脂、色漆和清漆用漆基局部酸值和总酸值的测定"〔GB/T 6743-2008 〕〔ISO 2114:2000 〕31 漆基皂化值"色漆和清漆用漆基皂化值的测定滴定法" 〔GB/T 6744-2008 〕〔ISO 3681:1996 〕32 密度"色漆和清漆密度的测定比重瓶法" 〔GB/T 6750-2007 〕〔ISO 2811-1:1997 〕密度"液态胶粘剂密度的测定方法重量杯法"〔GB/T 13354-1992 〕密度"建筑密封材料试验方法第2 局部:密度的测定"〔GB/T 13477.2-2002 〕33 贮存稳定性"涂料贮存稳定性试验方法"〔GB/T 6753.3-1986 〕34 涂刷性"涂料产品的大面积刷涂试验"〔GB/T 6753.6-1986 〕35 全锌含量"锌粉"〔GB/T 6890-2000 中附录A 〕36 金属锌含量"锌粉"〔GB/T 6890-2000 中附录B 〕不挥发分中金属锌含量HG/T 3668-2000 "富锌底漆"中5.13 、"锌粉颜料和富锌涂料干漆膜中金属锌的含量的测定"〔ASTM D6580-2000 〕37 流挂性"色漆流挂性的测定"〔GB/T 9264-1988 〕38 耐洗刷性" 建筑涂料涂层耐洗刷性的测定"〔GB/T 9266-2009 〕39 最低成膜温度"涂料用乳液和涂料、塑料用聚合物分散体白点温度和最低成膜温度的测定"〔GB/T 9267-2008 〕/ "塑料聚合物分散体白点温度和最低成膜温度的测定" (ISO 2115 ∶1996)40 乳胶漆耐冻融性"乳胶漆耐冻融性的测定"〔GB/T 9268-2008 〕41 体积固体含量" 色漆和清漆通过测量干涂层密度来测定涂料的不挥发物体积百分率"〔GB/T 9272-2007 〕〔ISO 3233:1998 〕42 漆膜无印痕试验"漆膜无印痕试验"〔GB/T 9273-1988 〕43 耐冷液性"家具外表耐冷液测定法"〔GB/T 4893.1-2005 〕44 耐液体介质性"色漆和清漆耐液体介质的测定"〔GB/T 9274-1988 〕45 耐碱性" 建筑涂料涂层耐碱性的测定"〔GB/T 9265-2009 〕"海港工程混凝土构造防腐蚀技术规"〔JTJ 275-2000 中附录C.1 〕46 耐油性"漆膜耐油性测定法"〔HG/T 3343-1985 〕47 绝缘漆耐油性"绝缘漆漆膜耐油性测定法"〔HG/T 3857-2006 〕48 巴克霍尔兹压痕试验"色漆和清漆巴克霍尔兹压痕试验"〔GB/T 9275-2008 〕/ 〔ISO 2815:2003 〕49 耐划痕性"色漆和清漆划痕试验" 〔GB/T 9279-2007 〕/ 〔ISO 1518:1992 〕50 耐码垛性"色漆和清漆耐码垛性试验" 〔GB/T 9280-2008 〕/ 〔ISO 4622:1992 〕51 漆基软化点"色漆和清漆用漆基软化点的测定环球法"〔GB/T 9284-1988 〕52 杯突试验"色漆和清漆杯突试验" 〔GB/T 9753-2007 〕/ 〔ISO 1520:2006 〕53 光泽"色漆和清漆不含金属颜料的色漆漆膜之20 °、60 °85 °镜面光泽的测定" 〔GB/T 9754-2007 〕/ 〔ISO 2813:1994 〕54 铅含量"色漆和清漆"可溶性金属含量的测定〞第1 局部:铅含量的测定火焰原子吸取光谱法和双硫腙分光光度法"〔GB/T 9758.1-1988 〕"锌粉"〔GB/T 6890-2000 中附录C 〕55 镉含量"色漆和清漆"可溶性金属含量的测定〞第4 局部:镉含量的测定火焰原子吸取光谱法和极谱法"〔GB/T 9758.4-1988 〕"锌粉"〔GB/T 6890-2000 中附录E 〕56 六价铬含量"色漆和清漆"可溶性〞金属含量的测定第五局部:液体色漆的颜料局部或粉末状色漆中六价铬含量的测定二苯卡巴肼分光光度法"〔GB/T 9758.5-1988 〕"色漆和清漆"可溶性〞金属含量的测定第五局部:液体色漆的颜料局部或粉末状色漆中六价铬含量的测定二苯卡巴肼分光光度法"〔ISO 3856.5:1984 〕57 铬含量"色漆和清漆"可溶性金属含量的测定〞第6 局部:色漆的液体局部中铬总含量的测定火焰原子吸取光谱法"〔GB/T 9758.6-1988 〕58 汞含量"色漆和清漆"可溶性金属含量的测定〞第7 局部:色漆的颜料局部和水可稀释漆的液体局部的汞含量的测定火焰原子吸取光谱法"〔GB/T 9758.7-1988 〕59 铁含量"锌粉"〔GB/T 6890-2000 中附录D 〕60 耐沾污性"建筑涂料涂层耐沾污性试验方法"〔GB/T 9780-2005 〕61 酸性盐雾试验"人造气氛腐蚀试验盐雾试验"〔GB/T 10125-1997 〕"人造环境中的腐蚀试验盐雾试验"〔ISO 9227:2006 〕62 船舶漆耐盐水性"船舶漆耐盐水性的测定盐水和热盐水浸泡法"〔GB/T 10834-2008 〕63 漆膜颜色"涂膜颜色的测量方法第一局部:原理"〔GB/T 11186.1-1989 〕、"涂膜颜色的测量方法第二局部:颜色测量"〔GB/T 11186.2-1989 〕、"涂膜颜色的测量方法第三局部:色差计算"〔GB/T 11186.3-1989 〕"色漆和清漆色漆的目视比色"〔GB/T 9761-2008 〕/ "色漆和清漆色漆的目视比色" (ISO 3668:1998)64 总铅含量"色漆和清漆总铅含量的测定火焰原子吸收光谱法"〔GB/T 13452.1-1992 〕65 漆膜厚度"色漆和清漆漆膜厚度的测定" 〔GB/T 13452.2-2008 〕/ (ISO 2808:2007)66 丝状腐蚀试验"色漆和清漆钢铁外表上涂膜的耐丝状腐蚀试验"〔GB/T 13452.4-2008 〕"色漆和清漆耐丝状腐蚀的测定第1 局部: 钢构造" (ISO 4623-1:2000)67 粉末涂料烘烤时质量损失"粉末涂料第7 局部:烘烤时质量损失的测定法"〔GB/T 21782.7-2008 〕/ 〔ISO 8130-7:1992 〕68 拉伸性能"硫化橡胶或热塑性橡胶拉伸应力应变性能的测定"〔GB/T 528-1998 〕"建筑防水涂料试验方法"〔GB/T 16777-2008 中9 〕69 粘结强度"建筑防水涂料试验方法"〔GB/T 16777-2008 中7 、8 〕"海港工程混凝土构造防腐蚀技术规"〔JTJ 275-2000 中附录C.3 〕70 撕裂强度"建筑防水涂料试验方法"〔GB/T 16777-2008 中10 〕71 定伸时老化"建筑防水涂料试验方法"〔GB/T 16777-2008 中11 〕72 加热伸缩率"建筑防水涂料试验方法"〔GB/T 16777-2008 中12 〕73 低温柔性"建筑防水涂料试验方法"〔GB/T 16777-2008 中13 〕74 低温弯折性"建筑防水涂料试验方法"〔GB/T 16777-2008 中14 〕75 不透水性"建筑防水涂料试验方法"〔GB/T 16777-2008 中15 〕76 电阻率"石油罐导静电涂料电阻率测定法"〔GB/T 16906-1997 〕77 胶化时间"热固性粉末涂料在给定温度下胶化时间的测定"〔GB/T 16995-1997 〕78 二异氰酸酯单体含量" 色漆和清漆用漆基异氰酸酯树脂中二异氰酸酯单体的测定"〔GB/T 18446-2009 〕79 玻璃化温度"塑料差示扫描量热法(DSC) —第2 局部:玻璃化转变温度的测定"〔GB/T 19466.2-2004 〕/ "塑料—差示扫描量热法(DSC) —第 2 局部:玻璃化转变温度的测定"〔ISO 11357-2:1999 〕"色漆和清漆用漆基—玻璃化转变温度的测定"〔ISO 16805:2003 〕80 异氰酸酯基含量"聚氨酯预聚体中异氰酸酯基含量的测定"〔HG/T 2409-1992 〕81 脱漆剂脱漆效率"脱漆剂脱漆效率测定法"〔HG/T 2881-1997 〕82 催干剂催干性能"催干剂催干性能测定法" 〔HG/T 2882-1997 〕83 击穿强度"绝缘漆漆膜击穿强度测定法"〔HG/T 3330-1980 〔1985 〕〕84 体积电阻、外表电阻"绝缘漆漆膜体积电阻系数和外表电阻系数测定法"〔HG/T 3331-1978 〕85 电泳漆电导率"电泳漆电导率测定法"〔HG/T 3335-1977 〔1985 〕〕86 电泳漆泳透力"电泳漆泳透力测定法"〔HG/T 3336-1977 〔1985 〕〕"电泳漆泳透力测定法〔钢管法〕"〔HG/T 3339-1979 〔1985 〕〕87 吸水率"漆膜吸水率测定法"〔HG/T 3344-1985 〕88 绝缘漆吸水率"绝缘漆漆膜吸水率测定法"〔HG/T 3856-2006 〕89 水分"稀释剂、防潮剂水分测定法"〔HG/T 3858-2006 〕90 白化性"稀释剂、防潮剂白化性测定法"〔HG/T 3859-2006 〕91 挥发性"稀释剂、防潮剂挥发性测定法"〔HG/T 3860-2006 〕92 胶凝数"稀释剂、防潮剂胶凝数测定法"〔HG/T 3861-2006 〕93 涂层耐冻融循环性"建筑涂料涂层耐冻融循环性测定法"〔JG/T 25-1999 〕94 抗氯离子渗透性"海港工程混凝土构造防腐蚀技术规"〔JTJ 275-2000 中附录C.2 〕95 粒度分布"粉末涂料第13 局部:激光衍射法分析粒径分布"〔ISO 8130-13:2001 〕〔GB/T 21782.13-2009 〕96 流动性"粉末涂料第5 局部: 粉末/ 空气混合物流动特性的测定" (ISO 8130-5:1992)97 异氰酸酯单体含量"色漆和清漆用漆基—异氰酸酯树脂中单体二异氰酸酯的测定"〔ISO 10283:2007 〕98 VOC 含量"化学试剂气相色谱法通那么"〔GB/T 9722-2006 〕"色漆和清漆挥发性有机化合物(VOC) 含量的测定差值法"〔GB/T 23985-2009 〕(ISO 11890-1:2007)"色漆和清漆挥发性有机化合物(VOC) 含量的测定气相色谱法"〔GB/T 23986-2009 〕(ISO 11890-2:2006)"色漆和清漆低VOC 乳胶漆中挥发性有机化合物( 罐VOC) 含量的测定"〔GB/T 23984-2009 〕〔ISO 17895:2005 〕99 分子量及分子量分布"色漆和清漆用漆基—凝胶渗透色谱(GPC) —第1 局部:四氢呋喃(THF) 作为洗脱剂"〔ISO 13885-1:2008 〕100 MEQ 值"色漆、清漆和清基水性涂料和漆基MEQ( 毫克当量) 值的测定"〔ISO 15880:2000 〕101 含水量"气相色谱法测水稀释性涂料含水量"〔ASTM D3792-2005 〕102 耐溶剂擦拭性"用溶剂擦拭法测定硅酸乙酯〔无机〕富锌底漆的耐MEK 擦拭性"〔ASTM D4752-2003 〕"采用溶剂擦拭法测定有机涂料耐溶剂擦拭性"〔ASTM D5402-2006 〕"涂料耐溶剂擦拭性测定法"〔GB/T 23989-2009 〕103 残留单体含量"毛细柱气相色谱法测定〔苯丙〕乳液中残留单体的含量"〔ASTM D4827-2003 〕104 T 弯"预涂漆试板涂层弯曲试验方法"〔ASTM D4145-83 〔2002 〕〕"卷材涂料试验方法第7 局部:弯曲时涂层抗开裂试验〔T 弯试验〕"〔DIN EN 13523-7-2001 〕105 抗石击性"试验方法标准涂层抗石击性"〔ASTM D 3170-03 〕" Erichsen 抗石击性测试仪规"〔VDA 621427 〕"外表涂层耐石击性试验"〔SAE J400-2002 〕106 涂料鉴定"红外光谱分析方法通那么"〔GB/T 6040-2002 〕107 金属元素含量"化学试剂火焰原子吸收光谱法通那么"〔GB/T 9723-2007 〕108 化学元素含量"原子吸收光谱分析法通那么"〔GB/T 15337-2008 〕109 比照率"白色和浅色漆比照率的测定"〔GB/T 23981-2009 〕110 抗粘连性"木器涂料抗粘连性测定法"〔GB/T 23982-2009 〕111 耐黄变性"木器涂料耐黄变性测定法"〔GB/T 23983-2009 〕112 苯、甲苯、乙苯和二甲苯含量"涂料中苯、甲苯、乙苯和二甲苯含量的测定气相色谱法"〔GB/T 23990-2009 〕113 可溶性有害元素含量"涂料中可溶性有害元素含量的测定"〔GB/T 23991-2009 〕114 氯代烃含量"涂料中氯代烃含量的测定气相色谱法"〔GB/T 23992-2009 〕115 甲醛含量"水性涂料中甲醛含量的测定乙酰丙酮分光光度法"〔GB/T 23993-2009 〕116 施工性( 重涂适应性) GB/T 6748-2008 中5.14 ;GB/T 9755-2001 中5.4 ;HG/T 2592-94 中6.3 ;JG/T 3049-1998 中5.5 HG/T 3346-1999 中4.9117 初期枯燥抗裂性GB/T 9779-2005 中5.6 ;JG/T 24-2000 中6.8118 容器中状态GB 9755-2001 中5.3 ;HG/T 2594-94 中6.1 ;JG/T 3049-1998 中5.4 119 鲜映性GB/T 13492-92 中5.15 120 渗色性( 耐硝基漆性)GB/T 13493-92 中4.18 ;HG/T 2009-91 中4.9 ;HG/T 2576-94 中附录C ;HG/T 2594-94 中6.8 ;HG 2239-91 中4.11 ;HG/T 3354-1987 中3.9121 筛余物HG/T 2006-2006 中5.5122 溶剂可溶物中硝基HG/T 2277-92 中4.14 ;HG/T 2592-94 中6.12123 溶剂可溶物组成HG/T 2594-94 中附录C124 适用期HG/T 2661-95 中4.16 ;HG/T 2884-1997 中4.9 ;HG/T 3668-2000 中5.9 125 白度JC/T 423-91 中5.8126 耐干擦性JC/T 423-91 中5.12127 溶解性HG/T 3380-1987 中3.3128 混合性HG/T 2884-1997 中4.5129 透水性GB/T 9779-2005 中5.9130 苯酐含量HG/T 2453-93 中6.14 ;HG/T 2576-94 中附录D131 不粘胎枯燥时间GA/T 298-2001 中6.1.5132 玻璃珠撒布试验GA/T 298-2001 中6.1.13133 玻璃珠结实附着率GA/T 298-2001 中6.1.14134 环氧树脂检验HG/T 2884-1997 中4.13 ;HG/T 3668-2000 中5.14135 耐砂浆性HG/T 3792-2005 中5.19136 溶剂可溶物氟含量HG/T 3792-2005 中附录B137 树脂中PVDF 树脂含量HG/T 3793-2005 中附录A138 动态抗开裂性JG/T 157-2004 中附录B139 泳透力HG/T 3952-2007 中5.4.2.7140 L- 效果HG/T 3952-2007 中5.4.2.8141 Gel 分率HG/T 3952-2007 中5.4.3.12142 热稳定性"颜料在烘干型漆料中热稳定性的比较"〔GB/T 1711-1989 〕143 密度"颜料密度的测定比重瓶法"〔GB/T 1713-2008 〕/ " 颜料和体质颜料通用试验方法第10 局部:密度的测定比重瓶法" (ISO 787-10:1993)144 水悬浮液pH 