人教a版(数学选修2-2)测试题及参考答案
- 格式:doc
- 大小:2.35 MB
- 文档页数:29
2高中数学选修《2-2》复习试题一、选择题(共8题,每题5分)1.复数(2)z i i =+在复平面内的对应点在( )A .第一象限B .第二象限C .第三象限D .第四象限2. 一质点做直线运动,由始点经过s t 后的距离为3216323s t t t =-+,则速度为0的时刻是( )A .4s t= B .8s t = C .4s t =与8s t = D .0s t =与4s t =3。
某射击选手每次射击击中目标的概率是0.8,如果他连续射击5次,则这名射手恰有4次击中目标的概率是( )(A )40.80.2⨯ (B)445C 0.8⨯ (C )445C 0.80.2⨯⨯ (D )45C 0.80.2⨯⨯ 4.已知14a b c =+==则a,b ,c 的大小关系为( ) A .a>b>cB .c>a 〉bC .c 〉b 〉aD .b>c 〉a5.曲线32y x =-+上的任意一点P 处切线的斜率的取值范围是( ) A.)+∞B. )+∞C. ()+∞ D 。
[)+∞ 6。
有一段“三段论”推理是这样的:对于可导函数()f x ,如果0()0f x '=,那么0x x =是函数()f x 的极值点,因为函数3()f x x =在0x =处的导数值(0)0f '=,所以,0x =是函数3()f x x =的极值点. 以上推理中( )A .大前提错误B . 小前提错误C .推理形式错误D .结论正确7。
.在复平面内, 复数1 + i 与31+i 分别对应向量OA 和OB , 其中O 为坐标原点,=( ) A 。
2 B 。
2 C 。
10 D. 48、函数2()1x f x x =-( )A .在(0,2)上单调递减B .在(,0)-∞和(2,)+∞上单调递增C .在(0,2)上单调递增D .在(,0)-∞和(2,)+∞上单调递减二、填空题(共6题,30分) 9. .观察下列式子 2222221311511171,1,1222332344+<++<+++< , … … , 则可归纳出________________________________10. 复数11z i =-的共轭复数是________。
第一章检测(A)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则()A.a=1,b=1B.a=-1,b=1C.a=1,b=-1D.a=-1,b=-1解析∵y'=2x+a,∴曲线y=x2+ax+b在(0,b)处的切线的斜率为a,切线方程为y-b=ax,即ax-y+b=0.∴a=1,b=1.答案A2若函数f(x)=ax5+bx3+c满足f'(1)=2,则f'(-1)等于()A.-1B.-2C.2D.0解析f'(x)=5ax4+3bx2为偶函数,∴f'(-1)=f'(1)=2.答案C3若函数f(x)=a ln x+x在x=1处取得极值,则a的值为()A.12B.-1 C.0 D.-12解析f'(x)=ax+1,令f'(x)=0,得x=-a, 易知函数f(x)在x=-a处取得极值.所以a=-1.答案B4已知函数f(x)的导数f'(x)=a(x+1)(x-a),且f(x)在x=a处取得极大值,则实数a的取值范围是() A.(-1,+∞) B.(-1,0)C.(0,1)D.(1,+∞)答案B5设f(x)={x2,x∈[0,1],1x,x∈(1,e],则∫ef(x)d x等于()A.43B.54C.65D.76解析∫e0f(x)d x=∫1x2d x+∫e11xd x=13x3|1+ln x|e1=43.故选A.答案A6已知点P在曲线y=4e x+1上,α为曲线在点P处的切线的倾斜角,则α的取值范围是()A.[0,π4) B.[π4,π2)C.(π2,3π4] D.[3π4,π)解析因为0>y'=-4e x(e x+1)2=-4e x+2+1e x≥-1,当且仅当x=0时取等号.即-1≤tan α<0,所以3π4≤α<π.答案D7∫1(e x+2x)d x等于() A.1 B.e-1C.eD.e+1解析∵(e x+x2)'=e x+2x,∴∫10(e x+2x)d x=(e x+x2)|1=(e1+12)-(e0+0)=e.答案C8设a∈R,若函数y=e ax+3x,x∈R有大于零的极值点,则() A.a>-3 B.a<-3C.a>-13D.a<-13解析令y'=a e ax+3=0,∴e ax=-3a.设x=x0为大于0的极值点,∴e ax0=-3a.∴a<0,ax0<0.∴0<e ax0<1,即0<-3a<1.∴a<-3.答案B9设a<b,函数y=(x-a)2(x-b)的图象可能是()解析y'=2(x-a)(x-b)+(x-a)2=(x-a)(3x-a-2b),令y'=0,得x=a或x=a+2b3.∵a<b ,∴a<a+2b3. ∴当x=a 时,y 取极大值0;当x=a+2b3时,y 取极小值,且极小值小于零.故选C . 答案C10若函数f (x ),g (x )满足∫ 1-1f (x )g (x )d x=0,则称f (x ),g (x )为区间[-1,1]上的一组正交函数.给出三组函数:①f (x )=sin 12x ,g (x )=cos 12x ;②f (x )=x+1,g (x )=x-1;③f (x )=x ,g (x )=x 2.其中为区间[-1,1]上的正交函数的组数是( ) A.0B.1C.2D.3解析对于①,∫ 1-1sin 12x ·cos 12x d x=∫ 1-112sin x d x=12∫ 1-1sin x d x=12(-cos x )|-11=12{-cos 1-[-cos(-1)]}=12(-cos 1+cos 1) =0.故①为一组正交函数;对于②,∫ 1-1(x+1)(x-1)d x=∫ 1-1(x 2-1)d x=(13x 3-x)|-11=13-1-(-13+1)=23-2=-43≠0,故②不是一组正交函数;对于③,∫1-1x·x2d x=∫1-1x3d x=(14x4)|-11=0.故③为一组正交函数,故选C.答案C二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11∫-1-21(11+5x)3d x=.解析取F(x)=-110(5x+11)2,从而F'(x)=1(11+5x)3.则∫-1-21(11+5x)3d x=F(-1)-F(-2)=-110×62+110×12=110−1360=772.答案77212若函数f(x)在x=a处的导数为A(aA≠0),函数F(x)=f(x)-A2x2满足F'(a)=0,则A=.解析由题知f'(a)=A,又F'(x)=f'(x)-2A2x,且F'(a)=f'(a)-2aA2=A-2aA2=0.∵aA≠0,∴A=12a.答案12a13已知函数f (x )在(0,+∞)内可导,且f (e x )=x+e x ,则f'(1)= . 解析令e x =t ,则x=ln t ,∴f (t )=ln t+t ,∴f'(t )=1t +1,∴f'(1)=2.答案214设曲线y=e x 在点(0,1)处的切线与曲线y=1x(x>0)上点P 处的切线垂直,则点P 的坐标为 .解析曲线y=e x 在点(0,1)处的切线斜率k=y'=e x |x=0=1;由y=1x,可得y'=-1x2,因为曲线y=1x(x>0)在点P 处的切线与曲线y=e x 在点(0,1)处的切线垂直,所以-1x P2=-1,解得x P =1,由y=1x,得y P =1,故所求点P 的坐标为(1,1). 答案(1,1)15已知函数f (x )为一次函数,其图象经过点(3,4),且∫ 10f (x )d x=1,则函数f (x )的解析式为 .解析设函数f (x )=ax+b (a ≠0).∵函数f (x )的图象经过点(3,4),∴b=4-3a.∴∫ 10f (x )d x=∫10(ax+4-3a )d x =[12ax 2+(4-3a )x]|01=12a+4-3a=1, ∴a=65.∴b=25.∴f (x )=65x+25.答案f (x )=65x+25三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16(8分)求定积分∫0-1x2x2+2xd x的值.解∫0-1x2x2+2xd x=∫0-1x2+2x-2xx2+2xd x=∫0-1(1-2x+2)d x=∫0-11d x-∫0-12x+2d x=1-2∫0-11x+2d x=1-2ln(x+2)|-10=1-2ln 2.17(8分)已知曲线f(x)=2x3-3x,过点M(0,32)作曲线f(x)的切线,求切线的方程.解设切点坐标为N(x0,2x03-3x0),由导数的几何意义知切线的斜率k就是切点处的导数值,而f'(x)=6x2-3,所以切线的斜率k=f'(x0)=6x02-3.所以切线方程为y=(6x02-3)x+32.又点N在切线上,所以2x03-3x0=(6x02-3)x0+32,解得x0=-2.故切线方程为y=21x+32.18(9分)求函数y=13x3+3-ln x的单调区间.解函数的定义域为(0,+∞),y'=x2-1x =(x-1)(x2+x+1)x.令y'>0,则{(x-1)(x2+x+1)x>0,x>0,解得x>1;令y'<0,则{(x-1)(x2+x+1)x<0, x>0,解得0<x<1.故函数的单调递增区间为(1,+∞),单调递减区间为(0,1).19(10分)设f(x)=a(x-5)2+6ln x,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).(1)确定a的值;(2)求函数f(x)的单调区间与极值.解(1)因f(x)=a(x-5)2+6ln x,故f'(x)=2a(x-5)+6x.令x=1,得f(1)=16a,f'(1)=6-8a,所以曲线y=f(x)在点(1,f(1))处的切线方程为y-16a=(6-8a)(x-1),由点(0,6)在切线上可得6-16a=8a-6,故a=12.(2)由(1)知,f(x)=12(x-5)2+6ln x(x>0),f'(x)=x-5+6x =(x-2)(x-3)x.令f'(x)=0,解得x1=2,x2=3.当0<x<2或x>3时,f'(x)>0,故f(x)的单调递增区间为(0,2),(3,+∞);当2<x<3时,f'(x)<0,故f(x)的单调递减区间为(2,3).由此可知f(x)在x=2处取得极大值f(2)=92+6ln 2,在x=3处取得极小值f(3)=2+6ln 3.20(10分)已知f(x)=a(x-ln x)+2x-1x2,a∈R.(1)讨论f(x)的单调性;(2)当a=1时,证明f(x)>f'(x)+32对于任意的x∈[1,2]成立.解(1)f(x)的定义域为(0,+∞).f'(x )=a-a x −2x 2+2x 3=(ax 2-2)(x -1)x 3. 当a ≤0时,x ∈(0,1)时,f'(x )>0,f (x )单调递增,x ∈(1,+∞)时,f'(x )<0,f (x )单调递减.当a>0时,f'(x )=a (x -1)x 3(x -√2a )(x +√2a ).①0<a<2时,√2a >1,当x ∈(0,1)或x ∈(√2a ,+∞)时,f'(x )>0,f (x )单调递增,当x ∈(1,√2a)时,f'(x )<0,f (x )单调递减.②a=2时,√2a =1,在x ∈(0,+∞)内,f'(x )≥0,f (x )单调递增.③a>2时,0<√2a <1,当x ∈(0,√2a )或x ∈(1,+∞)时,f'(x )>0,f (x )单调递增,当x ∈(√2a ,1)时,f'(x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,1)内单调递增,在(1,+∞)内单调递减;当0<a<2时,f (x )在(0,1)内单调递增,在(1,√2a)内单调递减,在(√2a,+∞)内单调递增;当a=2时,f (x )在(0,+∞)内单调递增;当a>2时,f (x )在(0,√2a )内单调递增,在(√2a ,1)内单调递减,在(1,+∞)内单调递增. (2)由(1)知,a=1时,f (x )-f'(x )=x-ln x+2x -1x 2−(1-1x −2x 2+2x 3)=x-ln x+3x +1x 2−2x 3-1,x ∈[1,2].设g (x )=x-ln x ,h (x )=3x +1x 2−2x 3-1,x ∈[1,2].则f (x )-f'(x )=g (x )+h (x ).由g'(x )=x -1x≥0, 可得g (x )≥g (1)=1, 当且仅当x=1时取得等号.又h'(x )=-3x 2-2x+6x 4, 设φ(x )=-3x 2-2x+6,则φ(x )在x ∈[1,2]单调递减, 因为φ(1)=1,φ(2)=-10,所以∃x 0∈(1,2),使得x ∈(1,x 0)时,φ(x )>0,x ∈(x 0,2)时,φ(x )<0. 所以h (x )在(1,x 0)内单调递增,在(x 0,2)内单调递减.由h (1)=1,h (2)=12,可得h (x )≥h (2)=12, 当且仅当x=2时取得等号.所以f (x )-f'(x )>g (1)+h (2)=32,即f (x )>f'(x )+32对于任意的x ∈[1,2]成立.。
选修2-2 第二章 2.2 2.2.11.(2013·江西理,3)等比数列x,3x +3,6x +6,…的第四项等于( )A .-24B .0C .12D .24 [答案] A[解析] 由等比中项公式(3x +3)2=x (6x +6),即x 2+4x +3=0.∴x =-1(舍去) x =-3.∴数列为-3,-6,-12,-24.故选A.2.若a 、b 、c ∈R ,且ab +bc +ca =1,则下列不等式成立的是( )A .a 2+b 2+c 2≥2B .(a +b +c )2≥3C .1a +1b +1c≥23 D .abc (a +b +c )≤13[答案] B[解析] ∵a 、b 、c ∈R ,∴a 2+b 2≥2ab ,b 2+c 2≥2bc ,a 2+c 2≥2ac ,∴a 2+b 2+c 2≥ab +bc +ac =1,又(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac=a 2+b 2+c 2+2≥3.3.已知a 、b 是不等正数,且a 3-b 3=a 2-b 2,求证:1<a +b <43. [证明] ∵a 3-b 3=a 2-b 2且a ≠b ,∴a 2+ab +b 2=a +b ,由(a +b )2=a 2+2ab +b 2>a 2+ab +b 2得(a +b )2>a +b ,又a +b >0,∴a +b >1,要证a +b <43,即证3(a +b )<4, ∵a +b >0,∴只需证明3(a +b )2<4(a +b ),又a +b =a 2+ab +b 2,即证:3(a +b )2<4(a 2+ab +b 2),也就是证明(a -b )2>0.因为a 、b 是不等正数,故(a -b )2>0成立.故a +b <43成立. 综上,得1<a +b <43.4.已知函数f (x )=tan x ,x ∈⎝⎛⎭⎫0,π2,若x 1、x 2∈⎝⎛⎭⎫0,π2,且x 1≠x 2. 求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22.[证明] 欲证12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22,即证12(tan x 1+tan x 2)>tan x 1+x 22, 只需证12⎝⎛⎭⎫sin x 1cos x 1+sin x 2cos x 2>sinx 1+x 22cos x 1+x 22, 即证12×sin (x 1+x 2)cos x 1cos x 2>sin (x 1+x 2)2cos 2⎝⎛⎭⎫x 1+x 22 =sin (x 1+x 2)1+cos (x 1+x 2). 因为x 1、x 2∈⎝⎛⎭⎫0,π2,所以x 1+x 2∈(0,π), 所以sin(x 1+x 2)>0,1+cos(x 1+x 2)>0,cos x 1cos x 2>0,所以只需证1+cos(x 1+x 2)>2cos x 1cos x 2,即证cos(x 1-x 2)<1.因为x 1、x 2∈⎝⎛⎭⎫0,π2,且x 1≠x 2, 所以cos(x 1-x 2)<1显然成立,所以原不等式成立.[点评] (1)本题主要考查了三角函数与不等式证明的综合应用,题目中的条件与结论之间的关系不明显,因此可以用分析法挖掘题目中的隐含条件,在证明过程中注意分析法的格式与步骤.对于与三角函数有关的证明题,在证明过程中注意角的取值范围及三角恒等变形公式的灵活应用.(2)本题的几何意义是见而易见的,如图A (x 1,tan x 1),B (x 2,tan x 2),AB 的中点,C x 1+x 22,tan x 1+tan x 22,D ⎝⎛⎭⎫x 1+x 22,tan x 1+x 22,则有tan x 1+tan x 22>tan x 1+x 22,其中x 1、x 2∈⎝⎛⎭⎫0,π2.。