值"颜料水悬浮液pH 值的测定"〔GB/T 1717-1986 〕145 颜色"颜料颜色的比较"〔GB/T 1864-1989 〕146 水溶物"颜料水溶物测定冷萃取法"〔GB/T 5211.1-2003 〕"颜料水溶物测定热萃取法"〔GB/T 5211.2-2003 〕147 105 ℃挥发物"颜料在105 ℃挥发物的测定"〔GB/T 5211.3-1985 〕148 装填体积和表观密度"颜料装填体积和表观密度的测定"〔GB/T 5211.4-1985 〕149 颜料耐性"颜料耐性测定法"〔GB/T 5211.5-2008 〕150 水溶硫酸盐、氯化物和硝酸盐"颜料水溶硫酸盐、氯化物和硝酸盐的测定"〔GB/T 5211.11-2008 〕(ISO 787-13:2002) 151 水萃取液电阻率"颜料水萃取液电阻率的测定"〔GB/T 5211.12-2007 〕152 水萃取液酸碱度"颜料水萃取液酸碱度的测定"〔GB/T 5211.13-1986 〕153 筛余物"颜料筛余物的测定机械冲洗法"〔GB/T 5211.14-1988 〕"颜料筛余物的测定水法手工操作"〔GB/T 5211.18-1988 〕"颜料筛余物测定法"〔HG/T 3852-2006 〕154 吸油量"颜料吸油量的测定"〔GB/T 5211.15-1988 〕155 消色力"白色颜料消色力的比较"〔GB/T 5211.16-2007 〕〔ISO 787-17:2002 〕156 白色颜料比照率"白色颜料比照率〔遮盖力〕的比较"〔GB/T 5211.17-1988 〕157 遮盖力"颜料遮盖力测定法"〔HG/T 3851-2006 〕158 相对着色力和冲淡后颜色"着色颜料的相对着色力和冲淡色的测定目视比较法"〔GB/T 5211.19-1988 〕159 易分散程度"颜料易分散程度的比较振荡法"〔GB/T 9287-1988 〕160 相对着色力、相对散射力"着色颜料相对着色力和白色颜料相对散射力的测定光度计法"〔GB/T 13451.2-1992 〕161 干粉耐热性"颜料干粉耐热性测定法"〔HG/T 3853-2006 〕162 流动度"颜料流动度测定法"〔HG/T 3854-2006 〕163 二氧化钛含量GB/T 1706-2006 中7.1164 硫酸钡和总锌量GB/T 1707-1995 中5.1165 氧化锌含量GB/T 1707-1995 中5.2 、GB/T 3185-92 中5.1166 总铁含量GB/T 1863-2008 中8.1167 铬酸铅GB/T 1863-2008 中8.7168 总钙量GB/T 1863-2008 中8.8169 有机着色物存在GB/T 1863-2008 中8.9170 总铅含量GB/T 3184-2008 中6171 金属物含量GB/T 3185-92 中5.2172 氧化铅含量GB/T 3185-92 中5.3.1173 锰的氧化物含量GB/T 3185-92 中5.4.1174 氧化铜含量GB/T 3185-92 中5.5.1175 二氧化硅含量HG/T 3007-1999(2007) 中5.3 ;HG/T 3006-86(2007) 中2.2176 氧化钡含量HG/T 3007-1999(2007) 中5.1177 三氧化二硼含量HG/T 3007-1999(2007) 中5.2178 水可溶分HG/T 3007-1999(2007) 中5.4179 盐酸不溶物含量GB/T 3185-92 中5.6180 灼烧减量GB/T 3185-92 中5.7 ;HG/T 2248-91 中5.5 181 干粉白度182 油膜白度。
非金属材料紫外光老化试验方法与标准研究张洪彬;刘雅智;蔡汝山;高军【摘要】紫外光老化试验作为一种可以快速地评价非金属材料耐老化性能的方法被广泛地应用.首先,介绍了紫外光老化试验方法及其相关标准;然后,探讨了试验条件的确定方法;最后,指出了国内紫外光老化试验及其标准的不足和发展方向.【期刊名称】《电子产品可靠性与环境试验》【年(卷),期】2016(034)001【总页数】5页(P6-10)【关键词】非金属材料;紫外光老化试验;试验方法;试验标准【作者】张洪彬;刘雅智;蔡汝山;高军【作者单位】工业和信息化部电子第五研究所,广东广州 510610;工业和信息化部电子第五研究所,广东广州 510610;工业和信息化部电子第五研究所,广东广州510610;广州韵脉质量技术服务有限公司,广东广州 510610【正文语种】中文【中图分类】TH145;TB24塑料、橡胶和涂料等非金属材料在使用的过程中常常会受到温度、湿度和光照等气候环境因素的影响,从而使得其外观及机械性能下降,最终影响产品的使用寿命[1]。
所以,在使用各类非金属材料前,常常需要开展实验室人工老化试验对其进行优选。
目前常用的人工老化试验方法包括氙灯老化、紫外光老化和碳弧灯老化等,其中,紫外光老化试验模拟了太阳光中的能量最强的紫外光部分,以“抓主要矛盾”的方式快速地评价非金属材料的耐候性,并得到了广泛的应用。
紫外光老化试验可模拟紫外光照、温度、淋雨、凝露、黑暗和干湿交替等诸多户外环境条件,可在保证加速性的基础上,提高试验结果与实际使用环境的相关性,而加速性和相关性的好坏往往取决于试验条件的确定是否合理。
紫外光老化试验条件由光源类型、循环过程、紫外辐照度、温度和试验时间等多个因素组成,用户在试验条件确定及相关标准引用方面常常存在困惑。
因此,本文对紫外光老化试验的主要方法及引用标准进行了评述,并初步拟定了试验条件的确定原则和过程,以期为相关人员今后开展紫外光老化试验提供一定的指导。
ASTM G 154-00a 非金属材料荧光紫外曝露设备的操作标准1. 范围1.1 本标准的内容包括紫外荧光试验的基本原理和操作程序。
试验利用紫外荧光和水来模拟一种老化效果,即材料在实际使用中曝露于太阳光(直接照射或透过玻璃)和潮气(雨或露)时所发生的老化现象。
本标准仅限于曝露条件的实现、测量和控制。
附件中给出了一些曝露程序,但是,并没有给出最适用于被检测材料的曝露条件。
注1——G 151给出了所有使用实验室光源的曝露设备需要满足的性能要求。
这一标准代替了G 53,G 53对用作紫外荧光曝露设备的装置进行了非常详细的描述。
本标准涵盖了G 53中的内容。
1.2 样品曝露于环境条件得到控制的荧光紫外灯下。
本标准中给出了不同类型的紫外荧光光源。
1.3 样品的制备和结果的评价在具体材料对应的ASTM标准和规范中给出。
一般性的导则见标准G 151和ISO 4892-1。
更多的关于曝露后性能变化的试验方法和报告的具体信息见ISO 4582。
1.4 数值以SI单位制表示。
1.5 安全警告1.6 本标准在技术上与ISO 4892-3和ISO DIS 11507相近。
2. 引用文件3. 术语3.1 定义——术语G 113中给出的定义适用于本标准。
3.2 本标准中的定义——本标准中的“太阳光”等同于“日光”和“太阳辐照”,“全球”的定义同术语G 113中给出的。
4. 方法概述4.1 在受控的环境条件下,将样品曝露于光照和潮湿的重复循环作用下。
4.1.1 潮湿通常通过水蒸气在样品表面冷凝或向样品表面喷洒软化去离子水实现。
4.2 曝露条件可能会因以下因素的不同而不同:4.2.1 紫外灯4.2.2 紫外灯的辐照水平4.2.3 提供潮湿的方式4.2.4 曝露于光照和潮湿的时间4.2.5 光照时的温度4.2.6 潮湿时的温度4.2.7 光照/黑暗周期进行的周期数4.3 同一型号试验设备得出的试验结果不宜进行比较,除非针对被测材料进行了设备间重现性验证试验。
ASTM G 154-00a 非金属材料荧光紫外曝露设备的操作标准1. 范围1.1 本标准的内容包括紫外荧光试验的基本原理和操作程序。
试验利用紫外荧光和水来模拟一种老化效果,即材料在实际使用中曝露于太阳光(直接照射或透过玻璃)和潮气(雨或露)时所发生的老化现象。
本标准仅限于曝露条件的实现、测量和控制。
附件中给出了一些曝露程序,但是,并没有给出最适用于被检测材料的曝露条件。
注1——G 151给出了所有使用实验室光源的曝露设备需要满足的性能要求。
这一标准代替了G 53,G 53对用作紫外荧光曝露设备的装置进行了非常详细的描述。
本标准涵盖了G 53中的内容。
1.2 样品曝露于环境条件得到控制的荧光紫外灯下。
本标准中给出了不同类型的紫外荧光光源。
1.3 样品的制备和结果的评价在具体材料对应的ASTM标准和规范中给出。
一般性的导则见标准G 151和ISO 4892-1。
更多的关于曝露后性能变化的试验方法和报告的具体信息见ISO 4582。
1.4 数值以SI单位制表示。
1.5 安全警告1.6 本标准在技术上与ISO 4892-3和ISO DIS 11507相近。
2. 引用文件3. 术语3.1 定义——术语G 113中给出的定义适用于本标准。
3.2 本标准中的定义——本标准中的“太阳光”等同于“日光”和“太阳辐照”,“全球”的定义同术语G 113中给出的。
4. 方法概述4.1 在受控的环境条件下,将样品曝露于光照和潮湿的重复循环作用下。
4.1.1 潮湿通常通过水蒸气在样品表面冷凝或向样品表面喷洒软化去离子水实现。
4.2 曝露条件可能会因以下因素的不同而不同:4.2.1 紫外灯4.2.2 紫外灯的辐照水平4.2.3 提供潮湿的方式4.2.4 曝露于光照和潮湿的时间4.2.5 光照时的温度4.2.6 潮湿时的温度4.2.7 光照/黑暗周期进行的周期数4.3 同一型号试验设备得出的试验结果不宜进行比较,除非针对被测材料进行了设备间重现性验证试验。
ASTM美国材料标准中文版ASTM A488/A488-2007 钢铸件焊接工艺和人员资格评定的标准实施规程(Standard Practice for Steel Castings, Welding, Qualifications of Procedures and Personnel)ASTM A802/A 802M-1995(R2006重新审批) 视觉检测铸钢表面验收标准规程(STANDARD PRACTICE FOR STEEL CASTINGS, SURFACE ACCEPTANCE STANDARDS, VISUAL EXAMINATION)ASTM B108-2006 铝合金永久型铸件标准规范(STANDARD SPECIFICATION FOR ALUMINUM-ALLOY PERMANENT MOLD CASTINGS)ASTM B179-2006 铸造用铝合金原锭及熔融锭在各铸造过程的标准技术规范(STANDARD SPECIFICATION FOR ALUMINUM ALLOYS IN INGOT AND MOLTEN FORMS FOR CASTINGS FROM ALL CASTING PROCESSES)ASTM B26/B26M-2005 铝合金砂铸件标准规范(STANDARD SPECIFICATION FOR ALUMINUM-ALLOY SAND CASTINGS)ASTM D256-2006 测定塑料抗悬臂梁摆锤冲击性的标准试验方法(STANDARD TEST METHODS FOR DETERMINING THE IZOD PENDULUM IMPACT RESISTANCE OF PLASTICS)ASTM D2794-1993(R2004) 有机涂层抗快速形变(冲击)作用的标准试验方法(STANDARD TEST METHOD FOR RESISTANCE OF ORGANIC COATINGS TO THE EFFECTS OF RAPID DEFORMATION (IMPACT) )ASTM D3359-2008 胶带试验用测定粘合性的标准试验方法(STANDARD TEST METHODS FOR MEASURING ADHESION BY TAPE TEST)ASTM D3363-2005 铅笔试验法测定涂膜硬度的标准试验方法(STANDARD TEST METHOD FOR FILM HARDNESS BY PENCIL TEST)ASTM D4060-2007 用泰伯尔磨蚀机测定有机涂层耐磨性的标准试验方法(STANDARD TEST METHOD FOR ABRASION RESISTANCE OF ORGANIC COATINGS BY THE TABER ABRASER)ASTM D4674-2002A 暴露在室内办公室环境下的塑料颜色稳定性加速试验的标准实施规范(STANDARD TEST METHOD FOR ACCELERATED TESTING FOR COLOR STABILITY OF PLASTICS EXPOSED TO INDOOR OFFICE ENVIRONMENTS)ASTM D4752-2003 用溶剂擦试法测定硅酸乙酯(无机)富锌底漆耐甲乙酮的标准试验方法(STANDARD TEST METHOD FOR MEASURING MEK RESISTANCE OF ETHYL SILICATE (INORGANIC) ZINC-RICH PRIMERS BY SOLVENT RUB)ASTM D4828-1994E1(R2003) 有机覆层实际可洗性的标准试验方法(STANDARD TEST METHODS FOR PRACTICAL WASHABILITY OF ORGANIC COATINGS)ASTM D638-2003 塑料拉伸性能标准测试方法(STANDARD TEST METHOD FOR TENSILE PROPERTIES OF PLASTICS)ASTM E1316-2007 无损检测标准术语(STANDARD TERMINOLOGY FOR NONDESTRUCTIVE EXAMINATIONS)ASTM E1444-2005 磁粉检测标准规程(STANDARD PRACTICE FOR MAGNETIC PARTICLE TESTING)ASTM E155-2005 铝、镁铸件检验用标准参考射线底片(STANDARD REFERENCE RADIOGRAPHS FOR INSPECTION OF ALUMINUM AND MAGNESIUM CASTINGS)ASTM E165-2002 液体渗透剂检查标准测试方法(STANDARD TEST METHOD FOR LIQUID PENETRANT EXAMINATION)ASTM E165-2002 液体渗透检查的标准试验方法王倩译(STANDARD TEST METHOD FOR LIQUID PENETRANT EXAMINATION)ASTM E192-2004 航天设备蜡模钢铸件的参考放射线照相(STANDARD REFERENCE RADIOGRAPHS OF INVESTMENT STEEL CASTINGS FOR AEROSPACE APPLICATIONS)ASTM E242-2001(2005年重新批准) 在某些参数变化时射线图像外观用标准参考射线底片(STANDARD REFERENCE RADIOGRAPHS FOR APPEARANCES OF RADIOGRAPHIC IMAGES AS CERTAIN PARAMETERS ARE CHANGED)ASTM E385-2007 使用14兆电子伏特的中子活化和直接计数技术测定含氧量的试验方法(STANDARD TEST METHOD FOR OXYGEN CONTENT USING A 14-MEV NEUTRON ACTIVATION AND DIRECT-COUNTING TECHNIQUE)ASTM E426-1998(2007重新审批) 无缝及焊接管产品、沃斯田不锈钢及类似合金的电磁(涡电流)检测操作规程(Standard Practice for Electromagnetic (Eddy-Current) Examination of Seamless and Welded Tubular Products, Austenitic Stainless Steel and Similar Alloys)ASTM E446-98(2004年重新批准)用于厚度在2in(51mm)以下钢铸件的标准参考射线底片(STANDARD REFERENCE RADIOGRAPHS FOR STEEL CASTINGS UP TO 2 IN. (51 MM) IN THICKNESS (ALSO SEE ASTM E 446 ADJUNCT SET, ASTM E 446 ADJUNCT V1, ASTM E 446 ADJUNCT V2. AND ASTM E 446 ADJUNCT V3))ASTM E466-2007 金属材料上进行的恒定振幅轴向疲劳试验(STANDARD PRACTICE FOR CONDUCTING FORCE CONTROLLED CONSTANT AMPLITUDE AXIAL FATIGUE TESTS OF METALLIC MATERIALS )ASTM F2357-2004 使用NORMAN工具"RCA"磨擦器测定薄膜开关上墨水和涂层抗磨性的标准试验方法(STANDARD TEST METHOD FOR DETERMINING THE ABRASION RESISTANCE OF INKS AND COATINGS ON MEMBRANE SWITCHES USING THE NORMAN TOOL "RCA" ABRADER)ASTM G154-2006 非金属材料暴露用荧光灯紫外暴露装置的操作规范标准(STANDARD PRACTICE FOR OPERATING FLUORESCENT LIGHT APPARATUS FOR UVEXPOSURE OF NONMETALLIC MATERIALS)ISO,ASME,ASTM,DIN, JIS 国外管道法兰用密封垫片标准汇编ASTM F36-1995? 测定垫片材料压缩率及回弹率的标准试验方法ASTM F37-1995? 垫片材料密封性的标准试验方法ASTM F38-1995? 垫片材料的蠕变松弛的标准试验方法ASTM F112-1995? 包覆垫片密封性能的标准试验方法ASTM F146-1995A? 垫片材料耐液体标准试验方法ASTM F363-1989(1994年重新确认) 垫片腐蚀试验的标准方法ASTM F336-1992? 用于腐蚀工况的非金属包覆垫片的设计与结构用标准方法ASTM F586-1979(1989年重新确认) 测定垫片汇漏(泄漏率与应力y和系数m的关系)的标准试验方法ASTM A6/A6M-2004 a版结构用轧制钢板、型钢、板桩和棒钢通用要求ASTM A27/A27M-2005版一般用途碳钢铸件标准技术条件ASTM A29/A29M-2005版热锻碳素钢和合金钢棒材一般要求标准规范ASTM A36/A36M-2005版碳结构钢标准规范ASTM A36/A36M-2004 碳结构钢标准规范ASTM A48/A48M-2003版灰铸铁铸件标准技术条件ASTM A53/A53M-2005版无镀层及热浸镀锌焊接与无缝公称钢管标准技术条件ASTM A105/A105M-2005版管道部件用碳钢锻件ASTM A106-2006版高温用无缝碳钢公称管规范ASTM A108-2003版冷精整的碳钢和合金钢棒材标准技术条件ASTM A123/A123M-2002版钢铁产品镀锌品层(热浸镀)标准规范ASTM A126-2004版阀门、法兰和管道附件用灰铁铸件ASTM A143-2003版热浸镀锌结构钢制品防脆化的标准实施规程和催化探测方法ASTM A153/A153M-2005版钢铁构件镀锌层(热浸镀)标准规范ASTM A179/A179M-1990a(R2001)版热交换器和冷凝器用无缝冷拉低碳钢管标准规范ASTM A192-2002版高压设备用无缝碳钢锅炉管标准规范ASTM A193/A193M-2006版高温用合金钢和不锈钢螺栓材料ASTM A194/A194M-2006版高温或高压或高温高压螺栓用碳钢及合金钢螺母标准规范ASTM A209/A209M-2003版锅炉和过热器用无缝碳钼合金钢管标准规范ASTM A210/A210M-2002版无缝中碳钢锅炉管和过热器管标准规范ASTM A213/A213Mb-2004版无缝铁素体和奥氏体合金钢锅炉管、过热器管和换热器管标准规范ASTM A216/A216M-2004版高温用可熔焊碳钢铸件标准规范ASTM A234/A234M-2004版中、高温用锻制碳钢和合金钢管道配件ASTM A240/A240M-2005版压力容器用耐热铬及铬-镍不锈钢钢板、薄板和钢带标准技术条件ASTM A250/A250M-2004版锅炉和过热器用电阻焊铁素体碳合金钢管子标准技术条件ASTM A252-98(R2002)版焊接钢和无缝钢管桩的标准规范ASTM A262-2002a版探测奥氏体不锈钢晶间腐蚀敏感度的标准实施规范ASTM A269/A269-2004版通用无缝和焊接奥氏体不锈钢管标准规范ASTM A276-2006版不锈钢棒材和型材标准规范ASTM A283/A283M-2003版中、低抗拉强度碳素钢板标准技术条件ASTM A285/A285M-2003版压力容器用中、低抗拉强度碳素钢标准技术条件ASTM A307/A307M-2004版抗拉强度6000PSI碳钢螺栓和螺柱标准技术条件ASTM A312/A312M-2005版无缝和焊接的以及重度冷加工奥氏体不锈钢公称管标准技术条件ASTM A320/A320M-2005版低温用合金钢栓接材料标准规范ASTM A333/A333M-2004版低温设备用无缝和焊接钢管的规范标准ASTM A334/A334M-2004版低温设备用无缝和焊接碳素和合金钢管的标准规范ASTM A335-2003版高温设备用无缝铁素体合金钢管标准规范ASTM A336/A336M-2005版高温承压件合金钢锻件标准技术条件ASTM A350/A350M-2004a版需切口韧性试验的管道部件用碳钢和低合金钢锻件标准规范ASTM A351/A351M-2006版承压件用奥氏体铸钢件标准规范ASTM A352/A352M-2006版低温承压用铁素体和马氏体铸钢件标准规范ASTM A356/A356M-2005版汽轮机用厚壁碳钢、低合金钢和不锈钢铸件标准技术条件ASTM A370-2005版钢制品力学性能试验方法和定义标准ASTM A387/A387M-2003版压力容器用铬钼合金钢板的标准规范ASTM A403/A403M-2004版锻制奥氏体不锈钢管配件的标准规范ASTM A450/A450M-2004版碳素钢管、铁素体合金钢管及奥氏体合金钢管一般要求的标准规范ASTM A479/A479M-2005版锅炉和其他压力容器用不锈钢棒材和型材标准技术条件ASTM A484/A484M-2005版不锈钢棒材、钢坯及锻件通用要求标准技术条件ASTM A500-2003a版圆形与异型冷成型焊接与无缝碳素钢结构管标准规范ASTM A515-2003版中温及高温压力容器用碳素钢板的标准规范ASTM A516-2004a版中温及低温压力容器用碳素钢板的标准规范ASTM A519-2003版机械工程用碳素钢和铝合金钢无缝钢管ASTM A530-2003版特种碳素钢和合金钢管一般要求的标准规范ASTM A577/A577M-90(R2001)版钢板超声斜射波检验ASTM A589/A589M-2006版打水井用碳素钢无缝钢管和焊接钢管ASTM A609/A609M-1991(82002)版碳钢、低合金钢和马氏体不锈钢铸件超声波检验ASTM A615/A615M-2004a版混凝土配筋用异形钢筋和无节钢胚棒标准规范ASTM A703/A703M-2004版标准技术条件—承压件钢铸件通用要求ASTM A751-2001版钢制品化学分析方法,实验操作和术语ASTM A781/A781M-2004a版铸件、钢和合金的标准规范及通用工业的一般性要求ASTM A788/A788M-2004a版标准技术条件—钢锻件通用要求ASTM A965/A965M-2002版高温承压件用奥氏体钢锻件标准规范ASTM B16/B16M-2005版螺纹切削机用易车削黄铜棒、条和型材标准规范ASTM B62/B62M-2002版青铜或高铜黄铜铸件标准规范ASTM B209-2004版铝和铝合金薄板和中厚板标准规范ASTM B462-2004版高温耐腐蚀用锻制或轧制的UNS NO6030、UNS NO6022、UNS NO6200、UNS NO8020、UNS NO8024、UNS NO8026、UNS NO8367、UNS NO10276、UNS N10665、UNS N10675和UNS R20033合金管法兰、锻制管件、阀门和零件标准规范ASTM B564-2004版镍合金锻件标准规范ASTM E6-2003版关于力学性能试验方法的标准术语ASTM E10-2001版金属材料布氏硬度的标准试验方法ASTM E18-2003版金属材料洛氏硬度和洛氏表面硬度的标准测试方法ASTM E29-2002版使用有效数字确定试验数据与规范符合性作法ASTM E8M-2004版金属材料拉伸试验的标准测试方法ASTM E94-2004版放射性检查的标准指南ASTM E125-1963(R2003)版铁铸件的磁粉检验用标准参考照片ASTM E164-2003版焊件的超声接触检验的标准操作规程ASTM E208-1995a(R2000)版用导向落锤试验测定铁素体钢无塑性转变温度的标准试验方法ASTM E213-2004版金属管超声检验方法ASTM E273-2001版焊接公称管和管子制品超声波检验用标准实用规程ASTM E709-2001版磁粉试验的推荐试验方法ASTM F36-1999(R2003)版测定垫片材料压缩率及回弹率的标准试验方法ASTM F37-2000版垫片材料密封性的标准试验方法ASTM F38-2000版垫片材料的蠕变松弛的标准试验方法ASTM F112-2000版包复垫片密封性能的标准试验方法ASTM F146-2004版垫片材料耐液体标准试验方法ASTM F1311-1990(R2001)版大口径组装式碳钢法兰标准规范ASTM G1-2003版腐蚀试样的制备、清洁处理和评定用标准实施规范ASTM G36-73(R1981) 参考资料标准实用规程:在沸的氯化镁溶液中进行的应力腐蚀裂纹试验ASTM G46-1976(R1986) 参考资料标准实用规程:麻点腐蚀的检验和评定ASTM G48-2003版使用三氯化铁溶液做不锈钢及其合金的耐麻点腐蚀和抗裂口腐蚀性试验的标准方法ASTM标准中译本丛书(一)碳钢、铸铁、不锈钢及合金钢材料标准规范(含18个标准)1. ASTM A105/A105M-2002版管道部件用碳钢锻件2. ASTM A126-1995(R2001)版阀门、法兰和管道附件用灰铁铸件3. ASTM A181/A181M-2001 版通用管路用碳钢锻件标准规范4. ASTM A193/A193M-2001版 ?高温用合金钢和不锈钢螺栓材料5. ASTM A194/A194M-2001a版高温、高压或高温高压螺栓用碳钢及合金钢螺母标准规范6. ASTM A216/A216M-2001a版高温用可熔焊碳钢铸件标准规范7. ASTM A217/A217M-2002 版高温承压件用马氏体不锈钢和合金钢铸件标准规范8. ASTM A276-2002a版不锈钢棒材和型材9. ASTM A278/A278M-2001版高温不超过650°F(350℃)的承压部件用灰铸铁件10. ASTM A320/A320M-2002 版低温用合金钢栓接材料11. ASTM A350/A350M-2002 版要求冲击韧性试验的管件用碳钢及低合金钢锻件标准规范12. ASTM A351/A351M-2000 版承压件用奥氏体、奥氏体-铁素体(双相)钢铸件规范13. ASTM A352/A352M-1993(R1998)版低温承压件用铁素体和马氏体钢铸件标准规范14. ASTM A395/A395M-1999 版高温用铁素体球墨铸铁承压铸件15. ASTM A439-1983(R1999)版奥氏体球墨铸铁件16. ASTM A536-1984(R1999)版球墨铸铁件17. ASTM A694/A694M-2000? 版高温输送用管法兰、管件、阀门及零件用碳钢和合金钢锻件标准规范18. ASTM A965/A965M-2002 版高温高压部件用奥氏体钢锻件ASTM标准中译本丛书(二)法兰、管件、阀门及部件(含9个标准)1. ASTM A182/A182M-2002版高温用锻制或轧制合金钢法兰、锻制管件、阀门和部件2. ASTM A961-2002版管道用钢制法兰、锻制管件、阀门和零件的通用要求标准规范3. ASTM B462-2002版高温耐腐蚀用锻制或轧制的UNS NO6030、UNS NO6022、UNS NO6200、UNS NO8020、UNS NO8024、UNS NO8026、UNS NO8367、UNS NO10276、UNS N10665、UNS N10675和UNS R20033合金管法兰、锻制管件、阀门和零件标准规范4. ASTM F885-1984(R2002)版公称管径为NPS 1/4~2的青铜截止阀外形尺寸标准规范5. ASTM F992-1986(R2001)版阀门铭牌标准规范6. ASTM F993-1986(R2001)版阀门锁紧装置标准规范7. ASTM F1030-1986(R1998)版阀门操作装置的选择准则8. ASTM F1098-1987(R1998)版公称管径有NPS2~24的蝶阀外形尺寸标准规范9. ASTM F1565-2000版蒸汽用减压阀规范。