高中新课标数学选修(2-2)综合测试题一、选择题1.函数2y x =在区间[12],上的平均变化率为( ) A.2 B.3 C.4 D.5 答案:B2.已知直线y kx =是ln y x =的切线,则k 的值为( )A.1eB.1e - C.2e D.2e -答案:A 3.如果1N 的力能拉长弹簧1cm ,为了将弹簧拉长6cm (在弹性限度内)所耗费的功为( ) 答案:A4.方程2(4)40()x i x ai a ++++=∈R 有实根b ,且z a bi =+,则z =( )A.22i - B.22i + C.22i -+ D.22i -- 答案:A5.ABC △内有任意三点不共线的2002个点,加上A B C ,,三个顶点,共2005个点,把这2005个点连线形成不重叠的小三角形,则一共可以形成小三角形的个数为( ) A.4005 B.4002 C.4007 D.4000 答案:A6.数列1,2,2,3,3,3,4,4,4,4,的第50项( ) A.8 B.9 C.10 D.11 答案:C7.在证明()21f x x =+为增函数的过程中,有下列四个命题:①增函数的定义是大前提;②增函数的定义是小前提;③函数()21f x x =+满足增函数的定义是大前提;④函数()21f x x =+满足增函数的定义是大前提.其中正确的命题是( ) A.①②B.②④C.①③D.②③答案:C8.若a b ∈R ,,则复数22(45)(26)a a b b i -++-+-表示的点在( ) A.第一象限B.第二象限C.第三象限D.第四象限答案:D9.一圆的面积以210πcm /s 速度增加,那么当圆半径20cm r =时,其半径r 的增加速率u 为( ) A.12cm/s B.13cm/sC.14 cm/s D.15cm/s答案:C10.用数学归纳法证明不等式“11113(2)12224n n n n +++>>++”时的过程中,由n k =到1n k =+时,不等式的左边( )A.增加了一项12(1)k +B.增加了两项11212(1)k k +++ C.增加了两项11212(1)k k +++,又减少了一项11k + D.增加了一项12(1)k +,又减少了一项11k +答案:C11.在下列各函数中,值域不是[的函数共有( ) (1)(sin )(cos )y x x ''=+(2)(sin )cos y x x '=+ (3)sin (cos )y x x '=+(4)(sin )(cos )y x x ''=· A.1个B.2个C.3个D.4个答案:C12.如图是函数32()f x x bx cx d =+++的大致图象,则2212x x +等于( )A.23 B.43 C.83D.123答案:C 二、填空题13.函数3()31f x x x =-+在闭区间[30]-,上的最大值与最小值分别为 . 答案:3,17-14.若113z i =-,268z i =-,且12111z z z +=,则z 的值为 .答案:42255i -+15.用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数n a 与所搭三角形的个数n 之间的关系式可以是 .答案:21n a n =+16.物体A 的运动速度v 与时间t 之间的关系为21v t =-(v 的单位是m/s ,t 的单位是s ),物体B 的运动速度v 与时间t 之间的关系为18v t =+,两个物体在相距为405m 的同一直线上同时相向运动.则它们相遇时,A 物体的运动路程为 . 答案:72m 三、解答题17.已知复数1z ,2z 满足2212121052z z z z +=,且122z z +为纯虚数,求证:123z z -为实数. 证明:由2212121052z z z z +=,得22112210250z z z z -+=, 即221212(3)(2)0z z z z -++=,那么222121212(3)(2)[(2)]z z z z z z i -=-+=+,由于,122z z +为纯虚数,可设122(0)z z bi b b ==∈≠R ,且, 所以2212(3)z z b -=,从而123z z b -=±,故123z z -为实数.解:设该容器底面矩形的短边长为x cm ,则另一边长为(0.5)x +m ,此容器的高为14.8(0.5) 3.224y x x x =--+=-, 于是,此容器的容积为:32()(0.5)(3.22)2 2.2 1.6V x x x x x x x =+-=-++,其中0 1.6x <<, 即2()6 4.4 1.60V x x x '=-++=,得11x =,2415x =-(舍去), 因为,()V x '在(01.6),内只有一个极值点,且(01)x ∈,时,()0V x '>,函数()V x 递增; (11.6)x ∈,时,()0V x '<,函数()V x 递减;所以,当1x =时,函数()V x 有最大值3(1)1(10.5)(3.221) 1.8m V =⨯+⨯-⨯=, 31.8m .19.如图所示,已知直线a 与b 不共面,直线c a M =,直线b c N =,又a 平面A α=,b 平面B α=,c 平面C α=,求证:A B C ,,三点不共线. 证明:用反证法,假设A B C ,,三点共线于直线l , A B C α∈,,∵,l α⊂∴.c l C =∵,c ∴与l 可确定一个平面β. c a M =∵,M β∈∴.又A l ∈,a β⊂∴,同理b β⊂,∴直线a ,b 共面,与a ,b 不共面矛盾.所以AB C ,,三点不共线. 20.已知函数32()31f x ax x x =+-+在R 上是减函数,求a 的取值范围. 解:求函数()f x 的导数:2()361f x ax x '=+-. (1)当()0()f x x '<∈R 时,()f x 是减函数.23610()0ax x x a +-<∈⇔<R 且36120a ∆=+<3a ⇔<-.所以,当3a <-时,由()0f x '<,知()()f x x ∈R 是减函数; (2)当3a =-时,33218()331339f x x x x x ⎛⎫=-+-+=--+ ⎪⎝⎭,由函数3y x =在R 上的单调性,可知当3a =-时,()()f x x ∈R 是减函数; (3)当3a >-时,在R 上存在使()0f x '>的区间,所以,当3a >-时,函数()()f x x ∈R 不是减函数. 综上,所求a 的取值范围是(3)--,∞.21.若0(123)i x i n >=,,,,,观察下列不等式:121211()4x x x x ⎛⎫++ ⎪⎝⎭≥,123123111()9x x x x x x ⎛⎫++++ ⎪⎝⎭≥,,请你猜测1212111()n nx x x x x x ⎛⎫++++++⎪⎝⎭满足的不等式,并用数学归纳法加以证明. 解:满足的不等式为21212111()(2)n nx x x n n x x x ⎛⎫++++++ ⎪⎝⎭≥≥,证明如下: 1.当2n =时,结论成立;2.假设当n k =时,结论成立,即21212111()k kx x x k x x x ⎛⎫++++++ ⎪⎝⎭2221(1)k k k ++=+≥.显然,当1n k =+时,结论成立.22.设曲线2(0)y ax bx c a =++<过点(11)-,,(11),. (1)用a 表示曲线与x 轴所围成的图形面积()S a ; (2)求()S a 的最小值. 解:(1)曲线过点(11)-,及(11),,故有1a b c a b c =-+=++,于是0b =且1c a =-,令0y =,即2(1)0ax a +-=,得x = 记α=,β=,由曲线关于y 轴对称, 有2300()2[(1)]2(1)3a S aax a dx x a xββ⎡⎤=+-=+-⎢⎥⎣⎦⎰|2(13a a⎡=-=⎢⎣· (2)()S a =3(1)()(0)a f a a a-=<,则223221(1)()[3(1)(1)](21)a f a a a a a a a -'=---=+.令()0f a '=,得12a =-或1a =(舍去).又12a ⎛⎫∈-- ⎪⎝⎭,∞时,()0f x '<;102a ⎛⎫∈- ⎪⎝⎭,时,()0f x '>.所以,当12a =-时,()f a 有最小值274,此时()S a高中新课标数学选修(2-2)综合测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数cos sin y x x x =-的导数为 ( ) (A )cos x x (B )sin x x - (C )sin x x (D )cos x x -2.下列说法正确的是 ( ) (A )当0()0f x '=时,0()f x 为()f x 的极大值(B )当0()0f x '=时,0()f x 为()f x 的极小值 (C )当0()0f x '=时,0()f x 为()f x 的极值 (D )当0()f x 为()f x 的极值时, 0()0f x '=3.如果z 是34i +的共轭复数,则z 对应的向量OA 的模是 ( )(A )1 (B (C (D )54.若函数3()y a x x =-的递减区间为(,则a 的取值范围是 ( ) (A )(0,)+∞ (B )(1,0)- (C )(1,)+∞ (D )(0,1)5.下列四条曲线(直线)所围成的区域的面积是 ( ) (1)sin y x =;(2) s y co x =; (3)4x π=-;(4) 4x π=(B)26.由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,叫 ( ) (A )合情推理 (B )演绎推理 (C )类比推理 (D )归纳推理7.复数a bi -与c di +的积是实数的充要条件是 ( ) (A )0ad bc += (B )0ac bd += (C )0ad bc -= (D )0ac bd -= 8.已知函数1sin 2sin 2y x x =+,那么y '是 ( ) (A )仅有最小值的奇函数 (B )既有最大值又有最小值的偶函数 (C )仅有最大值的偶函数 (D )非奇非偶函数 9.用边长为48厘米的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒。
选修2-2 第三章 3.2 3.2.1一、选择题1.设z 1=2+b i ,z 2=a +i ,当z 1+z 2=0时,复数a +b i 为( ) A .1+i B .2+i C .3 D .-2-i[答案] D[解析] ∵z 1+z 2=(2+b i)+(a +i) =(2+a )+(b +1)i =0,∴⎩⎪⎨⎪⎧ 2+a =0,b +1=0,∴⎩⎪⎨⎪⎧a =-2,b =-1.∴a +b i =-2-i.2.已知|z |=4,且z +2i 是实数,则复数z =( ) A .23-2i B .-23-2i C .±23-2i D .23±2i[答案] C[解析] ∵z +2i 是实数,可设z =a -2i(a ∈R ), 由|z |=4得a 2+4=16, ∴a 2=12,∴a =±23, ∴z =±23-2i.3.(2014·浙江台州中学期中)设x ∈R ,则“x =1”是“复数z =(x 2-1)+(x +1)i 为纯虚数”的( )A .充分必要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件[答案] A[解析] z 是纯虚数⇔⎩⎪⎨⎪⎧x 2-1=0,x +1≠0,⇔x =1,故选A.4.若复数z 满足z +(3-4i)=1,则z 的虚部是( ) A .-2 B .4 C .3 D .-4[答案] B[解析] z =1-(3-4i)=-2+4i ,故选B.5.若z 1=2+i ,z 2=3+a i(a ∈R ),且z 1+z 2所对应的点在实轴上,则a 的值为( )A .3B .2C .1D .-1[答案] D[解析] z 1+z 2=2+i +3+a i =(2+3)+(1+a )i =5+(1+a )i. ∵z 1+z 2所对应的点在实轴上, ∴1+a =0,∴a =-1.6.▱ABCD 中,点A 、B 、C 分别对应复数4+i 、3+4i 、3-5i ,则点D 对应的复数是( ) A .2-3i B .4+8i C .4-8i D .1+4i[答案] C[解析] AB →对应的复数为(3+4i)-(4+i)=(3-4)+(4-1)i =-1+3i , 设点D 对应的复数为z ,则DC →对应的复数为(3-5i)-z . 由平行四边形法则知AB →=DC →, ∴-1+3i =(3-5i)-z ,∴z =(3-5i)-(-1+3i)=(3+1)+(-5-3)i =4-8i.故应选C. 二、填空题7.在复平面内,若OA →、OB →对应的复数分别为7+i 、3-2i ,则 |AB →|=________. [答案] 5[解析] |AB →|对应的复数为3-2i -(7+i)=-4-3i ,所以|AB →|=(-4)2+(-3)2=5. 8.(2014·揭阳一中期中)已知向量OA →和向量OC →对应的复数分别为3+4i 和2-i ,则向量AC →对应的复数为________.[答案] -1-5i[解析] ∵AC →=OC →-OA →,∴AC →对应复数为(2-i)-(3+4i)=-1-5i.9.在复平面内,O 是原点,O A →、O C →、A B →对应的复数分别为-2+i 、3+2i 、1+5i ,那么B C →对应的复数为________________.[答案] 4-4i[解析] B C →=O C →-O B →=O C →-(O A →+A B →) =3+2i -(-2+i +1+5i) =(3+2-1)+(2-1-5)i=4-4i. 三、解答题10.已知平行四边形ABCD 中,A B →与A C →对应的复数分别是3+2i 与1+4i ,两对角线AC 与BD 相交于P 点.(1)求A D →对应的复数; (2)求D B →对应的复数; (3)求△APB 的面积.[分析] 由复数加、减法运算的几何意义可直接求得A D →,D B →对应的复数,先求出向量P A →、P B →对应的复数,通过平面向量的数量积求△APB 的面积.[解析] (1)由于ABCD 是平行四边形,所以A C →=A B →+A D →,于是A D →=A C →-A B →,而(1+4i)-(3+2i)=-2+2i ,即A D →对应的复数是-2+2i.(2)由于D B →=A B →-A D →,而(3+2i)-(-2+2i)=5, 即D B →对应的复数是5.(3)由于P A →=12C A →=-12A C →=⎝⎛⎭⎫-12,-2, PB →=12D B →=⎝⎛⎭⎫52,0, 于是P A →·P B →=-54,而|P A →|=172,|PB →|=52,所以172·52·cos ∠APB =-54, 因此cos ∠APB =-1717,故sin ∠APB =41717, 故S △APB =12|P A →||PB →|sin ∠APB=12×172×52×41717=52. 即△APB 的面积为52.[点评] (1)根据复数加减法运算的几何意义可以把复数的加减法运算转化为向量的坐标运算.(2)复数加减法运算的几何意义为应用数形结合思想解决复数问题提供了可能.一、选择题11.已知复数z 1=3+2i ,z 2=1-3i ,则复数z =z 1-z 2在复平面内对应的点Z 位于复平面内的( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] A[解析] ∵z 1=3+2i ,z 2=1-3i ,∴z =z 1-z 2=3+2i -(1-3i)=(3-1)+(2+3)i =2+5i.∴点Z 位于复平面内的第一象限.故应选A.12.若复数(a 2-4a +3)+(a -1)i 是纯虚数,则实数a 的值为( ) A .1 B .3 C .1或3 D .-1[答案] B[解析] 由条件知⎩⎪⎨⎪⎧a 2-4a +3=0,a -1≠0.∴a =3.13.(2014·新乡、许昌、平顶山调研)复数z 1、z 2满足z 1=m +(4-m 2)i ,z 2=2cos θ+(λ+3sin θ)i(m 、λ、θ∈R ),并且z 1=z 2,则λ的取值范围是( )A .[-1,1]B .[-916,1]C .[-916,7]D . [916,1][答案] C[解析] ∵z 1=z 2,∴⎩⎪⎨⎪⎧m =2cos θ,4-m 2=λ+3sin θ. ∴λ=4sin 2θ-3sin θ=4(sin θ-38)2-916,∵sin θ∈[-1,1],∴λ∈[-916,7].二、填空题14.在复平面内,z =cos10+isin10的对应点在第________象限. [答案] 三[解析] ∵3π<10<7π2,∴cos10<0,sin10<0,∴z 的对应点在第三象限.15.若|z -1|=|z +1|,则|z -1|的最小值是________________. [答案] 1[解析] 解法一:设z =a +b i ,(a ,b ∈R ), 则|(a -1)+b i|=|(a +1)+b i|. ∴(a -1)2+b 2=(a +1)2+b 2, 即a =0,∴z =b i ,b ∈R ,∴|z -1|m i n =|b i -1|m i n =(-1)2+b 2, 故当b =0时,|z -1|的最小值为1. 解法二∵|z -1|=|z +1|,∴z 的轨迹为以(1,0),(-1,0)为端点的线段的垂直平分线,即y 轴,|z -1|表示,y 轴上的点到(1,0)的距离,所以最小值为1.三、解答题16.已知z 1=(3x +y )+(y -4x )i ,z 2=(4y -2x )-(5x +3y )i(x ,y ∈R ),设z =z 1-z 2,且z =13-2i ,求z 1、z 2.[解析] z =z 1-z 2=(3x +y )+(y -4x )i -[(4y -2x )-(5x +3y )i]=[(3x +y )-(4y -2x )]+[(y -4x )+(5x +3y )]i =(5x -3y )+(x +4y )i ,又因为z =13-2i ,且x 、y ∈R ,所以⎩⎪⎨⎪⎧ 5x -3y =13,x +4y =-2,解得⎩⎪⎨⎪⎧x =2,y =-1.所以z 1=(3×2-1)+(-1-4×2)i =5-9i , z 2=4×(-1)-2×2-[5×2+3×(-1)]i =-8-7i.*17.已知关于t 的方程t 2+2t +2xy +(t +x -y )i =0(x 、y ∈R ),求使该方程有实根的点(x ,y )的轨迹方程.[解析] 设原方程的一个实根为t =t 0,则有(t 20+2t 0+2xy )+(t 0+x -y )i =0.根据复数相等的充要条件有⎩⎪⎨⎪⎧t 20+2t 0+2xy =0, ①t 0+x -y =0, ② 把②代入①中消去t 0,得(y -x )2+2(y -x )+2xy =0, 即(x -1)2+(y +1)2=2.故所求点的轨迹方程为(x -1)2+(y +1)2=2.[点评] 因为t 0为实数,故根据复数相等的充要条件让实部与虚部分别为0,而要求的是点(x ,y )的轨迹方程,故应用代入消元法将t 0消去整理即可.。