Designation:G154–06Standard Practice forOperating Fluorescent Light Apparatus for UV Exposure of Nonmetallic Materials1This standard is issued under thefixed designation G154;the number immediately following the designation indicates the year oforiginal adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.Asuperscript epsilon(e)indicates an editorial change since the last revision or reapproval.Note—A footnote was added to Table X2.1,Table X2.3was added,a new Note X2.8was added,and the year date was changed on June5,2006.1.Scope1.1This practice covers the basic principles and operating procedures for usingfluorescent UV light,and water apparatus intended to reproduce the weathering effects that occur when materials are exposed to sunlight(either direct or through window glass)and moisture as rain or dew in actual usage. This practice is limited to the procedures for obtaining, measuring,and controlling conditions of exposure.A number of exposure procedures are listed in an appendix;however,this practice does not specify the exposure conditions best suited for the material to be tested.N OTE1—Practice G151describes performance criteria for all exposure devices that use laboratory light sources.This practice replaces Practice G53,which describes very specific designs for devices used forfluores-cent UV exposures.The apparatus described in Practice G53is covered by this practice.1.2Test specimens are exposed tofluorescent UV light under controlled environmental conditions.Different types of fluorescent UV light sources are described.1.3Specimen preparation and evaluation of the results are covered in ASTM methods or specifications for specific materials.General guidance is given in Practice G151and ISO 4892-1.More specific information about methods for deter-mining the change in properties after exposure and reporting these results is described in ISO4582.1.4The values stated in SI units are to be regarded as the standard.1.5This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.1.6This standard is technically similar to ISO4892-3and ISO DIS11507.2.Referenced Documents2.1ASTM Standards:2D3980Practice for Interlaboratory Testing of Paint and Related MaterialsE691Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test MethodG53Practice for Operating Light-and Water-Exposure Apparatus(Fluorescent UV-Condensation Type)for Expo-sure of Nonmetallic MaterialsG113Terminology Relating to Natural and Artificial Weathering Tests for Nonmetallic MaterialsG151Practice for Exposing Nonmetallic Materials in Ac-celerated Test Devices That Use Laboratory Light Sources 2.2CIE Standard:CIE-Publ.No.85:Recommendations for the Integrated Irradiance and the Spectral Distribution of Simulated Solar Radiation for Testing Purposes32.3ISO Standards:ISO4582,Plastics—Determination of the Changes of Co-lour and Variations in Properties After Exposure to Day-light Under Glass,Natural Weathering or Artificial Light4 ISO4892-1,Plastics—Methods of Exposure to Laboratory Light Sources,Part1,Guidance4ISO4892-3,Plastics—Methods of Exposure to Laboratory Light Sources,Part3,Fluorescent UV lamps4ISO DIS11507,Paint and Varnishes—Exposure of Coat-ings to Artificial Weathering in Apparatus—Exposure to Fluorescent Ultraviolet and Condensation Apparatus4 3.Terminology3.1Definitions—The definitions given in Terminology G113are applicable to this practice.1This practice is under the jurisdiction of ASTM Committee G03on Weathering and Durability and is the direct responsibility of Subcommittee G03.03on Simulated and Controlled Exposure Tests.Current edition approved June5,2006.Published June2006.Originally approved st previous edition approved in2005as G154–05.2For referenced ASTM standards,visit the ASTM website,,or contact ASTM Customer Service at service@.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website.3Available from Secretary,U.S.National Committee,CIE,National Institute of Standards and Technology(NIST),Gaithersburg,MD20899.4Available from American National Standards Institute(ANSI),25W.43rd St., 4th Floor,New York,NY10036.Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States. --`,,```,,,,````-`-`,,`,,`,`,,`---3.2Definitions of Terms Specific to This Standard—As used in this practice,the term sunlight is identical to the terms daylight and solar irradiance,global as they are defined in Terminology G113.4.Summary of Practice4.1Specimens are exposed to repetitive cycles of light and moisture under controlled environmental conditions.4.1.1Moisture is usually produced by condensation of water vapor onto the test specimen or by spraying the speci-mens with demineralized/deionized water.4.2The exposure condition may be varied by selection of: 4.2.1Thefluorescent lamp,4.2.2The lamp’s irradiance level,4.2.3The type of moisture exposure,4.2.4The timing of the light and moisture exposure,4.2.5The temperature of light exposure,and4.2.6The temperature of moisture exposure,and4.2.7The timing of a light/dark cycle.4.3Comparison of results obtained from specimens exposed in same model of apparatus should not be made unless reproducibility has been established among devices for the material to be tested.4.4Comparison of results obtained from specimens exposed in different models of apparatus should not be made unless correlation has been established among devices for the material to be tested.5.Significance and Use5.1The use of this apparatus is intended to induce property changes associated with the end use conditions,including the effects of the UV portion of sunlight,moisture,and heat.These exposures may include a means to introduce moisture to the test specimen.Exposures are not intended to simulate the deterioration caused by localized weather phenomena,such as atmospheric pollution,biological attack,and saltwater expo-sure.Alternatively,the exposure may simulate the effects of sunlight through window glass.Typically,these exposures would include moisture in the form of condensing humidity. N OTE2—Caution:Refer to Practice G151for full cautionary guidance applicable to all laboratory weathering devices.5.2Variation in results may be expected when operating conditions are varied within the accepted limits of this practice. Therefore,no reference shall be made to results from the use of this practice unless accompanied by a report detailing the specific operating conditions in conformance with the Section 10.5.2.1It is recommended that a similar material of known performance(a control)be exposed simultaneously with the test specimen to provide a standard for comparative purposes. It is recommended that at least three replicates of each material evaluated be exposed in each test to allow for statistical evaluation of results.6.Apparatus6.1Laboratory Light Source—The light source shall be fluorescent UV lamps.A variety offluorescent UV lamps can be used for this procedure.Differences in lamp intensity or spectrum may cause significant differences in test results.A detailed description of the type(s)of lamp(s)used should be stated in detail in the test report.The particular testing application determines which lamp should be used.See Ap-pendix X1for lamp application guidelines.N OTE3—Do not mix different types of lamps.Mixing different types of lamps in afluorescent UV light apparatus may produce major inconsis-tencies in the light falling on the samples,unless the apparatus has been specifically designed to ensure a uniform spectral distribution.N OTE4—Manyfluorescent lamps age significantly with extended use. Follow the apparatus manufacturer’s instructions on the procedure neces-sary to maintain desired irradiance(1,2).6.1.1Actual irradiance levels at the test specimen surface may vary due to the type or manufacturer of the lamp used,or both,the age of the lamps,the distance to the lamp array,and the air temperature within the chamber and the ambient laboratory temperature.Consequently,the use of a radiometer to monitor and control the radiant energy is recommended.6.1.2Several factors can affect the spectral power distribu-tion offluorescent UV lamps:6.1.2.1Aging of the glass used in some types of lamps can result in changes in transmission.Aging of glass can result in a significant reduction in the short wavelength UV emission of some lamp types,6.1.2.2Accumulation of dirt or other residue on lamps can affect irradiance,6.1.2.3Thickness of glass used for lamp tube can have large effects on the amount of short wavelength UV radiation transmitted,and6.1.2.4Uniformity and durability of phosphor coating. 6.1.3Spectral Irradiance:N OTE5—Fluorescent UV A lamps are available with a choice of spectral power distributions that vary significantly.The more common may be identified as UV A-340and UV A-351.These numbers represent the characteristic nominal wavelength(in nm)of peak emission for each of these lamp types.The actual peak emissions are at343and350nm, respectively.6.1.3.1Spectral Irradiance of UVA-340Lamps for Daylight UV—The spectral power distribution of UV A-340fluorescent lamps shall comply with the requirements specified in Table1. N OTE6—The main application for UV A-340lamps is for simulation of the short and middle UV wavelength region of daylight.6.1.3.2Spectral Irradiance of UVA-351Lamps for Daylight UV Behind Window Glass—The spectral power distribution of UV A-351lamp for Daylight UV behind Window Glass shall comply with the requirements specified in Table2.N OTE7—The main application for UV A-351lamps is for simulation of the short and middle UV wavelength region of daylight which has been filtered through window glass(3).6.1.3.3Spectral Irradiance of UVB-313Lamps—The spec-tral power distribution of UVB-313fluorescent lamps shall comply with the requirements specified in Table3.N OTE8—Fluorescent UVB lamps have the spectral distribution of radiation peaking near the313-nm mercury line.They emit significant amounts of radiation below300nm,the nominal cut on wavelength of global solar radiation,that may result in aging processes not occurring e of this lamp is not recommended for sunlight simulation. See Table3. --`,,```,,,,````-`-`,,`,,`,`,,`---6.2Test Chamber—The design of the test chamber may vary,but it should be constructed from corrosion resistant material and,in addition to the radiant source,may provide for means of controlling temperature and relative humidity.When required,provision shall be made for the spraying of water onthe test specimen for the formation of condensate on the exposed face of the specimen or for the immersion of the test specimen in water.6.2.1The radiant source(s)shall be located with respect to the specimens such that the uniformity of irradiance at the specimen face complies with the requirements in Practice G151.6.2.2Lamp replacement,lamp rotation,and specimen repo-sitioning may be required to obtain uniform exposure of all specimens to UV radiation and temperature.Follow manufac-turer’s recommendation for lamp replacement and rotation.6.3Instrument Calibration—To ensure standardization and accuracy,the instruments associated with the exposure appa-ratus(for example,timers,thermometers,wet bulb sensors,dry bulb sensors,humidity sensors,UV sensors,and radiometers) require periodic calibration to ensure repeatability of test results.Whenever possible,calibration should be traceable to national or international standards.Calibration schedule and procedure should be in accordance with manufacturer’s in-structions.6.4Radiometer—The use of a radiometer to monitor and control the amount of radiant energy received at the sample is recommended.If a radiometer is used,it shall comply with the requirements in Practice G151.6.5Thermometer—Either insulated or un-insulated black or white panel thermometers may be used.The un-insulated thermometers may be made of either steel or aluminum. Thermometers shall conform to the descriptions found in Practice G151.6.5.1The thermometer shall be mounted on the specimen rack so that its surface is in the same relative position and subjected to the same influences as the test specimens.6.5.2Some specifications may require chamber air tempera-ture control.Positioning and calibration of chamber air tem-perature sensors shall be in accordance with the descriptions found in Practice G151.N OTE9—Typically,these devices control by black panel temperature only.6.6Moisture—The test specimens may be exposed to mois-ture in the form of water spray,condensation,or high humidity.6.6.1Water Spray—The test chamber may be equipped witha means to introduce intermittent water spray onto the test specimens under specified conditions.The spray shall beTABLE1Relative Ultraviolet Spectral Power Distribution Specification for Fluorescent UVA-340Lamps for Daylight UV A,BSpectral Bandpass Wavelength l in nm MinimumPercent CBenchmark SolarRadiation Percent D,E,FMaximumPercent Cl<2900.01 290#l#320 5.9 5.89.3320<l#36060.940.065.5360<l#40026.554.232.8A Data in Table1are the irradiance in the given bandpass expressed as a percentage of the total irradiance from290to400nm.The manufacturer is responsible for determining conformance to Table1.Annex A1states how to determine relative spectral irradiance.B The data in Table1are based on the rectangular integration of65spectral power distributions forfluorescent UV devices operating with UVA340lamps of various lots and ages.The spectral power distribution data is for lamps within the aging recommendations of the device manufacturer.The minimum and maximum data are at least the three sigma limits from the mean for all measurements.C The minimum and maximum columns will not necessarily sum to100% because they represent the minimum and maximum for the data used.For any individual spectral power distribution,the calculated percentage for the band-passes in Table1will