第一章综合检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(2013·天津红桥区高二段测)二次函数y =f (x )的图象过原点且它的导函数y =f ′(x )的图象是如图所示的一条直线,y =f (x )的图象的顶点在( )A .第Ⅰ象限B .第Ⅱ象限C .第Ⅲ象限D .第Ⅳ象限[答案] A[解析] 设f (x )=ax 2+bx +c ,∵二次函数y =f (x )的图象过原点,∴c =0,∴f ′(x )=2ax +b ,由y =f ′(x )的图象可知,2a <0,b >0,∴a <0,b >0,∴-b 2a >0,4ac -b 24a =-b 24a >0,故选A.2.(2013·华池一中高二期中)曲线y =-1x 在点(12,-2)处的切线方程为( )A .y =4xB .y =4x -4C .y =4(x +1)D .y =2x -4[答案] B[解析] ∵y ′=1x 2,∴y ′|x =12=4,∴k =4,∴切线方程为y +2=4(x -12),即y =4x -4.3.(2014·淄博市临淄区学分认定考试)下列函数中,x =0是其极值点的函数是( ) A .f (x )=-x 3 B .f (x )=-cos x C .f (x )=sin x -x D .f (x )=1x[答案] B[解析] 对于A ,f ′(x )=-3x 2≤0恒成立,在R 上单调递减,没有极值点;对于B ,f ′(x )=sin x ,当x ∈(-π,0)时,f ′(x )<0,当x ∈(0,π)时,f ′(x )>0,故f (x )=-cos x 在x =0的左侧区间(-π,0)内单调递减,在其右侧区间(0,π)内单调递增,所以x =0是f (x )的一个极小值点;对于C ,f ′(x )=cos x -1≤0恒成立,在R 上单调递减,没有极值点;对于D ,f (x )=1x在x =0没有定义,所以x =0不可能成为极值点,综上可知,答案选B. 4.(2013·北师大附中高二期中)已知函数f (x )=-x 3+ax 2-x -1在(-∞,+∞)上是单调函数,则实数a 的取值范围是( )A .(-∞,-3),∪(3,+∞)B .(-3,3)C .(-∞,-3]∪[3,+∞)D .[-3,3][答案] D[解析] f ′(x )=-3x 2+2ax -1,∵f (x )在(-∞,+∞)上是单调函数,且f ′(x )的图象是开口向下的抛物线,∴f ′(x )≤0恒成立,∴Δ=4a 2-12≤0,∴-3≤a ≤3,故选D.5.(2013·武汉实验中学高二期末)设函数f (x )在定义域内可导,y =f (x )的图象如下图所示,则导函数y =f ′(x )的图象可能是( )[答案] A[解析] f (x )在(-∞,0)上为增函数,在(0,+∞)上变化规律是减→增→减,因此f ′(x )的图象在(-∞,0)上,f ′(x )>0,在(0,+∞)上f ′(x )的符号变化规律是负→正→负,故选A.6.(2012·陕西文,9)设函数f (x )=2x +ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点[答案] D[解析] 由f ′(x )=-2x 2+1x =1x (1-2x )=0可得x =2.当0<x <2时,f ′(x )<0,f (x )单调递减,当x >2时 f ′(x )>0,f (x )单调递增.所以x =2为极小值点.7.(2014·天门市调研)已知函数f (x )=a sin x -b cos x 在x =π4时取得极值,则函数y =f (3π4-x )是( )A .偶函数且图象关于点(π,0)对称B .偶函数且图象关于点(3π2,0)对称C .奇函数且图象关于点(3π2,0)对称D .奇函数且图象关于点(π,0)对称 [答案] D[解析] ∵f (x )的图象关于x =π4对称,∴f (0)=f (π2),∴-b =a ,∴f (x )=a sin x -b cos x =a sin x +a cos x =2a sin(x +π4),∴f (3π4-x )=2a sin(3π4-x +π4)=2a sin(π-x )=2a sin x .显然f (3π4-x )是奇函数且关于点(π,0)对称,故选D.8.(2013·武汉实验中学高二期末)定义域为R 的函数f (x )满足f (1)=1,且f (x )的导函数f ′(x )>12,则满足2f (x )<x +1的x 的集合为( )A .{x |-1<x <1}B .{x |x <1}C .{x |x <-1或x >1}D .{x |x >1}[答案] B[解析] 令g (x )=2f (x )-x -1,∵f ′(x )>12,∴g ′(x )=2f ′(x )-1>0,∴g (x )为单调增函数, ∵f (1)=1,∴g (1)=2f (1)-1-1=0, ∴当x <1时,g (x )<0,即2f (x )<x +1,故选B.9.(2013·华池一中高二期中)若关于x 的方程x 3-3x +m =0在[0,2]上有根,则实数m 的取值范围是( )A .[-2,2]B .[0,2]C .[-2,0]D .(-∞,-2)∪(2,+∞)[答案] A[解析] 令f (x )=x 3-3x +m ,则f ′(x )=3x 2-3=3(x +1)(x -1),显然当x <-1或x >1时,f ′(x )>0,f (x )单调递增,当-1<x <1时,f ′(x )<0,f (x )单调递减,∴在x =-1时,f (x )取极大值f (-1)=m +2,在x =1时,f (x )取极小值f (1)=m -2.∵f (x )=0在[0,2]上有解,∴⎩⎪⎨⎪⎧f (1)<0,f (2)>0,∴⎩⎪⎨⎪⎧m -2≤0,2+m ≥0,∴-2≤m ≤2. 10.(2013·河南安阳中学高二期末)f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意正数a 、b ,若a <b ,则必有( )A .af (b )≤bf (a )B .bf (a )≤af (b )C .af (a )≤f (b )D .bf (b )≤f (a )[答案] A[解析] 令F (x )=xf (x ),(x >0),则F ′(x )=xf ′(x )+f (x )≤0,∴F (x )在(0,+∞)上为减函数,∵0<a <b ,∴F (a )>f (b ),即af (a )>bf (b ),与选项不符; 由于xf ′(x )+f (x )≤0且x >0,f (x )≥0,∴f ′(x )≤-f (x )x≤0,∴f (x )在(0,+∞)上为减函数,∵0<a <b ,∴f (a )>f (b ), ∴bf (a )>af (b ),结合选项知选A.11.(2014·天门市调研)已知函数f (x )的导函数f ′(x )=a (x -b )2+c 的图象如图所示,则函数f (x )的图象可能是( )[答案] D[解析] 由导函数图象可知,当x <0时,函数f (x )递减,排除A ,B ;当0<x <x 1时,f ′(x )>0,函数f (x )递增.因此,当x =0时,f (x )取得极小值,故选D.12.(2013·泰安一中高二段测)已知函数f (x )的导函数的图象如图所示,若△ABC 为锐角三角形,则一定成立的是( )A .f (sin A )>f (cosB ) B .f (sin A )<f (cos B )C .f (sin A )>f (sin B )D .f (cos A )<f (cos B )[答案] A[解析] 由导函数图象可知,x >0时,f ′(x )>0,即f (x )单调递增,又△ABC 为锐角三角形,则A +B >π2,即π2>A >π2-B >0,故sin A >sin(π2-B )>0,即sin A >cos B >0,故f (sin A )> f (cos B ),选A.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(2013·华池一中高二期中)已知f (x )=x 3+3x 2+a (a 为常数),在[-3,3]上有最小值3,那么在[-3,3]上f (x )的最大值是________.[答案] 57[解析] f ′(x )=3x 2+6x =3x (x +2),当x ∈[-3,-2)和x ∈(0,3]时,f ′(x )>0,f (x )单调递增,当x ∈(-2,0)时,f ′(x )<0,f (x )单调递减,∴极大值为f (-2)=a +4,极小值为f (0)=a ,又f (-3)=a ,f (3)=54+a ,由条件知a =3,∴最大值为f (3)=54+3=57.14.(2014·湖北重点中学高二期中联考)已知函数f (x )=13ax 3+12ax 2-2ax +2a +1的图象经过四个象限,则实数a 的取值范围是________.[答案] (-65,-316)[解析] f ′(x )=ax 2+ax -2a =a (x -1)(x +2), 由f (x )的图象经过四个象限知,若a >0,则⎩⎪⎨⎪⎧ f (-2)>0,f (1)<0,此时无解;若a <0,则⎩⎪⎨⎪⎧f (-2)<0,f (1)>0, ∴-65<a <-316,综上知,-65<a <-316.15.(2014·泉州实验中学期中)已知函数f (x )=x 3-3x ,若过点A (1,m )(m ≠-2)可作曲线y =f (x )的三条切线,则实数m 的取值范围为________.[答案] (-3,-2)[解析] f ′(x )=3x 2-3,设切点为P (x 0,y 0),则切线方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0),∵切线经过点A (1,m ),∴m -(x 30-3x 0)=(3x 20-3)(1-x 0),∴m =-2x 30+3x 20-3,m ′=-6x 20+6x 0,∴当0<x 0<1时,此函数单调递增,当x 0<0或x 0>1时,此函数单调递减,当x 0=0时,m =-3,当x 0=1时,m =-2,∴当-3<m <-2时,直线y =m 与函数y =-2x 30+3x 20-3的图象有三个不同交点,从而x 0有三个不同实数根,故过点A (1,m )可作三条不同切线,∴m 的取值范围是(-3,-2).16.如图阴影部分是由曲线y =1x、y 2=x 与直线x =2、y =0围成,则其面积为______.[答案] 23+ln2[解析] 由⎩⎪⎨⎪⎧y 2=x ,y =1x ,得交点A (1,1)由⎩⎪⎨⎪⎧x =2y =1x 得交点B ⎝⎛⎭⎫2,12. 故所求面积S =⎠⎛01x d x +⎠⎛121xd x=23x 32| 10+ln x | 21=23+ln2. 三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)设函数f (x )=ln x +ln(2-x )+ax (a >0). (1)当a =1时,求f (x )的单调区间;(2)若f (x )在(0,1]上 的最大值为12,求a 的值.[解析] 函数f (x )的定义域为(0,2), f ′(x )=1x -12-x+a ,(1)当a =1时,f ′(x )=-x 2+2x (2-x ),∴当x ∈(0,2)时,f ′(x )>0,当x ∈(2,2)时,f ′(x )<0,所以f (x )的单调递增区间为(0,2),单调递减区间为(2,2);(2)当x ∈(0,1]时,f ′(x )=2-2xx (2-x )+a >0,即f (x )在(0,1]上单调递增,故f (x )在(0,1]上的最大值为f (1)=a ,因此a =12.18.(本题满分12分)(2014·韶关市曲江一中月考)已知函数f (x )=ax 3+cx +d (a ≠0)是R 上的奇函数,当x =1时,f (x )取得极值-2.(1)求函数f (x )的解析式;(2)求函数f (x )的单调区间和极大值;(3)证明:对任意x 1、x 2∈(-1,1),不等式|f (x 1)-f (x 2)|<4恒成立. [解析] (1)∵f (x )是R 上的奇函数, ∴f (-x )=-f (x ),即-ax 3-cx +d =-ax 3-cx -d ,∴d =-d , ∴d =0(或由f (0)=0得d =0). ∴f (x )=ax 3+cx ,f ′(x )=3ax 2+c , 又当x =1时,f (x )取得极值-2,∴⎩⎪⎨⎪⎧ f (1)=-2,f ′(1)=0,即⎩⎪⎨⎪⎧ a +c =-2,3a +c =0,解得⎩⎪⎨⎪⎧a =1,c =-3. ∴f (x )=x 3-3x .(2)f ′(x )=3x 2-3=3(x +1)(x -1),令f ′(x )=0,得x =±1, 当-1<x <1时,f ′(x )<0,函数f (x )单调递减; 当x <-1或x >1时,f ′(x )>0,函数f (x )单调递增;∴函数f (x )的递增区间是(-∞,-1)和(1,+∞);递减区间为(-1,1). 因此,f (x )在x =-1处取得极大值,且极大值为f (-1)=2.(3)由(2)知,函数f (x )在区间[-1,1]上单调递减,且f (x )在区间[-1,1]上的最大值为M =f (-1)=2.最小值为m =f (1)=-2.∴对任意x 1、x 2∈(-1,1),|f (x 1)-f (x 2)|<M -m =4成立.即对任意x 1、x 2∈(-1,1),不等式|f (x 1)-f (x 2)|<4恒成立.19.(本题满分12分)(2014·北京海淀期中)已知函数f (x )=x 2-2(a +1)x +2a ln x (a >0). (1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)求f (x )的单调区间;(3)若f (x )≤0在区间[1,e]上恒成立,求实数a 的取值范围. [解析] (1)∵a =1,∴f (x )=x 2-4x +2ln x , ∴f ′(x )=2x 2-4x +2x(x >0),f (1)=-3,f ′(1)=0, 所以切线方程为y =-3.(2)f ′(x )=2x 2-2(a +1)x +2a x =2(x -1)(x -a )x (x >0),令f ′(x )=0得x 1=a ,x 2=1,当0<a <1时,在x ∈(0,a )或x ∈(1,+∞)时,f ′(x )>0,在x ∈(a,1)时,f ′(x )<0,∴f (x )的单调递增区间为(0,a )和(1,+∞),单调递减区间为(a,1);当a =1时,f ′(x )=2(x -1)2x ≥0,∴f (x )的单调增区间为(0,+∞);当a >1时,在x ∈(0,1)或x ∈(a ,+∞)时,f ′(x )>0,在x ∈(1,a )时,f ′(x )<0,∴f (x )的单调增区间为(0,1)和(a ,+∞),单调递减区间为(1,a ).(3)由(2)可知,f (x )在区间[1,e]上只可能有极小值点,∴f (x )在区间[1,e]上的最大值必在区间端点取到,∴f (1)=1-2(a +1)≤0且f (e)=e 2-2(a +1)e +2a ≤0,解得a ≥e 2-2e2e -2.20.设函数f (x )=x 3-92x 2+6x -a .(1)对于任意实数x, f ′(x )≥m 恒成立,求m 的最大值; (2)若方程f (x )=0有且仅有一个实根,求a 的取值范围. [解析] (1)f ′(x )=3x 2-9x +6=3(x -1)(x -2).因为x ∈(-∞,+∞).f ′(x )≥m ,即3x 2-9x +(6-m )≥0恒成立. 所以Δ=81-12(6-m )≤0,得m ≤-34,即m 的最大值为-34.(2)因为当x <1时,f ′(x )>0;当1<x <2时,f ′(x )<0;当x >2时f ′(x )>0. 所以当x =1时,f (x )取极大值f (1)=52-a ,当x =2时,f (x )取极小值f (2)=2-a .故当f (2)>0或f (1)<0时,方程f (x )=0仅有一个实根,解得a <2或a >52.21.(本题满分12分)(2014·荆州中学、龙泉中学、宜昌一中、襄阳四中期中联考)已知函数f (x )=ln x +a x +1,a 为常数.(1)若a =92,求函数f (x )在[1,e ]上的值域;(e 为自然对数的底数,e ≈2.72)(2)若函数g (x )=f (x )+x 在[1,2]上为单调减函数,求实数a 的取值范围. [解析] (1)由题意f ′(x )=1x -a(x +1)2,当a =92时,f ′(x )=1x -92(x +1)2=(x -2)(2x -1)2x (x +1)2.∵x ∈[1,e ],∴f (x )在[1,2)上为减函数,[2,e ]上为增函数, 又f (2)=ln2+32,f (1)=94,f (e )=1+92e +2,比较可得f (1)>f (e ),∴f (x )的值域为[ln2+32,94].(2)由题意得g ′(x )=1x -a(x +1)2+1≤0在x ∈[1,2]上恒成立,∴a ≥(x +1)2x +(x +1)2=x 2+3x +1x +3恒成立,设h (x )=x 2+3x +1x+3(1≤x ≤2),∴当1≤x ≤2时,h ′(x )=2x +3-1x 2>0恒成立,∴h (x )max =h (2)=272,∴a ≥272, 即实数a 的取值范围是[272,+∞).22.(本题满分14分)(2014·北京海淀期中)如图,已知点A (11,0),直线x =t (-1<t <11)与函数y =x +1的图象交于点P ,与x 轴交于点H ,记△APH 的面积为f (t ).(1)求函数f (t )的解析式; (2)求函数f (t )的最大值.[解析] (1)由已知AH =11-t ,PH =t +1,所以△APH 的面积为f (t )=12(11-t )t +1,(-1<t <11).(2)解法1:f ′(t )=3(3-t )4t +1,由f ′(t )=0得t =3,函数f (t )与f ′(t )在定义域上的情况如下表:所以当t =解法2.由f (t )=12(11-t )t +1=12(11-t )2(t +1),-1<t <11,设g (t )=(11-t )2(t +1),-1<t <11,则g ′(t )=-2(11-t )(t +1)+(11-t )2=(t -11)(t -11+2t +2)=3(t -3)(t -11). g (t )与g ′(t )在定义域上的情况见下表:所以当t =3所以当t =3时,函数f (t )取得最大值12g (3)=8.一、选择题1.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1 D .a =-1,b =-1[答案] A[解析] y ′=2x +a ,∴y ′|x =0=(2x +a )|x =0=a =1, 将(0,b )代入切线方程得b =1.2.(2014·浙江杜桥中学期中)已知函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a =( )A .2B .3C .4D .5[答案] D[解析] f ′(x )=3x 2+2ax +3,由条件知,x =-3是方程f ′(x )=0的实数根,∴a =5. 3.函数y =2x 3-3x 2-12x +5在[0,3]上的最大值,最小值分别是( ) A .5,-15 B .5,-4 C .-4,-15 D .5,-16[答案] A[解析] ∵y ′=6x 2-6x -12=0,得x =-1(舍去)或x =2,故函数y =f (x )=2x 3-3x 2-12x +5在[0,3]上的最值可能是x 取0,2,3时的函数值,而f (0)=5,f (2)=-15,f (3)=-4,故最大值为5,最小值为-15,故选A.4.⎠⎛241xd x 等于( ) A .-2ln2B .2ln2C .-ln2D .ln2[答案] D[解析] 因为(ln x )′=1x ,所以 ⎠⎛241xd x =ln x |42=ln4-ln2=ln2.5.(2013·吉林白山一中高二期末)已知定义在R 上的函数f (x )的导函数f ′(x )的大致图象如图所示,则下列结论一定正确的是( )A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e)C .f (c )>f (b )>f (a )D .f (c )>f (e)>f (d )[答案] C[解析] 由图可知f ′(x )在(-∞,c )和(e ,+∞)上取正值,在(c ,e)上取负值,故f (x )在(-∞,c )和(e ,+∞)上单调递增,在(c ,e)上单调递减,∵a <b <c ,∴f (a )<f (b )<f (c ),故选C.6.已知函数f (x )=4x +3sin x ,x ∈(-1,1),如果f (1-a )+f (1-a 2)<0成立,则实数a 的取值范围为( )A .(0,1)B .(1,2)C .(-2,-2)D .(-∞,-2)∪(1,+∞) [答案] B[解析] ∵f (x )=4x +3sin x ,x ∈(-1,1), ∴f ′(x )=4+3cos x >0在x ∈(-1,1)上恒成立,∴f (x )在(-1,1)上是增函数,又f (x )=4x +3sin x ,x ∈(-1,1)是奇函数,∴不等式f (1-a )+f (1-a 2)<0可化为f (1-a )<f (a 2-1),从而可知,a 须满足⎩⎪⎨⎪⎧-1<1-a <1,-1<a 2-1<1,1-a <a 2-1.解得1<a < 2.7.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一个直角坐标系中,不可能正确的是( )[答案] D[解析] A 中,当f (x )为二次函数时,f ′(x )为一次函数,由单调性和导数值的符号关系知A 可以是正确的,同理B 、C 都可以是正确的,但D 中f (x )的单调性为增、减、增,故f ′(x )的值应为正负正,因此D 一定是错误的.8.函数y =f (x )的图象如图所示,则y =f ′(x )的图象可能是( )[答案] D[解析] 由f (x )的图象知,f (x )在(-∞,0)上单调递增,在(0,+∞)上单调递减,∴在(0,+∞)上f ′(x )≤0,在(-∞,0)上f ′(x )≥0,故选D.9.如果1N 能拉长弹簧1cm ,为了将弹簧拉长6cm ,所耗费的功为( ) A .0.18J B .0.26J C .0.12J D .0.28J[答案] A[解析] 设F (x )=kx ,当F (x )=1时,x =0.01m ,则k =100,∴W =∫0.060100x d x =50x 2|0.06=0.18.10.(2014·甘肃省金昌市二中、临夏中学期中)已知函数f (x )=ln x ,则函数g (x )=f (x )-f ′(x )的零点所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)[答案] B[解析] 由题可知g (x )=ln x -1x ,∵g (1)=-1<0,g (2)=ln2-12=ln2-ln e>0,∴选B.11.已知三次函数f (x )=13x 3-(4m -1)x 2+(15m 2-2m -7)x +2在R 上是增函数,则m的取值范围是( )A .m <2或m >4B .-4<m <-2C .2<m <4D .以上皆不正确[答案] D[解析] f ′(x )=x 2-2(4m -1)x +15m 2-2m -7,由题意得x 2-2(4m -1)x +15m 2-2m -7≥0恒成立,∴Δ=4(4m -1)2-4(15m 2-2m -7) =64m 2-32m +4-60m 2+8m +28 =4(m 2-6m +8)≤0, ∴2≤m ≤4,故选D.12.(2014·浙江省五校联考)已知函数f (x )=13x 3+12mx 2+m +n 2x 的两个极值点分别为x 1、x 2,且0<x 1<1<x 2,点P (m ,n )表示的平面区域内存在点(x 0,y 0)满足y 0=log a (x 0+4),则实数a 的取值范围是( )A .(0,12)∪(1,3)B .(0,1)∪(1,3)C .(12,1)∪(1,3]D .(0,1)∪[3,+∞)[答案] B[解析] f ′(x )=x 2+mx +m +n2,由条件知,方程f ′(x )=0的两实根为x 1、x 2且0<x 1<1<x 2,∴⎩⎪⎨⎪⎧f ′(0)>0,f ′(1)<0,∴⎩⎨⎧m +n2>0,1+m +m +n2<0,∴⎩⎪⎨⎪⎧m +n >0,3m +n <-2, 由⎩⎪⎨⎪⎧ m +n =0,3m +n =-2,得⎩⎪⎨⎪⎧ m =-1,n =1,∴⎩⎪⎨⎪⎧x 0<-1,y 0>1.由y 0=log a (x 0+4)知,当a >1时,1<y 0<log a 3,∴1<a <3;当0<a <1时,y 0=log a (x 0+4)>log a 3,由于y 0>1,log a 3<0,∴对∀a ∈(0,1),此式都成立,从而0<a <1,综上知0<a <1或1<a <3,故选B.二、填空题13.(2014·杭州七校联考)若函数f (x )=x 3-3bx +b 在区间(0,1)内有极值,则实数b 的取值范围是________.[答案] (0,1)[解析] f ′(x )=3x 2-3b ,∵f (x )在(0,1)内有极值, ∴f ′(x )=0在(0,1)内有解,∴0<b <1.14.(2013·泰州二中高二期中)函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a =________.[答案] 5[解析] f ′(x )=3x 2+2ax +3,由条件知,x =-3是f ′(x )=0的根,即f ′(-3)=0, ∴27-6a +3=0,∴a =5.15.对正整数n ,设曲线y =x n (1-x )在x =2处的切线与y 轴交点的纵坐标为a n ,则数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和是__________________. [答案] 2n +1-2[解析] ∵y =x n (1-x ),∴y ′=(x n )′(1-x )+(1-x )′·x n =n ·x n -1(1-x )-x n .f ′(2)=-n ·2n -1-2n =(-n -2)·2n -1.在点x =2处点的纵坐标为y =-2n . ∴切线方程为y +2n =(-n -2)·2n -1(x -2).令x =0得,y =(n +1)·2n , ∴a n =(n +1)·2n ,∴数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和为2(2n-1)2-1=2n +1-2.16.(2014·哈六中期中)已知函数f (x +2)是偶函数,x >2时f ′(x )>0恒成立(其中f ′(x )是函数f (x )的导函数),且f (4)=0,则不等式(x +2)f (x +3)<0的解集为________.[答案] (-∞,-3)∪(-2,1)[解析] ∵函数y =f (x +2)是偶函数,∴其图象关于y 轴对称,∵y =f (x +2)的图象向右平移两个单位得到y =f (x )的图象,∴函数y =f (x )的图象关于直线x =2对称,∵x >2时,f ′(x )>0,∴f (x )在(2,+∞)上单调递增,在(-∞,2)上单调递减,又f (4)=0,∴f (0)=0,∴0<x <4时,f (x )<0,x <0或x >4时,f (x )>0,由(x +2)f (x +3)<0得⎩⎪⎨⎪⎧x +2<0,f (x +3)>0,(1)或⎩⎪⎨⎪⎧x +2>0,f (x +3)<0.(2) 由(1)得⎩⎪⎨⎪⎧x <-2,x +3<0或x +3>4,∴x <-3;由(2)得⎩⎪⎨⎪⎧x >-2,0<x +3<4.∴-2<x <1,综上知,不等式的解集为(-∞,-3)∪(-2,1) 三、解答题17.(2013·四川达州诊断)已知函数f (x )=x 3+ax 2-3bx +c (b >0),且g (x )=f (x )-2是奇函数.(1)求a 、c 的值;(2)若函数f (x )有三个零点,求b 的取值范围. [解析] (1)∵g (x )=f (x )-2是奇函数, ∴g (-x )=-g (x )对x ∈R 成立, ∴f (-x )-2=-f (x )+2对x ∈R 成立, ∴ax 2+c -2=0对x ∈R 成立, ∴a =0且c =2.(2)由(1)知f (x )=x 3-3bx +2(b >0), ∴f ′(x )=3x 2-3b =3(x -b )(x +b ), 令f ′(x )=0得x =±b ,依题意有⎩⎨⎧f (-b )>0,f (b )<0,∴b >1,故正数b 的取值范围是(1,+∞).18.在曲线y =x 3(x ≥0)上某一点A 处作一切线使之与曲线以及x 轴围成图形的面积为112,试求过切点A 的切线方程.[解析] 设切点A (x 0,x 30),切线斜率k =y ′|x =x 0=3x 20.∴切线的方程为y -x 30=3x 20(x -x 0).令y =0,得x =2x 03.依题意S =∫x 00x 3d x -12×(x 0-2x 03)·x 3=14x 40-16x 40=112x 40=112, ∵x 0≥0,∴x 0=1.∴切线方程为y -1=3(x -1),即3x -y -2=0.19.(2014·福建安溪一中、养正中学联考)已知函数f (x )=x 3+ax 2+bx +5,若曲线f (x )在点(1,f (1))处的切线斜率为3,且x =23时,y =f (x )有极值.(1)求函数f (x )的解析式;(2)求函数f (x )在[-4,1]上的最大值和最小值. [解析] f ′(x )=3x 2+2ax +b ,(1)由题意得,⎩⎪⎨⎪⎧f ′(23)=3×(23)2+2a ×23+b =0,f ′(1)=3×12+2a ×1+b =3.解得⎩⎪⎨⎪⎧a =2,b =-4.经检验得x =23时,y =f (x )有极小值,所以f (x )=x 3+2x 2-4x +5.(2)由(1)知,f ′(x )=3x 2+4x -4=(x +2)(3x -2). 令f ′(x )=0,得x 1=-2,x 2=23,f ′(x ),f (x )的值随x 的变化情况如下表: ∵f (23)=9527,f (-2)=13,f (-4)=-11,f (1)=4,∴f (x )在[-4,1]上的最大值为13,最小值为-11.20.(2013·海淀区高二期中)已知函数f (x )=a 23x 3-2ax 2+bx ,其中a 、b ∈R ,且曲线y =f (x )在点(0,f (0))处的切线斜率为3.(1)求b 的值;(2)若函数f (x )在x =1处取得极大值,求a 的值.[解析](1)f′(x)=a2x2-4ax+b,由题意f′(0)=b=3.(2)∵函数f(x)在x=1处取得极大值,∴f′(1)=a2-4a+3=0,解得a=1或a=3.①当a=1时,f′(x)=x2-4x+3=(x-1)(x-3),x、f′(x)、f(x)的变化情况如下表:②当a=3时,f′(x)=9x2-12x+3=3(3x-1)(x-1),x、f′(x)、f(x)的变化情况如下表:综上所述,若函数f(x)在x=1处取得极大值,a的值为1.21.(2013·武汉实验中学高二期末)已知曲线f(x)=ax2+2在x=1处的切线与直线2x-y +1=0平行.(1)求f(x)的解析式;(2)求由曲线y=f(x)与y=3x、x=0、x=1、x=2所围成的平面图形的面积.[解析](1)由已知得:f′(1)=2,求得a=1,∴f(x)=x2+2.(2)由题意知阴影部分的面积是: S =⎠⎛01(x 2+2-3x )d x +⎠⎛12(3x -x 2-2)d x=(13x 3+2x -32x 2)|10+(32x 2-13x 3-2x )|21=1. 22.(2013·福州文博中学高二期末)设f (x )=ln x ,g (x )=f (x )+f ′(x ). (1)求g (x )的单调区间和最小值; (2)讨论g (x )与g (1x)的大小关系;(3)求a 的取值范围,使得g (a )-g (x )<1a 对任意x >0成立.[解析] (1)由题设知g (x )=ln x +1x ,∴g ′(x )=x -1x2,令g ′(x )=0,得x =1.当x ∈(0,1)时,g ′(x )<0,故(0,1)是g (x )的单调递减区间.当x ∈(1,+∞)时,g ′(x )>0,故(1,+∞)是g (x )的单调递增区间,因此,x =1是g (x )的唯一极值点,且为极小值点,从而是最小值点,所以最小值为g (1)=1.(2)g (1x)=-ln x +x ,设h (x )=g (x )-g (1x )=2ln x -x +1x ,则h ′(x )=-(x -1)2x 2.当x =1时,h (1)=0,即g (x )=g (1x).当x ∈(0,1)∪(1,+∞)时,h ′(x )<0,h ′(1)=0, 因此,h (x )在(0,+∞)内单调递减. 当0<x <1时,h (x )>h (1)=0,即g (x )>g (1x),当x >1时,h (x )<h (1)=0,即g (x )<g (1x).(3)由(1)知g (x )的最小值为1,所以g (a )-g (x )<1a 对任意x >0成立⇔g (a )-1<1a ,即ln a <1,从而得0<a <e ,即a 的取值范围为(0,e).。
选修2-2 第一章 1.3 1.3.2一、选择题1.已知函数f (x )在点x 0处连续,下列命题中,正确的是( ) A .导数为零的点一定是极值点B .如果在点x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极小值C .如果在点x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值D .如果在点x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极大值 [答案] C[解析] 导数为0的点不一定是极值点,例如f (x )=x 3,f ′(x )=3x 2,f ′(0)=0,但x =0不是f (x )的极值点,故A 错;由极值的定义可知C 正确,故应选C.2.(2013·北师大附中高二期中)函数y =14x 4-13x 3的极值点的个数为( )A .0B .1C .2D .3[答案] B[解析] y ′=x 3-x 2=x 2(x -1),由y ′=0得x 1=0,x 2=1. 当x 变化时,y ′、y 的变化情况如下表3.函数y =ax 3+bx 2取得极大值和极小值时的x 的值分别为0和13,则( )A .a -2b =0B .2a -b =0C .2a +b =0D .a +2b =0[答案] D[解析] y ′=3ax 2+2bx 由题设0和13是方程3ax 2+2bx =0的两根,∴a +2b =0.4.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( )A .2B .3C .6D .9[答案] D[解析] f ′(x )=12x 2-2ax -2b =0的一根为x =1,即12-2a -2b =0. ∴a +b =6,∴ab ≤(a +b 2)2=9,当且仅当a =b =3时“=”号成立.5.已知实数a 、b 、c 、d 成等比数列,且曲线y =3x -x 3的极大值点坐标为(b ,c ),则ad 等于( )A .2B .1C .-1D .-2[答案] A[解析] ∵a 、b 、c 、d 成等比数列,∴ad =bc , 又(b ,c )为函数y =3x -x 3的极大值点, ∴c =3b -b 3,且0=3-3b 2,∴⎩⎪⎨⎪⎧ b =1,c =2,或⎩⎪⎨⎪⎧b =-1,c =-2.∴ad =2. 6.(2013·辽宁实验中学期中)函数f (x )=-x e x (a <b <1),则( )A .f (a )=f (b )B .f (a )<f (b )C .f (a )>f (b )D .f (a ),f (b )的大小关系不能确定[答案] C[解析] f ′(x )=(-x e x )′=(-x )′·e x -(-x )·(e x )′(e x )2=x -1e x. 当x <1时,f ′(x )<0,∴f (x )为减函数, ∵a <b <1,∴f (a )>f (b ). 二、填空题7.(2014·福建安溪一中、养正中学联考)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________.[答案] 4x -y -3=0[解析] y ′|x =1=(3ln x +4)|x =1=4,∴切线方程为y -1=4(x -1),即4x -y -3=0. 8.(2014·河北冀州中学期中)若函数f (x )=x +a sin x 在R 上递增,则实数a 的取值范围为________.[答案] [-1,1][解析] f ′(x )=1+a cos x ,由条件知f ′(x )≥0在R 上恒成立,∴1+a cos x ≥0,a =0时显然成立;a >0时,∵-1a ≤cos x 恒成立,∴-1a ≤-1,∴a ≤1,∴0<a ≤1;a <0时,∵-1a≥cos x 恒成立,∴-1a≥1,∴a ≥-1,即-1≤a <0,综上知-1≤a ≤1.9.设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点,则常数a =________. [答案] -23[解析] f ′(x )=ax +2bx +1,由题意得⎩⎪⎨⎪⎧a +2b +1=0,a 2+4b +1=0.∴a =-23.三、解答题10.已知f (x )=ax 3+bx 2+cx (a ≠0)在x =±1时取得极值,且f (1)=-1. (1)试求常数a 、b 、c 的值;(2)试判断x =±1时函数取得极小值还是极大值,并说明理由. [解析] (1)由f ′(-1)=f ′(1)=0,得3a +2b +c =0,3a -2b +c =0. 又f (1)=-1,∴a +b +c =-1. ∴a =12,b =0,c =-32.(2)f (x )=12x 3-32x ,∴f ′(x )=32x 2-32=32(x -1)(x +1).当x <-1或x >1时,f ′(x )>0;当-1<x <1时,f ′(x )<0,∴函数f (x )在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上为减函数.∴当x =-1时,函数取得极大值f (-1)=1;当x =1时,函数取得极小值f (1)=-1. [点评] 若函数f (x )在x 0处取得极值,则一定有f ′(x 0)=0,因此我们可根据极值得到两个方程,再由f (1)=-1得到一个方程,解上述方程组成的方程组可求出参数.