sum to100%.For any individualfluorescent UVA-340lamp, the calculated percentage in each bandpass must fall within the minimum and maximum limits of Table1.Test results can be expected to differ between exposures using devices withfluorescent UVA-340lamps in which the spectral power distributions differ by as much as that allowed by the tolerances.Contact the manufacturer of thefluorescent UV devices for specific spectral power distribution data for thefluorescent UVA-340lamp used.D The benchmark solar radiation data is defined in ASTM G177and is for atmospheric conditions and altitude chosen to maximize the fraction of short wavelength solar UV.While this data is provided for comparison purposes only,it is desirable for the laboratory accelerated light source to provide a spectrum that is a close match to the benchmark solar spectrum.E Previous versions of this standard used solar radiation data from Table4of CIE Publication Number85.See Appendix X3for more information comparing the solar radiation data used in this standard with that for CIE85Table4.F For the benchmark daylight spectrum,the UV irradiance(290to400nm)is9.8%and the visible irradiance(400to800nm)is90.2%expressed as a percentage of the total irradiance from290to800nm.Because the primary emission offluorescent UV lamps is concentrated in the300to400nm bandpass, there are limited data available for visible light emissions offluorescent UV lamps.TABLE2Relative Spectral Power Distribution Specification for Fluorescent UVA-351Lamps for Daylight UV Behind WindowGlass A,BSpectral BandpassWavelength l in nmMinimumPercent CWindow Glass FilteredDaylight Percent D,E,FMaximumPercent C l<3000.00.2 300#l#320 1.1#0.5 3.3 320<l#36060.534.266.8 360<l#40030.065.338.0A Data in Table2are the irradiance in the given bandpass expressed as a percentage of the total irradiance from300to400nm.The manufacturer is responsible for determining conformance to Table1.Annex A1states how to determine relative spectral irradiance.B The data in Table2are based on the rectangular integration of21spectral power distributions forfluorescent UV devices operating with UVA351lamps of various lots and ages.The spectral power distribution data is for lamps within the aging recommendations of the device manufacturer.The minimum and maximum data are at least the three sigma limits from the mean for all measurements.C The minimum and maximum columns will not necessarily sum to100% because they represent the minimum and maximum for the data used.For any individual spectral power distribution,the calculated percentage for the band-passes in Table2will sum to100%.For any individualfluorescent UV device operating with UVA351lamps,the calculated percentage in each bandpass must fall within the minimum and maximum limits of Table2.Test results can be expected to differ between exposures usingfluorescent UV devices in which the spectral power distributions differ by as much as that allowed by the tolerances. Contact the manufacturer of thefluorescent UV devices for specific spectral power distribution data for the lamps used.D The window glassfiltered solar radiation data is for a solar spectrum with atmospheric conditions and altitude chosen to maximize the fraction of short wavelength solar UV(defined in ASTM G177)that has beenfiltered by window glass.The glass transmission is the average for a series of single strength window glasses tested as part of a research study for ASTM Subcommittee G3.02.9While this data is provided for comparison purposes only,it is desirable for the laboratory accelerated light source to provide a spectrum that is a close match to this benchmark window glassfiltered solar spectrum.E Previous versions of this standard used window glassfiltered solar radiation data based on Table4of CIE Publication Number85.See Appendix X3for more information comparing the solar radiation data used in the standard with that for CIE85Table4.F For the benchmark window glassfiltered solar spectrum,the UV irradiance (300to400nm)is8.2%and the visible irradiance(400to800nm)is91.8% expressed as a percentage of the total irradiance from300to800nm.Because the primary emission offluorescent UV lamps is concentrated in the300to400nm bandpass,there are limited data available for visible light emissions offluorescent UVlamps.--` , , ` ` ` , , , , ` ` ` ` -` -` , , ` , , ` , ` , , ` ---uniformly distributed over the samples.The spray system shall be made from corrosion resistant materials that do not con-taminate the water used.6.6.1.1Spray Water Quality —Spray water shall have a conductivity below 5µS/cm,contain less than 1-ppm solids,and leave no observable stains or deposits on the specimens.Very low levels of silica in spray water can cause significant deposits on the surface of test specimens.Care should be taken to keep silica levels below 0.1ppm.In addition to distillation,a combination of deionization and reverse osmosis can effec-tively produce water of the required quality.The pH of the water used should be reported.See Practice G 151for detailed water quality instructions.6.6.2Condensation —The test chamber may be equipped with a means to cause condensation to form on the exposed face of the test specimen.Typically,water vapor shall be generated by heating water and filling the chamber with hot vapor,which then is made to condense on the test specimens.6.6.3Relative Humidity —The test chamber may be equipped with a means to measure and control the relative humidity.Such instruments shall be shielded from the lamp radiation.6.7Specimen Holders —Holders for test specimens shall be made from corrosion resistant materials that will not affect the test results.Corrosion resistant alloys of aluminium or stainless steel have been found acceptable.Brass,steel,or copper shall not be used in the vicinity of the test specimens.6.8Apparatus to Assess Changes in Properties —Use the apparatus required by the ASTM or other standard that describes determination of the property or properties being monitored.7.Test Specimen7.1Refer to Practice G 151.8.Test Conditions8.1Any exposure conditions may be used as long as the exact conditions are detailed in the report.Appendix X2shows some representative exposure conditions.These are not neces-sarily preferred and no recommendation is implied.These conditions are provided for reference only.9.Procedure9.1Identify each test specimen by suitable indelible mark-ing,but not on areas used in testing.9.2Determine which property of the test specimens will be evaluated.Prior to exposing the specimens,quantify the appropriate properties in accordance