一、选择题11.(2014·山东省德州市期中)已知函数f (x )=e x (sin x -cos x ),x ∈(0,2013π),则函数f (x )的极大值之和为( )A .e 2π(1-e 2012π)e 2π-1B .e π(1-e 2012π)1-e 2πC .e π(1-e 1006π)1-e 2πD .e π(1-e 1006π)1-e π[答案] B[解析] f ′(x )=2e x sin x ,令f ′(x )=0得sin x =0,∴x =k π,k ∈Z ,当2k π<x <2k π+π时,f ′(x )>0,f (x )单调递增,当(2k -1)π<x <2k π时,f ′(x )<0,f (x )单调递减,∴当x =(2k +1)π时,f (x )取到极大值,∵x ∈(0,2013π),∴0<(2k +1)π<2013π,∴0≤k <1006,k ∈Z .∴f (x )的极大值之和为S =f (π)+f (3π)+f (5π)+…+f (2011π)=e π+e 3π+e 5π+…+e 2011π=e π[1-(e 2π)1006]1-e 2π=e π(1-e 2012π)1-e 2π,故选B.12.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )A .427,0B .0,427C .-427,0D .0,-427[答案] A[解析] f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0得,⎩⎪⎨⎪⎧ 3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x . 由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427.当x =1时f (x )取极小值0.13.(2014·西川中学高二期中)已知f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则a 的取值范围是( )A .-1<a <2B .-3<a <6C .a <-3或a >6D .a <-1或a >2[答案] C[解析] f ′(x )=3x 2+2ax +a +6, ∵f (x )有极大值与极小值, ∴f ′(x )=0有两不等实根,∴Δ=4a 2-12(a +6)>0,∴a <-3或a >6. 二、填空题14.已知函数y =x 3+ax 2+bx +27在x =-1处有极大值,在x =3处有极小值,则a =________________,b =________.[答案] -3 -9[解析] y ′=3x 2+2ax +b ,方程y ′=0有根-1及3,由韦达定理应有⎩⎨⎧-1+3=-2a3,-3=b 3.∴⎩⎪⎨⎪⎧a =-3,b =-9.经检验a =-3,b =-9符合题意. 三、解答题15.(2013·新课标Ⅰ文,20)已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. [解析] (1)f ′(x )=e x (ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4,故b =4,a +b =8. 从而a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x , f ′(x )=4e x (x +2)-2x -4=4(x +2)(e x -12).令f ′(x )=0得,x =-ln2或x =-2.从而当x ∈(-∞,-2)∪(-ln2,+∞)时,f ′(x )>0;当x ∈(-2,-ln2)时,f ′(x )<0. 故f (x )在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减. 当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2).16.(2014·三峡名校联盟联考)已知函数f (x )=ln x +x 2+ax . (1)当a =-3时,求函数y =f (x )的极值点;(2)当a =-4时,求方程f (x )+x 2=0在(1,+∞)上的根的个数. [解析] (1)f (x )=ln x +x 2-3x ,f ′(x )=1x +2x -3,令f ′(x )=0,则x =1或x =12,由f ′(x )>0得0<x <12,或x >1,∴f (x )在(0,12)和(1,+∞)上单调递增,在(12,1)上单调递减,∴f (x )的极大值点x =12,极小值点x =1.(2)当a =-4时,f (x )+x 2=0,即ln x +2x 2-4x =0, 设g (x )=ln x +2x 2-4x ,则g ′(x )=1x +4x -4=4x 2-4x +1x ≥0,则g (x )在(0,+∞)上单调递增,又g (1)=-2<0,g (2)=ln2>0, 所以g (x )在(1,+∞)上有唯一实数根.17.(2014·温州八校联考)已知函数f (x )=-x 3+ax 2+b (a 、b ∈R ). (1)求函数f (x )的单调递增区间;(2)若对任意a ∈[3,4],函数f (x )在R 上都有三个零点,求实数b 的取值范围. [解析] (1)∵f (x )=-x 3+ax 2+b , ∴f ′(x )=-3x 2+2ax =-3x (x -2a 3).当a =0时,f ′(x )≤0函数f (x )没有单调递增区间; 当a >0时,令f ′(x )>0,得0<x <2a3,函数f (x )的单调递增区间为(0,23a );当a <0时,令f ′(x )>0,得2a3<x <0, 函数f (x )的单调递增区间为(23a,0).(2)由(1)知,a ∈[3,4]时,x 、f ′(x )、f (x )的取值变化情况如下:∴f (x )极小值=f (0)=b ,f (x )极大值=f (2a 3)=4a 327+b ,∵对任意a ∈[3,4],f (x )在R 上都有三个零点, ∴⎩⎪⎨⎪⎧ f (0)<0,f (2a 3)>0,即⎩⎪⎨⎪⎧b <0,4a 327+b >0.得-4a 327<b <0.∵对任意a ∈[3,4],b >-4a 327恒成立,∴b >(-4a 327)max =-4×3327=-4.∴实数b 的取值范围是(-4,0).。
第三章综合检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(2014·浙江理,2)已知i 是虚数单位,a 、b ∈R ,则“a =b =1”是“(a +b i)2=2i ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[答案] A[解析] 本题考查充分条件、必要条件及复数的运算,当a =b =1时,(a +b i)2=(1+i)2=2i ,反之,(a +b i)2=a 2-b 2+2ab i =2i ,则a 2-b 2=0,2ab =1,解a =1,b =1或a =-1,b =-1,故a =1,b =1是(a +b i)2=2i 的充分不必要条件,选A.2.已知复数z 1=3+4i ,z 2=t +i ,且z 1·z -2是实数,则实数t 等于( ) A.34 B .43C .-43D .-34[答案] A[解析] z 1·z -2=(3+4i)(t -i)=(3t +4)+(4t -3)i.因为z 1·z -2是实数,所以4t -3=0,所以t =34.因此选A.3.(2014·长安一中、高新一中、交大附中、师大附中、西安中学一模)已知复数z =i +i 2+i 3+…+i 20131+i,则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] A[解析] ∵i n=⎩⎪⎨⎪⎧i n =4k +1,-1 n =4k +2,-i n =4k +3,1 n =4k ,k ∈Z ,∴i +i 2+i 3+…+i 2013=503×(i +i 2+i 3+i 4)+i 2013=503×0+i =i ,∴z =i 1+i =i (1-i )(1+i )(1-i )=1+i 2,在复平面内的对应点(12,12)在第一象限.4.(2014·东北三省三校联考)已知复数z =-12+32i ,则z +|z |=( )A .-12-32iB .-12+32iC.12+32i D .12-32i[答案] D[解析] 因为z =-12+32i ,所以z +|z |=-12-32i +(-12)2+(32)2=12-32i. 5.若θ∈⎝⎛⎭⎫3π4,5π4,则复数(cos θ+sin θ)+(sin θ-cos θ)i 在复平面内所对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限[答案] B[解析] θ∈⎝⎛⎭⎫3π4,5π4时, sin θ+cos θ<0,sin θ-cos θ>0,故对应点(cos θ+sin θ,sin θ-cos θ)在第二象限.[点评] 由于θ∈⎝⎛⎭⎫3π4,5π4时,据选项知,此复数对应点只能在某一象限,∴取θ=π检验知,对应点在第二象限.6.已知复数z 1=m +2i ,z 2=3-4i ,若z 1z 2为实数,则实数m 的值为( )A.83 B .32C .-83D .-32[答案] D [解析] z 1z 2=m +2i 3-4i =(m +2i )(3+4i )(3-4i )(3+4i )=3m -8+(6+4m )i25为实数,所以6+4m =0⇒m =-32,故选D.7.若z =cos θ+isin θ(i 为虚数单位),则使z 2=-1的θ值可能是( ) A.π6 B .π4C.π3 D .π2[答案] D[解析] ∵z 2=cos2θ+isin2θ=-1,∴⎩⎪⎨⎪⎧cos2θ=-1,sin2θ=0.∴2θ=2k π+π (k ∈Z ), ∴θ=k π+π2.令k =0知,D 正确.8.若关于x 的方程x 2+(1+2i)x +3m +i =0有实根,则实数m 等于( ) A.112 B .112iC .-112D .-112i[答案] A[解析] 设方程的实数根为x =a (a 为实数), 则a 2+(1+2i)·a +3m +i =0,∴⎩⎪⎨⎪⎧a 2+a +3m =0,2a +1=0,∴⎩⎨⎧a =-12,m =112.故选A.9.已知复数z =(x -2)+y i(x 、y ∈R )在复平面内对应的向量的模为3,则yx 的最大值是( )A.32B .33C.12 D . 3[答案] D[解析] 因为|(x -2)+y i|=3,所以(x -2)2+y 2=3,所以点(x ,y )在以C (2,0)为圆心,以3为半径的圆上,如图,由平面几何知识知-3≤yx ≤ 3.10.(2014·河北衡水中学模拟)设a ∈R ,i 是虚数单位,则“a =1”是“a +ia -i 为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件[答案] A[解析] 当a =1时,1+i 1-i =(1+i )22=i 为纯虚数.当a +i a -i =(a +i )2a 2+1=a 2-1+2a ia 2+1为纯虚数时,a 2=1即a =±1,故选A.11.已知复数a =3+2i ,b =4+x i(其中i 为虚数单位,x ∈R ),若复数ab ∈R ,则实数x的值为( )A .-6B .6 C.83 D .-83[答案] C[解析] a b =3+2i 4+x i =(3+2i )(4-x i )16+x 2=12+2x 16+x 2+⎝ ⎛⎭⎪⎫8-3x 16+x 2·i ∈R ,∴8-3x 16+x 2=0,∴x =83. 12.设z =(2t 2+5t -3)+(t 2+2t +2)i ,t ∈R ,则以下结论正确的是( ) A .z 对应的点在第一象限 B .z 一定不为纯虚数 C.z 对应的点在实轴的下方 D .z 一定为实数[答案] C[解析] ∵t 2+2t +2=(t +1)2+1>0, ∴z 对应的点在实轴的上方. 又∵z 与z 对应的点关于实轴对称. ∴C 项正确.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.已知x +1x =-1,则x 2014+1x 2014的值为________.[答案] -1[解析] ∵x +1x =-1,∴x 2+x +1=0.∴x =-12±32i ,∴x 3=1.∵2014=3×671+1,∴x 2014=x , ∴x 2014+1x2014=x +1x=-1. 14.已知复数z 1=cos α+isin α,z 2=cos β+isin β,则复数z 1·z 2的实部是________ [答案] cos(α+β)[解析] z 1·z 2=(cos α+isin α)(cos β+isin β) cos αcos β-sin αsin β+(cos αsin β+sin αcos β)i =cos(α+β)+sin(α+β)i 故z 1·z 2的实部为cos(α+β).15.若(3-10i)y +(-2+i)x =1-9i ,则实数x 、y 的值分别为________.[答案] x =1,y =1 [解析] 原式可以化为 (3y -2x )+(x -10y )i =1-9i , 根据复数相等的充要条件,有⎩⎪⎨⎪⎧ 3y -2x =1,x -10y =-9.解得⎩⎪⎨⎪⎧x =1,y =1. 16.设θ∈[0,2π],当θ=________时,z =1+sin θ+i(cos θ-sin θ)是实数. [答案] π4或54π[解析] 本题主要考查复数的概念.z 为实数,则cos θ=sin θ,即tan θ=1.因为θ∈[0,2π], 所以θ=π4或54π.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)(2014·郑州网校期中联考)已知复数z =(2m 2-3m -2)+(m 2-3m +2)i.(1)当实数m 取什么值时,复数z 是:①实数;②纯虚数; (2)当m =0时,化简z 2z +5+2i.[解析] (1)①当m 2-3m +2=0时,即m =1或m =2时,复数z 为实数.②若z 为纯虚数,则⎩⎪⎨⎪⎧2m 2-3m -2=0,m 2-3m +2=0,解得⎩⎪⎨⎪⎧m =-12或m =2,m ≠1且m ≠2,∴m =-12.即m =-12时,复数z 为纯虚数.(2)当m =0时,z =-2+2i ,z 2z +5+2i =-8i 3+4i=-8i (3-4i )25=-3225-2425i.18.(本题满分12分)已知复数x 2+x -2+(x 2-3x +2)i(x ∈R )是复数4-20i 的共轭复数,求实数x 的值.[解析] 因为复数4-20i 的共轭复数为4+20i ,由题意得x 2+x -2+(x 2-3x +2)i =4+20i ,根据复数相等的充要条件,得⎩⎪⎨⎪⎧x 2+x -2=4, ①x 2-3x +2=20. ②方程①的解为x =-3或x =2. 方程②的解为x =-3或x =6. 所以实数x 的值为-3.19.(本题满分12分)(2014·洛阳市高二期中)(1)已知复数z 在复平面内对应的点在第四象限,|z |=1,且z +z -=1,求z ;(2)已知复数z =5m 21-2i -(1+5i)m -3(2+i)为纯虚数,求实数m 的值.[解析] (1)设z =a +b i(a 、b ∈R ),由题意得⎩⎪⎨⎪⎧a 2+b 2=1,2a =1.解得a =12,b =±32.∵复数z 在复平面内对应的点在第四象限,∴b =-32. ∴z =12-32i.(2)z =5m 21-2i -(1+5i)m -3(2+i)=(m 2-m -6)+(2m 2-5m -3)i ,依题意,m 2-m -6=0,解得m =3或-2.∵2m 2-5m -3≠0.∴m ≠3. ∴m =-2.20.(本题满分12分)虚数z 满足|z |=1,z 2+2z +1z <0,求z .[解析] 设z =x +y i (x 、y ∈R ,y ≠0),∴x 2+y 2=1. 则z 2+2z +1z =(x +y i)2+2(x +y i)+1x +y i=(x 2-y 2+3x )+y (2x +1)i. ∵y ≠0,z 2+2z +1z<0,∴⎩⎪⎨⎪⎧2x +1=0, ①x 2-y 2+3x <0, ② 又x 2+y 2=1. ③由①②③得 ⎩⎨⎧x =-12,y =±32.∴z =-12±32i.21.(本题满分12分)满足z +5z是实数,且z +3的实部与虚部是相反数的虚数z 是否存在?若存在,求出虚数z ,若不存在,请说明理由.[解析] 存在.设虚数z =x +y i(x 、y ∈R ,且y ≠0). z +5z =x +y i +5x +y i =x +5xx 2+y 2+⎝⎛⎭⎫y -5y x 2+y 2i. 由已知得⎩⎪⎨⎪⎧y -5y x 2+y 2=0,x +3=-y .∵y ≠0,∴⎩⎪⎨⎪⎧ x 2+y 2=5,x +y =-3.解得⎩⎪⎨⎪⎧ x =-1,y =-2,或⎩⎪⎨⎪⎧x =-2,y =-1. ∴存在虚数z =-1-2i 或z =-2-i 满足以上条件.22.(本题满分14分)将一颗质地均匀的正方体骰子(六个面的点数分别为1、2、3、4、5、6)先后抛掷两次,记第一次出现的点数为a ,第二次出现的点数为b .(1)设复数z =a +b i(i 为虚数单位),求事件“z -3i 为实数”的概率; (2)求点P (a ,b )落在不等式组⎩⎪⎨⎪⎧a -b +2≥0,0≤a ≤4,b ≥0.表示的平面区域内(含边界)的概率.[解析] (1)z =a +b i(i 为虚数单位),z -3i 为实数,则a +b i -3i =a +(b -3)i 为实数,则b =3.依题意得b 的可能取值为1、2、3、4、5、6,故b =3的概率为16.即事件“z -3i 为实数”的概率为16.(2)连续抛掷两次骰子所得结果如下表:不等式组所表示的平面区域如图中阴影部分所示(含边界).由图知,点P (a ,b )落在四边形ABCD 内的结果有:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(2,4)、(3,1)、(3,2)、(3,3)、(3,4)、(3,5)、(4,1)、(4,2)、(4,3)、(4,4)、(4,5)、(4,6),共18种.所以点P (a ,b )落在四边形ABCD 内(含边界)的概率为P =1836=12.1.设z 的共轭复数为z -,若z +z -=4,z ·z -=8,则z -z 等于( )A .iB .-iC .±1D .±i[答案] D[解析] 设z =a +b i(a ,b ∈R ),则z -=a -b i ,由条件可得⎩⎪⎨⎪⎧ 2a =4,a 2+b 2=8.