with recognized ASTM or international standards.If required (for example,destructive testing),use unexposed file specimens to quantify the property.See ISO 4582for detailed guidance.9.3Mounting of Test Specimens —Attach the specimens to the specimen holders in the equipment in such a manner that the specimens are not subject to any applied stress.To assure uniform exposure conditions,fill all of the spaces,using blank panels of corrosion resistant material if necessary.N OTE 10—Evaluation of color and appearance changes of exposed materials shall be made based on comparisons to unexposed specimens of the same material which have been stored in the dark.Masking or shielding the face of test specimens with an opaque cover for the purpose of showing the effects of exposure on one panel is not recommended.Misleading results may be obtained by this method,since the masked portion of the specimen is still exposed to temperature and humidity that in many cases will affect results.9.4Exposure to Test Conditions —Program the selected test conditions to operate continuously throughout the required number of repetitive cycles.Maintain these conditions throughout the exposure.Interruptions to service the apparatus and to inspect specimens shall be minimized.9.5Specimen Repositioning —Periodic repositioning of the specimens during exposure is not necessary if the irradiance at the positions farthest from the center of the specimen area is at least 90%of that measured at the center of the exposure area.Irradiance uniformity shall be determined in accordance with Practice G 151.9.5.1If irradiance at positions farther from the center of the exposure area is between 70and 90%of that measured at the center,one of the following three techniques shall be used for specimen placement.9.5.1.1Periodically reposition specimens during the expo-sure period to ensure that each receives an equal amount of radiant exposure.The repositioning schedule shall be agreed upon by all interested parties.9.5.1.2Place specimens only in the exposure area where the irradiance is at least 90%of the maximum irradiance.TABLE 3Relative Spectral Power Distribution Specification forFluorescent UVB 313lamps A ,BSpectral Bandpass Wavelength l in nm Minimum Percent CBenchmark Solar Radiation Percent D ,E ,FMaximum Percent Cl <2901.3 5.4290#l #32047.8 5.865.9320<l #36026.940.043.9360<l #4001.754.27.2AData in Table 3are the irradiance in the given bandpass expressed as a percentage of the total irradiance from 250to 400nm.The manufacturer is responsible for determining conformance to Table 3.Annex A1states how to determine relative spectral irradiance.BThe data in Table 3are based on the rectangular integration of 44spectral power distributions for fluorescent UV devices operating with UVB 313lamps of various lots and ages.The spectral power distribution data is for lamps within the aging recommendations of the device manufacturer.The minimum and maximum data are at least the three sigma limits from the mean for all measurements.CThe minimum and maximum columns will not necessarily sum to 100%because they represent the minimum and maximum for the data used.For any individual spectral power distribution,the calculated percentage for the band-passes in Table 3will sum to 100%.For any individual UVB 313lamp,the calculated percentage in each bandpass must fall within the minimum and maximum limits of Table 3.Test results can be expected to differ between exposures conducted in fluorescent UV devices using UVB 313lamps in which the spectral power distributions differ by as much as that allowed by the tolerances.Contact the manufacturer of the fluorescent UV device for specific spectral power distribution data for the device operated with the UVB 313lamp used.DThe benchmark solar radiation data is defined in ASTM G 177and is for atmospheric conditions and altitude chosen to maximize the fraction of short wavelengthsolar UV.This data is provided for comparison purposes only.EPrevious versions of this standard used solar radiation data from Table 4of CIE Publication Number 85.See Appendix X3for more information comparing the solar radiation data used in this standard with that for CIE 85Table 4.FFor the benchmark solar spectrum,the UV irradiance (290to 400nm)is 9.8%and the visible irradiance (400to 800nm)is 90.2%expressed as a percentage of the total irradiance from 290to 800nm.Because the primary emission of fluorescent UV lamps is concentrated in the 300to 400nm bandpass,there are limited data available for visible light emissions of fluorescent UVlamps.--`,,```,,,,````-`-`,,`,,`,`,,`---9.5.1.3To compensate for test variability randomly position replicate specimens within the exposure area which meets the irradiance uniformity requirements as defined in9.5.1.9.6Inspection—If it is necessary to remove a test specimen for periodic inspection,take care not to handle or disturb the test surface.After inspection,the test specimen shall be returned to the test chamber with its test surface in the same orientation as previously tested.9.7Apparatus Maintenance—The test apparatus requires periodic maintenance to maintain uniform exposure conditions. Perform required maintenance and calibration in accordance with manufacturer’s instructions.9.8Expose the test specimens for the specified period of exposure.See Practice G151for further guidance.9.9At the end of the exposure,quantify the appropriate properties in accordance with recognized ASTM or interna-tional standards and report the results in conformance with Practice G151.N OTE11—Periods of exposure and evaluation of test results are addressed in Practice G151.10.Report10.1The test report shall conform to Practice G151.11.Precision and Bias11.1Precision:11.1.1The repeatability and reproducibility of results ob-tained in exposures conducted according to this practice will vary with the materials being tested,the material property being measured,and the specific test conditions and cycles that are used.In round-robin studies conducted by Subcommittee G03.03,the60°gloss values of replicate PVC tape specimens exposed in different laboratories using identical test devices and exposure cycles showed significant variability(3).The variability shown in these round-robin studies restricts the use of“absolute specifications”such as requiring a specific prop-erty level after a specific exposure period(4,5).11.1.2If a standard or specification for general use requiresa definite property level after a specific time or radiant exposure in an exposure test conducted according to this practice,the specified