解得⎩⎪⎨⎪⎧a =2,b =±2.因此⎩⎨⎧ z =2+2i ,z -=2-2i ,或⎩⎨⎧z =2-2i ,z -=2+2i.所以z -z =2-2i 2+2i =1-i1+i =(1-i )2(1+i )(1-i )=-2i 2=-i ,或z -z =2+2i 2-2i =1+i 1-i =(1+i )2(1-i )(1+i )=2i2=i , 所以z-z=±i.2.复数z =m -2i1+2i (m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] A[解析] z =m -2i 1+2i =(m -2i )(1-2i )(1+2i )(1-2i )=15[(m -4)-2(m +1)i],其实部为15(m -4),虚部为-25(m +1),由⎩⎪⎨⎪⎧ m -4>0,-2(m +1)>0.得⎩⎪⎨⎪⎧m >4,m <-1.此时无解.故复数在复平面上对应的点不可能位于第一象限.3.已知i 为虚数单位,a 为实数,复数z =(1-2i)(a +i)在复平面内对应的点为M ,则“a >12”是“点M 在第四象限”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[答案] C[解析] z =(1-2i)(a +i)=a +2+(1-2a )i ,所以复数z 在复平面内对应的点M 的坐标为(a +2,1-2a ),所以点M 在第四象限的充要条件是a +2>0且1-2a <0,解得a >12,故选C.4.设z =log 2(1+m )+ilog 12(3-m )(m ∈R ).(1)若z 在复平面内对应的点在第三象限,求m 的取值范围; (2)若z 在复平面内对应的点在直线x -y -1=0上,求m 的值. [解析] (1)由已知,得 ⎩⎪⎨⎪⎧log 2(1+m )<0, ①log 12(3-m )<0, ② 解①得-1<m <0. 解②得m <2.故不等式组的解集为{x |-1<m <0}, 因此m 的取值范围是{x |-1<m <0}.(2)由已知得,点(log 2(1+m ),log 12(3-m ))在直线x -y -1=0上,即log 2(1+m )-log 12(3-m )-1=0,整理得log 2(1+m )(3-m )=1.从而(1+m )(3-m )=2,即m 2-2m -1=0,解得m =1±2,且当m =1±2时都能使1+m >0,且3-m >0. 故m =1±2.5.设z 1、z 2∈C ,A =z 1·z -2+z -1·z 2,B =z 1·z -1+z 2·z -2,问A 与B 是否可以比较大小?为什么?[解析] 设z 1=a +b i ,z 2=c +d i(a 、b 、c 、d ∈R ),则z -1=a -b i ,z -2=c -d i , ∴A =z 1·z 2+z 2·z -1=(a +b i)(c -d i)+(c +d i)(a -b i)=ac -ad i +bc i -bd i 2+ac -bc i +ad i -bd i 2 =2ac +2bd ∈R ,B =z 1·z -1+z 2·z -2=(a +bi )(a -bi )+(c +di )(c -di )=a 2+b 2+c 2+d 2∈R , ∴A 与B 可以比较大小.。
选修2-2 第一章 1.2 1.2.2 第1课时一、选择题1.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( ) A .4x -y -3=0 B .x +4y -5=0 C .4x -y +3=0 D .x +4y +3=0[答案] A[解析] ∵直线x +4y -8=0的斜率k =-14,∴直线l 的斜率为4,而y ′=4x 3,由y ′=4得x =1而x =1时,y =1,故直线l 的方程为:y -1=4(x -1)即4x -y -3=0.2.已知f (x )=ax 3+9x 2+6x -7,若f ′(-1)=4,则a 的值等于( ) A .193B .163C .103D .133[答案] B[解析] ∵f ′(x )=3ax 2+18x +6,∴由f ′(-1)=4得,3a -18+6=4,即a =163.∴选B.3.(2014·山师附中高二期中)设f (x )=sin x -cos x ,则f (x )在x =π4处的导数f ′(π4)=( )A . 2B .- 2C .0D .22[答案] A[解析] ∵f ′(x )=cos x +sin x , ∴f ′(π4)=cos π4+sin π4=2,故选A.4.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则x 1·x 2·…·x n的值为( )A .1nB .1n +1C .n n +1D .1[答案] B[解析] 对y =x n +1(n ∈N *)求导得y ′=(n +1)x n ,令x =1得在点(1,1)处的切线的斜率k=n +1,在点(1,1)处的切线方程为y -1=(n +1)(x n -1).令y =0,得x n =nn +1.则x 1·x 2·…·x n =12×23×34×…×n -1n ×n n +1=1n +1,故选B.5.(2014·合肥一六八高二期中)下列函数中,导函数是奇函数的是( ) A .y =sin x B .y =e x C .y =ln x D .y =cos x -12[答案] D[解析] 由y =sin x 得y ′=cos x 为偶函数,故A 错;又y =e x 时,y ′=e x 为非奇非偶函数,∴B 错;C 中y =ln x 的定义域x >0,∴C 错;D 中y =cos x -12时,y ′=-sin x 为奇函数,∴选D.6.已知物体的运动方程是s =14t 4-4t 3+16t 2(t 表示时间,s 表示位移),则瞬时速度为0的时刻是( )A .0秒、2秒或4秒B .0秒、2秒或16秒C .2秒、8秒或16秒D .0秒、4秒或8秒 [答案] D[解析] 显然瞬时速度v =s ′=t 3-12t 2+32t =t (t 2-12t +32),令v =0可得t =0,4,8.故选D.二、填空题7.过曲线y =cos x 上点P ⎝⎛⎭⎫π3,12且与在这点的切线垂直的直线方程为________. [答案] 2x -3y -2π3+32=0[解析] ∵y =cos x ,∴y ′=-sin x , 曲线在点P ⎝⎛⎭⎫π3,12处的切线斜率是 y ′|x =π3=-sin π3=-32.∴过点P 且与切线垂直的直线的斜率为23, ∴所求的直线方程为y -12=23⎝⎛⎭⎫x -π3, 即2x -3y -2π3+32=0.[点评] 在确定与切线垂直的直线方程时,应注意考察函数在切点处的导数y ′是否为零,当y ′=0时,切线平行于x 轴,过切点P 垂直于切线的直线斜率不存在.8.(2014·杭州质检)若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为________. [答案] (2,+∞)[解析] 由f (x )=x 2-2x -4ln x ,得函数定义域为(0,+∞),且f ′(x )=2x -2-4x =2x 2-2x -4x =2·x 2-x -2x =2·(x +1)(x -2)x ,f ′(x )>0,解得x >2,故f ′(x )>0的解集为(2,+∞).9.在曲线y =4x 2上求一点P ,使得曲线在该点处的切线的倾斜角为135°,则P 点坐标为________.[答案] (2,1)[解析] 设P (x 0,y 0),∵y ′=⎝⎛⎭⎫4x 2′=(4x -2)′=-8x -3,tan135°=-1, ∴-8x -30=-1.∴x 0=2,y 0=1.三、解答题10.求下列函数的导数:(1)y =x (x 2+1x +1x 3);(2)y =(x +1)(1x -1);(3)y =sin 4x 4+cos 4x4;(4)y =1+x 1-x +1-x 1+x .[解析] (1)∵y =x ⎝⎛⎭⎫x 2+1x +1x 3=x 3+1+1x 2, ∴y ′=3x 2-2x 3.(2)∵y =(x +1)⎝⎛⎭⎫1x -1=-x 12+x -12,∴y ′=-12x -12-12x -32=-12x ⎝⎛⎭⎫1+1x . (3)∵y =sin 4x 4+cos 4x4=⎝⎛⎭⎫sin 2x 4+cos 2x 42-2sin 2x 4cos 2x4=1-12sin 2x 2=1-12·1-cos x 2=34+14cos x ,∴y ′=-14sin x .(4)∵y =1+x 1-x +1-x 1+x =(1+x )21-x +(1-x )21-x=2+2x 1-x =41-x-2, ∴y ′=⎝⎛⎭⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.一、选择题11.(2014·长春市期末调研)已知直线y =kx 是y =ln x 的切线,则k 的值为( ) A .-e B .e C .-1eD .1e[答案] D[解析] y ′=1x =k ,∴x =1k ,切点坐标为⎝⎛⎭⎫1k ,1, 又切点在曲线y =ln x 上,∴ln 1k =1,∴1k =e ,k =1e.12.(2014·山师附中高二期中)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值为( )A .2B .-1C .1D .-2 [答案] C[解析] 由条件知,点A 在直线上,∴k =2,又点A 在曲线上,∴a +b +1=3,∴a +b =2.由y =x 3+ax +b 得y ′=3x 2+a ,∴3+a =k ,∴a =-1,∴b =3,∴2a +b =1.13.若函数f (x )=e x sin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为( ) A .π2B .0C .钝角D .锐角 [答案] C[解析] y ′|x =4=(e x sin x +e x cos x )|x =4=e 4(sin4+cos4)=2e 4sin(4+π4)<0,故倾斜角为钝角,选C.14.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2013(x )等于( )A .sin xB .-sin xC .cos xD .-cos x[答案] C[解析]f0(x)=sin x,f1(x)=f0′(x)=(sin x)′=cos x,f2(x)=f1′(x)=(cos x)′=-sin x,f3(x)=f2′(x)=(-sin x)′=-cos x,f4(x)=f3′(x)=(-cos x)′=sin x,∴4为最小正周期,∴f2013(x)=f1(x)=cos x.故选C.二、填空题15.等比数列{a n}中,a1=2,a8=4,函数f(x)=x(x-a1)(x-a2)…(x-a8),则f′(0)=________.[答案]212[解析]f′(x)=x′·[(x-a1)(x-a2)…(x-a8)]+[(x-a1)(x-a2)…(x-a8)]′·x=(x-a1)(x-a2)…(x-a8)+[(x-a1)(x-a2)…(x-a8)]′·x,所以f′(0)=(0-a1)(0-a2)...(0-a8)+[(0-a1)(0-a2)...(0-a8)]′.0=a1a2 (8)因为数列{a n}为等比数列,所以a2a7=a3a6=a4a5=a1a8=8,所以f′(0)=84=212.16.(2014·宁夏三市联考)经过点P(2,1)且与曲线f(x)=x3-2x2+1相切的直线l的方程是________.[答案]4x-y-7=0或y=1[解析]设切点为(x0,x30-2x20+1),由k=f′(x0)=3x20-4x0,可得切线方程为y-(x30-2x20+1)=(3x20-4x0)(x-x0),代入点P(2,1)解得:x0=0或x0=2.当x0=0时切线方程为y=1;当x0=2时切线方程为4x-y-7=0.综上得直线l的方程是:4x-y-7=0或y=1.三、解答题17.已知两条曲线y=sin x、y=cos x,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.[解析]由于y=sin x、y=cos x,设两条曲线的一个公共点为P(x0,y0),∴两条曲线在P(x0,y0)处的斜率分别为k1=y′|x=x0=cos x0,k2=y′|x=x0=-sin x0.若使两条切线互相垂直,必须cos x0·(-sin x0)=-1,即sin x0·cos x0=1,也就是sin2x0=2,这是不可能的,∴两条曲线不存在公共点,使在这一点处的两条切线互相垂直.18.已知函数f (x )=ax -6x 2+b 的图象在点M (-1,f (-1))处的切线的方程为x +2y +5=0,求函数的解析式.[分析] f (x )在点M 处切线方程为x +2y +5=0有两层含义,(一)是点M 在f (x )的图象上,且在直线x +2y +5=0上,(二)是f ′(-1)=-12.[解析] 由条件知,-1+2f (-1)+5=0, ∴f (-1)=-2, ∴-a -61+b=-2,(1) 又直线x +2y +5=0的斜率k =-12,∴f ′(-1)=-12,∵f ′(x )=-ax 2+12x +ab(x 2+b )2,∴-a -12+ab (1+b )2=-12,(2) 由(1)(2)解得,a =2,b =3.(∵b +1≠0,∴b =-1舍去). ∴所求函数解析式为f (x )=2x -6x 2+3.。
1.6 微积分基本定理[学习目标]1.直观了解并掌握微积分基本定理的含义. 2.会利用微积分基本定理求函数的定积分. [知识链接]1.导数与定积分有怎样的联系?答 导数与定积分都是微积分学中两个最基本、最重要的概念,运用它们之间的联系,我们可以找出求定积分的方法,求导数与定积分是互为逆运算.2.在下面图(1)、图(2)、图(3)中的三个图形阴影部分的面积分别怎样表示?答 根据定积分与曲边梯形的面积的关系知: 图(1)中S =⎠⎛ab f (x )d x ,图(2)中S =-⎠⎛ab f (x )d x ,图(3)中S =⎠⎛0b f (x )d x -⎠⎛a0f (x )d x .[预习导引] 1.微积分基本定理如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ).2.函数f (x )与其一个原函数的关系 (1)若f (x )=c (c 为常数),则F (x )=cx ; (2)若f (x )=x n (n ≠-1),则F (x )=1n +1·x n +1;(3)若f (x )=1x ,则F (x )=ln_x (x >0);(4)若f (x )=e x ,则F (x )=e x ;(5)若f (x )=a x,则F (x )=a xln a(a >0且a ≠1);(6)若f (x )=sin x ,则F (x )=-cos_x ; (7)若f (x )=cos x ,则F (x )=sin_x .要点一 求简单函数的定积分 例1 计算下列定积分 (1)⎠⎛123d x ; (2)⎠⎛02(2x +3)d x ;(3)⎠⎛3-1(4x -x 2)d x ; (4)⎠⎛12(x -1)5d x .解 (1)因为(3x )′=3,所以⎠⎛123d x =(3x )⎪⎪⎪21=3×2-3×1=3. (2)因为(x 2+3x )′=2x +3, 所以⎠⎛02(2x +3)d x =(x 2+3x )⎪⎪⎪2=22+3×2-(02+3×0)=10.(3)因为⎝⎛⎭⎫2x 2-x33′=4x -x 2, 所以⎠⎛3-1(4x -x 2)d x =⎝⎛⎭⎫2x 2-x 33⎪⎪⎪3-1=⎝⎛⎭⎫2×32-333-⎣⎡⎦⎤2×(-1)2-(-1)33=203. (4)因为⎣⎡⎦⎤16(x -1)6′=(x -1)5, 所以⎠⎛21(x -1)5d x=16(x -1)6⎪⎪⎪21=16(2-1)6-16(1-1)6 =16. 规律方法 (1)用微积分基本定理求定积分的步骤: ①求f (x )的一个原函数F (x ); ②计算F (b )-F (a ). (2)注意事项:①有时需先化简,再求积分;②f (x )的原函数有无穷多个,如F (x )+c ,计算时,一般只写一个最简单的,不再加任意常数c .跟踪演练1 求下列定积分: (1)∫π20(3x +sin x )d x ;(2)⎠⎛21⎝⎛⎭⎫e x -1x d x . 解 (1)∵⎝⎛⎭⎫32x 2-cos x ′=3x +sin x , ∴∫π20(3x +sin x )d x =⎝⎛⎭⎫32x 2-cos x ⎪⎪⎪⎪π20=⎣⎡⎦⎤32×⎝⎛⎭⎫π22-cos π2-⎝⎛⎭⎫32×0-cos 0=3π28+1; (2)∵(e x -ln x )′=e x -1x,∴⎠⎛21(e x-1x )d x =()e x -ln x ⎪⎪⎪21=(e 2-ln 2)-(e -0) =e 2-e -ln 2.要点二 求较复杂函数的定积分 例2 求下列定积分:(1)⎠⎛41x (1-x )d x ; (2)∫π202cos 2x2d x ;(3)⎠⎛41(2x +1x)d x . 解 (1)∵x (1-x )=x -x , 又∵⎝⎛⎭⎫23x 32-12x 2′=x -x . ∴⎠⎛41x (1-x )d x =⎝⎛⎭⎫23x 32-12x 2⎪⎪⎪41 =⎝⎛⎭⎫23×432-12×42-⎝⎛⎭⎫23-12=-176. (2)∵2cos 2x2=1+cos x ,(x +sin x )′=1+cos x ,∴原式=∫π20(1+cos x )d x =(x +sin x )⎪⎪⎪⎪π20=π2+1.(3)∵⎝⎛⎭⎫2xln 2+2x ′=2x +1x,∴⎠⎛41(2x+1x)d x =⎝⎛⎭⎫2x ln 2+2x ⎪⎪⎪41 =⎝⎛⎭⎫24ln 2+24-⎝⎛⎭⎫2ln 2+2=14ln 2+2. 规律方法 求较复杂函数的定积分的方法:(1)掌握基本初等函数的导数以及导数的运算法则,正确求解被积函数的原函数,当原函数不易求时,可将被积函数适当变形后求解,具体方法是能化简的化简,不能化简的变为幂函数、正、余弦函数、指数、对数函数与常数的和与差. (2)确定积分区间,分清积分下限与积分上限. 跟踪演练2 计算下列定积分: (1)∫π30(sin x -sin 2x )d x ;(2)⎠⎛0ln 2e x (1+e x )d x .解 (1)sin x -sin 2x 的一个原函数是-cos x + 12cos 2x ,所以∫π30(sin x -sin 2x )d x =⎝⎛⎭⎫-cos x +12cos 2x ⎪⎪⎪⎪π30=⎝⎛⎭⎫-12-14-⎝⎛⎭⎫-1+12=-14. (2)∵e x (1+e x )=e x +e 2x , ∴⎝⎛⎭⎫e x +12e 2x ′=e x +e 2x , ∴⎠⎛0ln 2e x (1+e x )d x =⎠⎛0ln 2()e x+e2xd x=⎝⎛⎭⎫e x +12e 2x ⎪⎪⎪ln 2=e ln 2+12e 2ln 2-e 0-12e 0=2+12×4-1-12=52.要点三 定积分的简单应用例3 已知f (a )=⎠⎛10(2ax 2-a 2x )d x ,求f (a )的最大值.解 ∵⎝⎛⎭⎫23ax 3-12a 2x 2′=2ax 2-a 2x , ∴⎠⎛10(2ax 2-a 2x )d x =⎝⎛⎭⎫23ax 3-12a 2x 2⎪⎪⎪10=23a -12a 2, 即f (a )=23a -12a 2=-12⎝⎛⎭⎫a 2-43a +49+29 =-12⎝⎛⎭⎫a -232+29, ∴当a =23时,f (a )有最大值29.规律方法 定积分的应用体现了积分与函数的内在联系,可以通过积分构造新的函数,进而对这一函数进行性质、最值等方面的考查,解题过程中注意体会转化思想的应用. 跟踪演练3 已知f (x )=ax 2+bx +c (a ≠0),且f (-1)=2,f ′(0)=0,⎠⎛10f (x )d x =-2,求a 、b 、c 的值.解 由f (-1)=2,得a -b +c =2. ① 又f ′(x )=2ax +b ,∴f ′(0)=b =0, ②而⎠⎛10f (x )d x =⎠⎛10(ax 2+bx +c )d x =⎝⎛⎭⎫13ax 3+12bx 2+cx ⎪⎪⎪1=13a +12b +c , ∴13a +12b +c =-2, ③由①②③式得a =6,b =0,c =-4. 要点四 求分段函数的定积分 例4 计算下列定积分:(1)若f (x )=⎩⎪⎨⎪⎧x 2 (x ≤0)cos x -1 (x >0),求∫π2-1f (x )d x ;(2)⎠⎛30|x 2-4|d x .解 (1)∫π2-1f (x )d x =⎠⎛0-1x 2d x +∫π20(cos x -1)d x ,又∵⎝⎛⎭⎫13x 3′=x 2,(sin x -x )′=cos x -1 ∴原式=13x 3⎪⎪⎪0-1+(sin x -x )⎪⎪⎪⎪π20=⎝⎛⎭⎫0+13+⎝⎛⎭⎫sin π2-π2-(sin 0-0) =43-π2.(2)∵|x 2-4|=⎩⎪⎨⎪⎧x 2-4 (x ≥2或x ≤-2),4-x 2(-2<x <2), 又∵⎝⎛⎭⎫13x 3-4x ′=x 2-4,⎝⎛⎭⎫4x -13x 3′=4-x 2, ∴⎠⎛30|x 2-4|d x =⎠⎛20(4-x 2)d x +⎠⎛32(x 2-4)d x=⎝⎛⎭⎫4x -13x 3⎪⎪⎪20+⎝⎛⎭⎫13x 3-4x ⎪⎪⎪32 =⎝⎛⎭⎫8-83-0+(9-12)-⎝⎛⎭⎫83-8=233. 规律方法 (1)求分段函数的定积分时,可利用积分性质将其表示为几段积分和的形式; (2)带绝对值的解析式,先根据绝对值的意义找到分界点,去掉绝对值号,化为分段函数; (3)含有字母参数的绝对值问题要注意分类讨论. 跟踪演练4 求⎠⎛3-3(|2x +3|+|3-2x |)d x .解 ∵|2x +3|+|3-2x |=⎩⎪⎨⎪⎧-4x ,x <-32,6,-32≤x ≤32,4x ,x >32,∴⎠⎛3-3(|2x +3|+|3-2x |)d x=∫-32-3(-4x )d x +∫32-326d x +∫3324x d x=-2x 2⎪⎪⎪⎪-32-3+6x ⎪⎪⎪32-32+2x 2⎪⎪⎪⎪332=45.1.∫π2-π2(1+cos x )d x 等于( )A .πB .2C .π-2D .π+2答案 D解析 ∵(x +sin x )′=1+cos x , ∴⎪⎪∫π2-π2(1+cos x )d x =(x +sin x )π2-π2=π2+sin π2-⎣⎡⎦⎤-π2+sin ⎝⎛⎭⎫-π2=π+2. 2.若⎠⎛1a ⎝⎛⎭⎫2x +1x d x =3+ln 2,则a 的值是( ) A .5 B .4 C .3 D .2答案 D解析 ⎠⎛1a ⎝⎛⎭⎫2x +1x d x =⎠⎛1a 2x d x +⎠⎛1a 1xd x =x 2|a 1+ ln x ⎪⎪a1=a 2-1+ln a =3+ln 2,解得a =2.3.⎠⎛02⎝⎛⎭⎫x 2-23x d x =________. 答案 43解析 ⎠⎛02⎝⎛⎭⎫x 2-23x d x =⎠⎛02x 2d x -⎠⎛0223x d x =x 33⎪⎪⎪⎪20-x 2320=83-43=43. 4.已知f (x )=⎩⎨⎧4x -2π,0≤x ≤π2,cos x ,π2<x ≤π,计算⎠⎛0πf (x )d x .解 ⎠⎛0πf (x )d x =∫π20f (x )d x +错误!f (x )d x=∫π20(4x -2π)d x +错误!cos x d x ,取F 1(x )=2x 2-2πx ,则F 1′(x )=4x -2π; 取F 2(x )=sin x ,则F 2′(x )=cos x .所以∫π20(4x -2π)d x +错误!cos x d x =(2x 2-2πx )错误!+sin x ⎪⎪⎪ππ2=-12π2-1,即⎠⎛0πf (x )d x =-12π2-1.1.求定积分的一些常用技巧(1)对被积函数,要先化简,再求积分.(2)若被积函数是分段函数,依据定积分“对区间的可加性”,分段积分再求和.(3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分.2.由于定积分的值可取正值,也可取负值,还可以取0,而面积是正值,因此不要把面积理解为被积函数对应图形在某几个区间上的定积分之和,而是在x 轴下方的图形面积要取定积分的相反数.一、基础达标1.已知物体做变速直线运动的位移函数s =s (t ),那么下列命题正确的是( ) ①它在时间段[a ,b ]内的位移是s =s (t )⎪⎪ba ; ②它在某一时刻t =t 0时,瞬时速度是v =s ′(t 0); ③它在时间段[a ,b ]内的位移是s =li m n→∞∑i =1n b -ans ′(ξi ); ④它在时间段[a ,b ]内的位移是s =⎠⎛ab s ′(t )d t .A .①B .①②C .①②④D .①②③④答案 D2.若F ′(x )=x 2,则F (x )的解析式不正确的是( ) A .F (x )=13x 3B .F (x )=x 3C .F (x )=13x 3+1D .F (x )=13x 3+c (c 为常数)答案 B解析 若F (x )=x 3,则F ′(x )=3x 2,这与F ′(x )=x 2不一致,故选B. 3.⎠⎛01(e x +2x )d x 等于( )A .1B .e -1C .eD .e +1答案 C解析 ⎠⎛01(e x +2x )d x =(e x +x 2)|10=(e 1+12)-(e 0+02)=e.4.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤0,1,0<x ≤1,则⎠⎛1-1f (x )d x 的值为( )A.32 B .43C .23D .-23答案 B解析 ⎠⎛1-1f (x )d x =⎠⎛0-1x 2d x +⎠⎛011d x =⎪⎪x 330-1+1=13+1=43,故选B. 5.设函数f (x )=ax 2+c (a ≠0),若⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________.答案33解析 由已知得13a +c =ax 20+c ,∴x 20=13,又∵0≤x 0≤1,∴x 0=33. 6.(2013·湖南)若⎠⎛0T x 2d x =9,则常数T 的值为________.答案 3解析 ⎠⎛0T x 2d x =⎪⎪13x 3T 0=13T 3=9,即T 3=27,解得T =3. 7.已知⎠⎛1-1(x 3+ax +3a -b )d x =2a +6且f (t )=⎠⎛0t (x 3+ax +3a -b )d x 为偶函数,求a ,b 的值.解 ∵f (x )=x 3+ax 为奇函数, ∴⎠⎛1-1(x 3+ax )d x =0,∴⎠⎛1-1(x 3+ax +3a -b )d x=⎠⎛1-1(x 3+ax )d x +⎠⎛1-1(3a -b )d x=0+(3a -b )[1-(-1)]=6a -2b . ∴6a -2b =2a +6,即2a -b =3,①又f (t )=⎪⎪⎣⎡⎦⎤x 44+a2x 2+(3a -b )x t 0 =t 44+at 22+(3a -b )t 为偶函数, ∴3a -b =0,②由①②得a =-3,b =-9. 二、能力提升8.∫π20sin 2x2d x 等于( )A.π4B .π2-1C .2D .π-24答案 D解析 ∫π20sin 2x 2d x =∫π201-cos x 2d x =⎪⎪12(x -sin x )π20=π-24,故选D. 9.(2013·江西)若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D . S 3<S 2<S 1答案 B解析 S 1=⎠⎛12x 2d x =13x 3⎪⎪21=73,S 2=⎪⎪⎪⎠⎛121x d x =ln x 21=ln 2<1,S 3=⎠⎛12e x d x =e x |21=e 2-e =e(e -1)>73,所以S 2<S 1<S 3,选B.10.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0.若f [f (1)]=1,则a =________.答案 1解析 因为x =1>0,所以f (1)=lg 1=0.又x ≤0时,f (x )=x +⎠⎛0a 3t 2d t =x +t 3|a 0=x +a 3,所以f (0)=a 3.因为f [f (1)]=1,所以a 3=1,解得a =1.11.设f (x )是一次函数,且⎠⎛01f (x )d x =5,⎠⎛01xf (x )d x =176,求f (x )的解析式.解 ∵f (x )是一次函数,设f (x )=ax +b (a ≠0),则 ⎠⎛01f (x )d x =⎠⎛01(ax +b )d x =⎠⎛01ax d x +⎠⎛01b d x =12a +b =5, ⎠⎛01xf (x )d x =⎠⎛01x (ax +b )d x =⎠⎛01(ax 2)d x +⎠⎛a 1b x d x =13a +12b =176. 由⎩⎨⎧12a +b =513a +12b =176,得⎩⎪⎨⎪⎧a =4b =3.即f (x )=4x +3.12.若函数f (x )=⎩⎪⎨⎪⎧x 3,x ∈[0,1],x ,x ∈(1,2],2x ,x ∈(2,3].求⎠⎛03f (x )d x 的值.解 由积分的性质,知:⎠⎛03f (x )d x =⎠⎛01f (x )d x +⎠⎛12f (x )d x +⎠⎛23f (x )d x =⎠⎛01x 3d x +⎠⎛12x d x +⎠⎛232x d x =x 44⎪⎪⎪⎪10+23x 3221⎪⎪+2x ln 232 =14+432-23+8ln 2-4ln 2=-512+432+4ln 2. 三、探究与创新13.求定积分⎠⎛3-4|x +a |d x . 解 (1)当-a ≤-4即a ≥4时,原式=⎠⎛3-4(x +a )d x = ⎪⎪⎝⎛⎭⎫x 22+ax 3-4=7a -72. (2)当-4<-a <3即-3<a <4时,原式=⎠⎛-4-a [-(x +a )]d x +⎠⎛3-a(x +a )d x =⎝⎛⎭⎫-x 22-ax ⎪⎪-a -4+ ⎪⎪⎝⎛⎭⎫x 22+ax 3-a =a 22-4a +8+⎝⎛⎭⎫a 22+3a +92 =a 2-a +252. (3)当-a ≥3即a ≤-3时,原式=⎠⎛3-4[-(x +a )]d x = ⎪⎪⎝⎛⎭⎫-x 22-ax 3-4= -7a +72. 综上,得⎠⎛3-4|x +a |d x =⎩⎪⎨⎪⎧ 7a -72(a ≥4),a 2-a +252(-3<a <4),-7a +72(a ≤-3).高中数学学习技巧:在学习的过程中逐步做到:提出问题,实验探究,展开讨论,形成新知,应用反思。
学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.实数a,b,c不全为0等价于( )A.a,b,c均不为0B.a,b,c中至多有一个为0C.a,b,c中至少有一个为0D.a,b,c中至少有一个不为0【解析】“不全为0”的对立面为“全为0”,故“不全为0”的含义为“至少有一个不为0”.【答案】 D2.(2014·山东高考)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是( )A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根【解析】依据反证法的要求,即至少有一个的反面是一个也没有,直接写出命题的否定.方程x3+ax+b=0至少有一个实根的反面是方程x3+ax+b=0没有实根,故应选A.【答案】 A3.已知a,b是异面直线,直线c平行于直线a,那么c与b的位置关系为( )A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线【解析】假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c与b不可能是平行直线,故应选C.【答案】 C4.设a,b,c大于0,则3个数:a+1b,b+1c,c+1a的值( ) 【导学号:60030059】A.都大于2 B.至少有一个不大于2 C.都小于2 D.至少有一个不小于2【解析】 假设a +1b ,b +1c ,c +1a 三个数都小于2,则必有a +1b +b +1c +c +1a <6,而⎝ ⎛⎭⎪⎫a +1b +⎝ ⎛⎭⎪⎫b +1c +⎝ ⎛⎭⎪⎫c +1a =⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b +⎝ ⎛⎭⎪⎫c +1c ≥2a·1a +2b·1b +2c·1c =6,故二者相矛盾.所以假设不成立.【答案】 D5.用反证法证明“三角形中最多只有一个内角为钝角”,下列假设中正确的是( )A .有两个内角是钝角B .有三个内角是钝角C .至少有两个内角是钝角D .没有一个内角是钝角【解析】 “最多只有一个”的否定是“至少有两个”,故选C.【答案】 C二、填空题6.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是___________________________________________________________.【解析】 “至少有一个”的否定是“一个也没有”,故结论的否定是:没有一个面是三角形或四边形或五边形.【答案】 没有一个面是三角形或四边形或五边形7.设a ,b 是两个实数,给出下列条件:①a +b =1;②a +b =2;③a +b >2;④a 2+b 2>2. 其中能推出“a ,b 中至少有一个大于1”的条件是________(填序号).【解析】 假设a ,b 均不大于1,即a ≤1,b ≤1.则①②④均有可能成立,故①②④不能推出“a ,b 中至少有一个大于1”,故选③.【答案】 ③8.(2016·开原模拟)如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则△A 1B 1C 1和△A 2B 2C 2分别是________.(填三角形的种类)【解析】 由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形.由⎩⎪⎨⎪⎧ sin A2=cos A1=sin ⎝ ⎛⎭⎪⎫π2-A1,sin B2=cos B1=sin ⎝ ⎛⎭⎪⎫π2-B1,sin C2=cos C1=sin ⎝ ⎛⎭⎪⎫π2-C1, 得⎩⎪⎨⎪⎧ A2=π2-A1,B2=π2-B1,C2=π2-C1.那么,A 2+B 2+C 2=π2,这与三角形内角和为180°相矛盾.所以假设不成立,又显然△A 2B 2C 2不是直角三角形,所以△A 2B 2C 2是钝角三角形.【答案】 锐角三角形,纯角三角形三、解答题9.已知f (x )=a x +x -2x +1(a >1),证明:方程f (x )=0没有负数根.【证明】 假设x 0是f (x )=0的负数根,则x 0<0且x 0≠-1且ax 0=-x0-2x0+1, 由0<ax 0<1⇒0<-x0-2x0+1<1, 解得12<x 0<2,这与x 0<0矛盾,所以假设不成立,故方程f (x )=0没有负数根.10.已知a ,b ,c ∈R ,a +b +c =0,abc =1,求证:a ,b ,c 中至少有一个大于32.【证明】 假设a ,b ,c 都小于等于32,即a ≤32,b ≤32,c ≤32.∵abc =1,∴a ,b ,c 三数同为正或一正两负.又a +b +c =0,∴a ,b ,c 只能是一正两负,不妨设a >0,b <0,c <0.则b +c =-a ,bc =1a ,∴b ,c 为方程x 2+ax +1a =0的两根,∴Δ=a 2-4a ≥0,即a 3≥4.∴a ≥ 34>3278=32,这与a ≤32矛盾,∴a ,b ,c 中至少有一个大于32.[能力提升]1.下列命题运用“反证法”证明正确的是( )A .命题:若a >b >0,则a >b .用反证法证明:假设a >b 不成立,则a <b .若a <b ,则a <b ,与已知a >b 矛盾.故假设不成立,结论a>b 成立B .命题:已知二次方程ax 2+bx +c =0(a ,b ,c∈R ,且a ≠0)有实根,求证:Δ=b 2-4ac ≥0.用反证法证明:假设Δ=b 2-4ac <0,则ax 2+bx +c =0无实根,与已知方程有实根矛盾,∴Δ≥0C .命题:已知实数p 满足不等式(2p +1)(p +2)<0,证明:关于x 的方程x 2-2x +5-p 2=0无实数根.用反证法证明:假设方程x 2-2x +5-p 2=0有实数根,由已知实数p 满足不等式(2p +1)(p +2)<0,解得-2<p <-12,而关于x 的方程x 2-2x +5-p 2=0的根的判别式Δ=4(p 2-4),∵-2<p <-12,∴14<p 2<4,∴Δ<0,即关于x 的方程x 2-2x +5-p 2=0无实数根D .命题:已知函数f (x )是(-∞,+∞)上的增函数,a ,b∈R .“若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0”.用反证法证明:假设a +b <0,则a <-b ,b <-a .∵f (x )是(-∞,+∞)上的增函数,则f (a )<f (-b ),f (b )<f (-a ),∴f (a )+f (b )<f (-a )+f (-b ).这与已知相矛盾.∴原命题成立【解析】 A .反证法中的反证不全面,“a>b ”的否定应为“a ≤b ”.B .本题犯了“循环论证”的错误,实质上没有求出该题.C.在解题的过程中并没有用到假设的结论,故不是反证法.【答案】 D2.设a,b,c均为正实数,P=a+b-c,Q=b+c-a,R=c+a-b,则“PQR>0”是“P,Q,R同时大于0”的( ) 【导学号:60030060】A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】首先,若P,Q,R同时大于0,则必有PQR>0成立.其次,若PQR>0,且P,Q,R不都大于0,则必有两个为负,不妨设P<0,Q<0,即a+b-c<0,b+c-a<0,所以b<0,与b>0矛盾.故P,Q,R都大于0.【答案】 C3.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°矛盾,故假设错误;②所以一个三角形不能有两个直角;③假设△ABC中有两个直角,不妨设∠A=90°,∠B=90°.上述步骤的正确顺序为__________.【解析】由反证法证明数学命题的步骤可知,上述步骤的顺序应为③①②.【答案】③①②4.已知函数f(x)=x22x-2,如果数列{a n}满足a1=4,a n+1=f(a n),求证:当n≥2时,恒有a n<3成立.【证明】假设a n≥3(n≥2),则由已知得a n+1=f(a n)=a2n2an-2,所以当n≥2时,an+1an=an2an-2=12·⎝⎛⎭⎪⎫1+1an-1≤12⎝⎛⎭⎪⎫1+12=34<1(因为a n-1≥3-1),又易证a n>0,所以当n≥2时,a n+1<a n,所以当n>2时,a n<a n-1<…<a2;而当n=2时,a2=a212a1-2=168-2=83<3,所以当n≥2时,a n<3;这与假设矛盾,故假设不成立,所以当n≥2时,恒有a n<3成立.。