property level shall be based on results obtained in a round-robin that takes into consideration the variability due to the exposure and the test method used to measure the property of interest.The round-robin shall be conducted according to Practice E691or Practice D3980and shall include a statistically representative sample of all labo-ratories or organizations that would normally conduct the exposure and property measurement.11.1.3If a standard or specification for use between two or three parties requires a definite property level after a specific time or radiant exposure in an exposure test conducted accord-ing to this practice,the specified property level shall be based on statistical analysis of results from at least two separate, independent exposures in each laboratory.The design of the experiment used to determine the specification shall take into consideration the variability due to the exposure and the test method used to measure the property of interest.11.1.4The round-robin studies cited in11.1.1demonstrated that the gloss values for a series of materials could be ranked with a high level of reproducibility between laboratories.When reproducibility in results from an exposure test conducted according to this practice have not been established through round-robin testing,performance requirements for materials shall be specified in terms of comparison(ranked)to a control material.The control specimens shall be exposed simulta-neously with the test specimen(s)in the same device.The specific control material used shall be agreed upon by the concerned parties.Expose replicates of the test specimen and the control specimen so that statistically significant perfor-mance differences can be determined.11.2Bias—Bias can not be determined because no accept-able standard weathering reference materials are available. 12.Keywords12.1accelerated;accelerated weathering;durability;expo-sure;fluorescent UV lamps;laboratory weathering;light; lightfastness;non-metallic materials;temperature;ultraviolet;weathering --`,,```,,,,````-`-`,,`,,`,`,,`---。
非金属材料放在UV仪下的操作标准(ASTM G154-2006 非金属材料紫外线曝光用荧光设备使用标准惯例)(ASTM G154-2006 非金属材料荧光紫外线曝露设备的操作标准)该标准是在固定设计G154下出版的,它的数据是紧随原版的设计或就修订而言的,最后的修订。
A number in parentheses the year of last reapproval .A superscript epsilon indicates an editorial change since the last revision or reapproval.注:脚注在函数X2.1,表X2.3都加上胃肯新注释X2.8以及日期在2006年6月5日。
1.范围1.1该标准涵盖了用UV仪的基本规则肯操作程序以及水仪器能够重演(模拟)环境影响因素。
该环境因素是当材料被放在太阳下以及潮湿的环境就像下雨或露水在实际的应用中。
/本标准涉及实际使用的材料在用荧光紫外线-冷凝型曝晒仪模拟由阳光和雨、露等自然气候条件下引起的劣化的基本原则和操作过程。
该标准受获得,测量和控制暴露条件胡程序限制。
许多暴露条件在附录中例举出来了,该标准不能详细说明最合适测试材料的暴露条件/本标准限于获取、测量和控制曝晒条件的过程方法,并未规定最适合待测材料的曝晒条件,曝晒条件过程方法参考附录。
注:1-标准G151描述执行标准适合于所有用实验室光源胡暴露设施,它取代了标准G53,它描述了用于UV荧光暴露胡特定设施。
在G53标准中描述胡仪器在G151标准中取代了。
注:1-标准G151规定的操作过程方法适用于所有采用实验光源的曝露设备,本标准取代了有描述具体设计用于佛罗里达州的荧光紫外线曝露设备的G53标准。
本标准包含了在G53标准中规定的仪器设备。
1.2 测试样本放在可控环境条件下胡UV仪下。
不同类型的UV光源可以被描述。
在可控环境条件下试样用佛罗里达州的荧光紫外线进行曝露测试,规定了不同类型的佛罗里达州的荧光紫外线光源。
1.3 样本的处理和结果的评价在ASTM标准或具体产品胡说明书中有提到。
在标准G151肯ISO-4852-1中亦一般指导(描述)。
在ISO4582中描述性质在暴露后改变的决定方法晃报道结果。
ASTM试验方法或特殊材料的特定规范中规定了试样的制备和试验结果的评定,标准G151和ISO-4852-1提供了一般指引,ISO 4582提供了测量曝露试验后特性变化的方法和报告试验结果的更多详细信息。
1.4 在S1章节中陈述的重要性被认为是标准。
以国际单位表明的数值视为标准。
1.5 该标准的目的并不是描述所有与安全相关的东西,如果有的话,也是和应用相联系的。
这个标准的使用者的责任是建立合适胡安全的健康的标准以及在应用之前决定限制规章的应用。
本标准没有说明所有有关使用的安全问题,即使有,也是和使用相关联,本标准的使用者有责任在使用前建立适宜的安全、卫生规程及确定规章适用(的可控的使用)范围。
1.6 该标准说ISO4892-3和ISODIS11507的技术相似。
2 参考文件2.1 ASTM标准D3980标准油漆和相关材料胡多个实验室的试验,E691标准是指导学习决定实验方法胡精确度。
G53标准是。
G113术语与在自然和人工天气测试非金属材料相关的。
G151标准是非金属材料在加速试验设施用的是实验室光源暴露2.2 CIE 标准3术语3.1 定义-在术语G113中提到胡定义应用于该标准。
3.2 该标准的具体的专业术语的定义-像在标准中用到的,术语太阳光说日光和太阳照射,全球的就像它们在术语中被限制(定义)。
4 实践目录4.1样本在受控制胡环境条件重复(循环)胡阳光和潮湿的条件下暴露4.1.1 温度通常用蒸汽水的在实验样本上的凝结或用去离子水喷在样本上。
4.2 以下选项可以改变曝光条件4.2.1 荧光灯4.2.2 灯的发光水平4.2.3潮湿的曝光类型4.2.4 光照及潮湿的曝光时间4.2.5 曝光的温度4.2.6 潮湿曝光的温度4.2.7 光照/黑暗循环时间4.3 不应该把试样曝光在仪器的相同模式下,得到对比结果。
除非在仪器上对材料的测试建立了重复性。
4.4 不应该把样本曝光在仪器的不同模式下比较结果。
对材料测试来说除非设备之间建立了联系。
5 意义及应用5.1该仪器的使用打算是引起与最后使用条件胡性质变化,包括太阳光,潮湿和加热对UV部分的影响。
该曝光可能包括介绍实验样本的潮湿方法。
曝光并不打算模拟由定点天气现象,例如空气污染、生物攻击、盐雾暴露造成的恶化(损害)。
作为选择,该曝光可能模拟通过窗户射进来的阳光。
典型的是该曝光将包括以压缩的湿气来表示湿度注: 注意关于标准G151所有的注意指导适用于所有的实验室天气的设备。
5.2 结果的变化在所难免,当操作条件在标准可以接受的范围内被改变。
因此没有使用的参考书关于这标准除非与一个详细的具体的操作条件与第10章相一致的。
5.2.1 据推荐当一个相似的可知的材料和测试样本同时放在一起为了提供一个标准对比目的,据推荐。
6.仪器6.1 实验室光源-该光源应是紫外线荧光灯。
多种荧光灯可以适用于该程序。
灯的焦距或范围的不同可能造成结果的很大不同。
灯的类型的描述在实验报告中详细的陈述。
不同的测试用不同的灯。
目录X1是灯的应用指导。
注;3-不要混用不同类型的灯,混用了不同类型的灯可能导致光落到样品上不一致,除非仪器已经被设置好了去确认一个标准的分布。
注:4-许多荧光的寿命与广泛的使用有重大的关系。
紧随仪器生产商在必需的程序的指导去维护理想的非发射。
6.1.1 由于灯的使用类型和生产厂商的原因,在测试样本表面的实际发射水平可能发生变化,或者灯的寿命,灯排列的距离及烘箱的温度,ambient实验室的温度。
因此推荐检测器的radiometer及控制发射能量。
6.1.2 几种影响UV灯的波谱能量分布6.1.2.1 用在同一类型灯上的玻璃的寿命能造成发射的改变。
玻璃的寿命可以导致一些类型灯的短波长UV的大量减少。
6.1.2.2 灰尘的积累及其它残留物在灯上能影响发光6.1.2.3 灯管的玻璃厚度对短波长的UV光的发射有很大影响6.1.2.4 磷粉漆的一致性和耐久性6.1.3 发射光谱注;5-UVA荧光灯通过光谱能量的分布来改变影响(重要性)。
UVA-340和UVA-351被认为更普通。
这些数字代表了不同类型灯的名义特性波长。
该实际的发射峰是343纳米和350纳米。
6.1.3.1 UVA-340灯的光谱是日光紫外线---UVA-340荧光灯的光谱能量分布应该服从表1的具体要求。
注:6-UVA-340的主要应用是模拟日光中的短和中长范围的紫外光波长。
6.1.3.2 UVA-351灯的光谱是在窗户玻璃后的日光紫外---该紫外光光谱能量分布应该服从表2中的具体要求。
注-7:UVA-351灯主要应用于模拟已经被窗户玻璃过滤的短和中长范围的紫外光波长。
6.1.3.3 UVB-313灯的光谱-该UVB-313荧光灯的光谱能量分布应该满足表3中的具体要求。
注8:UVB荧光灯的发射谱峰接近313纳米的水银线。
她发射许多在300纳米以下的光,该灯除去在全部太阳发射光中能导致寿命过程的波长。
该灯不推荐用于太阳光的模拟,见表3.6.2实验室应该可以变化,但它应用防腐材料,除了提供发光源外还要能提供控制温度及湿度的方法。
当需要时还能提供暴露的样本上喷水或让测试样本浸泡。
6.2.1 发光源的位置应该随样本而定,例如发光源的一致性应服从标准G151的要求。
6.2.2 为了获得统一的曝光条件(紫外光发射及湿度)要有代替灯,旋转灯改变样本位置的设施,听从生产商对代替灯及旋转灯的建议。
6.3 仪器标准为了确保标准化晃精确度与曝光仪器相连的仪器例如时间表,温度计,湿度感应器,干燥感应器,湿度计,紫外光感应器,radiometers需要同期性校准以确保实验结果的重复性。
不管怎么样标准应该追随国家或国际标准校准日程及程度应与生产说明书保持一致。
6.4辐射计辐射计的使用是用来检测和控制在样本上发射出来的能量的数量。
如辐射计的使用应与标准G151的需求相一致。
6.5温度计温度计或者绝缘的或非绝缘的,黑色的或白色的温度计表盘。
这个非绝缘的温度计可能由钢或铅制得。
温度计应服从标准G151的描述。
6.5.1 温度计应被绑在样本架上,以致于它的表面在相同的对位子并且与实验样本有相同影响因素。
6.5.2 一些特殊性需要控制实验室空气温度。
实验室的空气温度感应器定位和校准应与标准G151描述的保持一致。
注:9--典型的这些设施应由黑色温度计控制。
6.6湿度实验样本被暴露在一下湿度条件下以喷洒或缩合或高湿度形式下存在的水。
6.6.1 喷水实验室应装备有一种方法去间歇地在试验样本上在特定地条件下。
喷涂应均匀。
喷洒系统应该是由防腐材料制造的,这样就能不污染用过的水了。
6.6.1.1 喷水的质量喷水有个指导在5us/cm以下,固含量在1-ppm以下,并且不留有可见的污点,或者残留物在样本上。
很低的二氧化硅在喷水中能对实验样本表面的残留物造成重大影响。
注意应使二氧化硅的含量在0.1ppm以下。
除了蒸馏之外,。
能够生产出所需质量的水。
使用水的pH应报告(记录)。
标准G151就有详细的水质量说明书。
6.6.2 缩合实验室应装备有一种方法能使在实验样本被曝光的表面缩合。
典型地,蒸馏水由热水形成并且用热蒸汽装入实验室,这样凝结在实验样本上。
6.6.3 相对湿度实验室应装有一种方法去测量控制相对湿度。
这种仪器应受灯发射线的保护(能抵抗住)。
6.7样本架样本架应由防腐材料做成,这样不会影响到测量结果。
防腐的铝合金或不锈钢就可以。
黄铜、钢、铜不能用在实验样本附近。
6.8 评估性能的仪器用ASTM要求的仪器或其它标准他能描述性能的决定性或性能被监视。
7实验样本7.1 参考标准G1518实验条件8.1 任何曝光条件能够被用只要在报告中详细记录条件。
附录X2展示了一些代表性的曝光条件。
这些没必要完美并且没有推荐。
这些条件仅供参考。
9 程序9.1 识别每个实验样本用适合的不可磨灭的标记,但并不是用在测试的区域。
9.2 决定哪个实验样本的性能将被评价。
在样本曝光之前,定量合适的性能要与可知的ASTM或国际标准一致。
如果需要的话(例如破坏实验),用不被暴露的文件样本去定量性能。
见ISO4582详细指导。
9.3 实验样本的安装把样本与样本架连到设备上(以下面方式),样本不能承受任何压力。
为确定统一的曝光时间,充满整个空间,必要的话可用空的防腐材料的表盘。
注:10---被曝光材料的颜色评价和外光的改变应该与储存在黑暗条件下未曝光的样本作对比。
不推荐使用不透光的盖子来挡住这实验样本来显示曝光的影响因素在仪表盘上。