课时提升作业(十)定积分的概念一、选择题(每小题3分,共12分)1.(2014·广州高二检测)关于定积分m=dx,下列说法正确的是( )A.被积函数为y=-xB.被积函数为y=-C.被积函数为y=-x+C,D.被积函数为y=-x3【解析】选B.由定积分的定义知,被积函数为y=-.2.定积分f(x)dx(f(x)>0)的积分区间是( )A.[-2,2]B.[0,2]C.[-2,0]D.不确定【解析】选A.由定积分的概念得定积分f(x)dx的积分区间是[-2,2].3.设f(x)=则f(x)dx的值是( )A.x2dxB.2x dxC.x2dx+2x dxD.2x dx+x2dx【解析】选D.因为f(x)在不同区间上的解析式不同,所以积分区间应该与对应的解析式一致.利用定积分的性质可得正确答案为D.4.(2014·南昌高二检测)下列等式不成立的是( )A.[mf(x)+ng(x)]dx=m f(x)dx+n g(x)dxB.[f(x)+1]dx=f(x)dx+b-aC.f(x)g(x)dx=f(x)dx·g(x)dxD.sinxdx=sinxdx+sinxdx【解析】选C.由定积分的性质知选项A,B,D正确.【误区警示】应用定积分的性质计算定积分时,要特别注意积分区间及被积函数的符号.二、填空题(每小题4分,共8分)5.(2014·长春高二检测)定积分(-3)dx=__________.【解析】3dx表示图中阴影部分的面积S=3×2=6,(-3)dx=-3dx=-6.答案:-66.计算:(1-cosx)dx=________.【解题指南】根据定积分的几何意义,运用余弦曲线的对称性计算,或通过补形转化为矩形的面积计算.【解析】根据定积分的几何意义,得1dx=2π,cosxdx=cosxdx+cosxdx+cosxdx+cosxdx=cosxdx-cosxdx-cosxdx+cosxdx=0,所以(1-cosx)dx=1dx-cosxdx=2π-0=2π.答案:2π【一题多解】在公共积分区间[0,2π]上,(1-cosx)dx表示直线y=1与余弦曲线y=cosx在[0,2π]上围成封闭图形的面积,如图,由于余弦曲线y=cosx在[0,π]上关于点中心对称,在上关于点中心对称,所以区域①与②的面积相等,所求平面图形的面积等于边长分别为1,2π的矩形的面积,其值为2π.所以(1-cosx)dx=2π.答案:2π三、解答题(每小题10分,共20分)7.(2014·济南高二检测)已知x3dx=,x3dx=,x2dx=,x2dx=,求:(1)3x3dx.(2)6x2dx.(3)(3x2-2x3)dx.【解析】(1)3x3dx=3x3dx=3=3=12.(2)6x2dx=6x2dx=6(x2dx+x2dx)=6=126.(3)(3x2-2x3)dx=3x2dx-2x3dx=3×-2×=-.8.求定积分(-x)dx的值.【解析】(-x)dx表示圆(x-1)2+y2=1(y≥0)的一部分与直线y=x所围成的图形(图中阴影部分)的面积,故原式=×π×12-×1×1=-.【拓展延伸】1.利用定积分的几何意义求定积分的方法步骤(1)确定被积函数和积分区间.(2)准确画出图形.(3)求出各部分的面积.(4)写出定积分,注意当f(x)≥0时,S=f(x)dx,而当f(x)≤0时,S=-f(x)dx.2.利用定积分的几何意义求定积分的注意点准确理解其几何意义,同时要合理利用函数的奇偶性、对称性来解决问题.另外,要注意结合图形的直观辅助作用.一、选择题(每小题4分,共12分)1.(2014·黄冈高二检测)设曲线y=x2与直线y=x所围成的封闭区域的面积为S,则下列等式成立的是( )A.S=(x2-x)dxB.S=(x-x2)dxC.S=(y2-y)dyD.S=(y-)dy【解析】选B.将曲线方程y=x2与直线方程y=x联立方程组,解得x=0或x=1,结合图形可得B正确.2.如图所示,图中曲线方程为y=x2-1,用定积分表示围成封闭图形(阴影部分)的面积是( )A.B.(x2-1)dxC.|x2-1|dxD.(x2-1)dx+(x2-1)dx【解题指南】由定积分的几何意义及性质即可得出.【解析】选 C.由定积分的几何意义和性质可得:图中围成封闭图形(阴影部分)的面积S=(1-x2)dx+(x2-1)dx=|x2-1|dx,故选C.【举一反三】将本题中的函数改为f(x)=x-1,则(x-1)dx=__________.【解析】直线y=x-1,与x=0,x=1.y=0围成的图形为三角形,面积为S=×1×1=.由定积分的几何意义得(x-1)dx=-.答案:-3.(2013·天津高二检测)曲线y=与直线y=x,x=2所围成的图形面积用定积分可表示为( )A.dxB.dxC.dxD.dx【解析】选A.如图所示,阴影部分的面积可表示为xdx-dx=dx.二、填空题(每小题4分,共8分)4.(2014·深圳高二检测)定积分2014dx=__________.【解析】根据定积分的几何意义2014dx表示直线x=2014,x=2015,y=0,y=2014围成的图形的面积,故2014dx=2014×(2015-2014)=2014.答案:20145.定积分(2+)dx=________.【解题指南】利用定积分的几何意义先分别求出2dx,dx.再由性质求和.【解析】原式=2dx+dx.因为2dx=2,dx=,所以(2+)dx=2+.答案:2+三、解答题(每小题10分,共20分)6.(2014·青岛高二检测)根据定积分的几何意义求下列定积分的值:(1)xdx.(2)cosxdx.(3)|x|dx.【解析】(1)如图(1),xdx=-A1+A1=0.(2)如图(2),cosxdx=A1-A2+A3=0.(3)如图(3),因为A1=A2,所以|x|dx=2A1=2×=1.(A1,A2,A3分别表示图中相应各处面积)【拓展延伸】利用几何意义求定积分的注意点(1)关键是准确确定被积函数的图象,以及积分区间.(2)正确利用相关的几何知识求面积.(3)不规则的图形常用分割法求面积,注意分割点的准确确定.7.一辆汽车的速度——时间曲线如图所示,求汽车在这一分钟内行驶的路程.【解析】依题意,汽车的速度v与时间t的函数关系式为v(t)=所以该汽车在这一分钟内所行驶的路程为s=v(t)dt=tdt+(50-t)dt+10dt=300+400+200=900(米).关闭Word文档返回原板块。
最新人教版高中数学选修2-2综合测试题及答案2套最新人教版高中数学选修2-2综合测试题及答案2套模块综合检测(A)一、选择题1.复数z=2-i(i为虚数单位)在复平面内对应的点所在象限为()A。
第一象限B。
第二象限C。
第三象限D。
第四象限解析:∵z=2-i=(2.-1),在第四象限.∴复数z对应的点的坐标为(2.-1)。
答案:D2.函数f(x)=x^3+4x+5的图象在x=1处的切线在x轴上的截距为()A。
10B。
5/3C。
-1D。
-7/3解析:f′(x)=3x^2+4,f′(1)=7,f(1)=10,y-10=7(x-1),y=7(x-1)+10时,x=7/3.答案:D3.类比下列平面内的三个结论所得的空间内的结论成立的是()①平行于同一直线的两条直线平行;②一条直线如果与两条平行直线中的一条垂直,则必与另一条垂直;③如果一条直线与两条平行直线中的一条相交,则必与另一条相交。
A。
①②③B。
①③C。
①D。
②③解析:类比①的结论为:平行于同一个空间的两个平面平行,成立;类比②的结论为:一个空间如果与两个平行平面中的一个垂直,则必与另一个垂直,成立;类比③的结论为:如果一个空间与两个平行平面中的一个相交,则必与另一个相交,成立。
答案:A4.函数y=x^3-3x^2-9x(-2<x<2)有()A。
极大值5,极小值-27B。
极大值5,极小值-11C。
极大值5,无极小值D。
极小值-27,无极大值解析:y′=3x^2-6x-9=3(x-3)(x+1),得x=-1,x=3,当x0;当x>-1时,y′<0.当x=-1时,y极大值=5,x取不到3,无极小值。
答案:C5.函数y=4x^2+1/x的单调递增区间是()A。
(0,+∞)B。
(-∞,1)C。
(1,2)D。
(2,+∞)解析:令y′=8x-1/x^2=0,即x=1/2,y′(x)=8x-1/x^2>0,所以y=4x^2+1/x在(0,+∞)上单调递增。
选修2-2第二章 2.31.用数学归纳法证明某个命题时,左边为1·2·3·4+2·3·4·5+…+n(n+1)(n+2)(n+3),从n=k到n=k+1左边需增加的代数式为________.[答案](k+1)(k+2)(k+3)(k+4)[解析]当n=k时,左边=1·2·3·4+2·3·4·5+…+k(k+1)(k+2)(k+3).当n=k+1时,左边=1·2·3·4+2·3·4·5+…+k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)(k +4),所以从n=k到n=k+1左式应增加(k+1)(k+2)(k+3)(k+4).2.对于不等式n2+n≤n+1(n∈N+),某学生的证明过程如下:(1)当n=1时,12+1≤1+1,不等式成立.(2)假设n=k(k∈N+)时,不等式成立,即k2+k<k+1,则n=k+1时,(k+1)2+(k+1)=k2+3k+2<(k2+3k+2)+(k+2)=(k+2)2=(k+1)+1,∴当n=k+1时,不等式成立,上述证法()A.过程全都正确B.n=1验证不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确[答案] D[解析]n=1的验证及归纳假设都正确,但从n=k到n=k+1的推理中没有使用归纳假设,而通过不等式的放缩法直接证明,不符合数学归纳法的证题要求.故应选D.3.求证:12-22+32-42+…+(2n-1)2-(2n)2=-n(2n+1)(n∈N*).[证明]①n=1时,左边=12-22=-3,右边=-3,等式成立.②假设n=k时,等式成立,即12-22+32-42+…+(2k-1)2-(2k)2=-k(2k+1)2.当n=k+1时,12-22+32-42+…+(2k-1)2-(2k)2+(2k+1)2-(2k+2)2=-k(2k+1)+(2k+1)2-(2k+2)2=-k(2k+1)-(4k+3)=-(2k2+5k+3)=-(k+1)[2(k+1)+1],所以n =k+1时,等式也成立.由①②得,等式对任何n∈N*都成立.。
第二章综合检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.观察数列1,2,2,3,3,3,4,4,4,4,…的特点,按此规律,则第100项为( ) A .10 B .14 C .13 D .100[答案] B[解析] 设n ∈N *,则数字n 共有n 个, 所以n (n +1)2≤100即n (n +1)≤200,又因为n ∈N *,所以n =13,到第13个13时共有13×142=91项,从第92项开始为14,故第100项为14.2.有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”,结论显然是错误的,因为( )A .大前提错误B .小前提错误C .推理形式错误D .不是以上错误[答案] C[解析] 大小前提都正确,其推理形式错误.故应选C.3.用数学归纳法证明等式1+2+3+…+(n +3)=(n +3)(n +4)2(n ∈N *)时,验证n =1,左边应取的项是( )A .1B .1+2C .1+2+3D .1+2+3+4[答案] D[解析] 当n =1时,左=1+2+…+(1+3)=1+2+3+4,故应选D. 4.(2012·福建南安高二期末)下列说法正确的是( ) A .“a <b ”是“am 2<bm 2”的充要条件B .命题“∀x ∈R ,x 3-x 2-1≤0”的否定是“∃x ∈R ,x 3-x 2-1≤0”C .“若a 、b 都是奇数,则a +b 是偶数”的逆否命题是“若a +b 不是偶数,则a 、b 不都是奇数”D .若p ∧q 为假命题,则p 、q 均为假命题 [答案] C[解析] A 中“a <b ”是“am 2<bm 2”的必要不充分条件,故A 错;B 中“∀x ∈R ,x 3-x 2-1≤0”的否定是“∃x ∈R ,x 3-x 2-1>0”,故B 错;C 正确;D 中p ∧q 为假命题,则p 、q 中至少有一个为假命题,故D 错. 5.(2014·东北三校模拟) 下列代数式(其中k ∈N *)能被9整除的是( ) A .6+6·7k B .2+7k -1C .2(2+7k +1)D .3(2+7k )[答案] D[解析] 特值法:当k =1时,显然只有3(2+7k )能被9整除,故选D. 证明如下:当k =1时,已验证结论成立,假设当k =n (n ∈N *)时,命题成立,即3(2+7n )能被9整除,那么3(2+7n +1)=21(2+7n )-36.∵3(2+7n )能被9整除,36能被9整除, ∴21(2+7n )-36能被9整除, 这就是说,k =n +1时命题也成立. 故命题对任何k ∈N *都成立.6.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14[答案] D[解析] 项数为n 2-(n -1)=n 2-n +1,故应选D. 7.已知a +b +c =0,则ab +bc +ca 的值( ) A .大于0 B .小于0 C .不小于0 D .不大于0[答案] D[解析] 解法1:∵a +b +c =0, ∴a 2+b 2+c 2+2ab +2ac +2bc =0,∴ab +ac +bc =-a 2+b 2+c 22≤0.解法2:令c =0,若b =0,则ab +bc +ac =0,否则a 、b 异号,∴ab +bc +ac =ab <0,排除A 、B 、C ,选D.8.已知c >1,a =c +1-c ,b =c -c -1,则正确的结论是( ) A .a >b B .a <bC .a =bD .a 、b 大小不定[答案] B[解析] a =c +1-c =1c +1+c ,b =c -c -1=1c +c -1,因为c +1>c >0,c >c -1>0, 所以c +1+c >c +c -1>0,所以a <b .9.定义一种运算“*”;对于自然数n 满足以下运算性质:( ) (i)1]B.n +1 C .n -1 D .n 2[答案] A[解析] 令a n =n *1,则由(ii)得,a n +1=a n +1,由(i)得,a 1=1,∴{a n }是首项a 1=1,公差为1的等差数列,∴a n =n ,即n *1=n ,故选A. 10.(2013·济宁梁山一中高二期中)已知函数f (x )满足f (0)=0,导函数f ′(x )的图象如图所示,则f (x )的图象与x 轴围成的封闭图形的面积为( )A .13B .43C .2D .83[答案] B[解析] 由f ′(x )的图象知,f ′(x )=2x +2,设f (x )=x 2+2x +c ,由f (0)=0知,c =0,∴f (x )=x 2+2x , 由x 2+2x =0得x =0或-2.故所求面积S =-⎠⎛0-2(x 2+2x )dx =⎪⎪-(13x 3+x 2)0-2=43. 11.已知1+2×3+3×32+4×32+…+n ×3n -1=3n (na -b )+c 对一切n ∈N *都成立,那么a 、b 、c 的值为( )A .a =12,b =c =14B .a =b =c =14C .a =0,b =c =14D .不存在这样的a 、b 、c[答案] A[解析] 令n =1、2、3,得⎩⎪⎨⎪⎧3(a -b )+c =1,9(2a -b )+c =7,27(3a -b )+c =34.所以a =12,b =c =14.12.设函数f (x )定义如下表,数列{x n }满足x 0=5,且对任意的自然数均有x n +1=f (x n ),则x 2011=( )A.1 C .4 D .5[答案] C[解析] x 1=f (x 0)=f (5)=2,x 2=f (2)=1,x 3=f (1)=4,x 4=f (4)=5,x 5=f (5)=2,…,数列{x n }是周期为4的数列,所以x 2011=x 3=4,故应选C.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.在△ABC 中,D 为边BC 的中点,则AD →=12(AB →+AC →).将上述命题类比到四面体中去,得到一个类比命题: _____________________________________________________.[答案] 在四面体A -BCD 中,G 为△BCD 的重心,则AG →=13(AB →+AC →+AD →)14.(2013·安阳中学高二期末)设函数f (x )=x x +2(x >0),观察:f 1(x )=f (x )=xx +2,f 2(x )=f (f 1(x ))=x 3x +4,f 3(x )=f (f 2(x ))=x 7x +8,f 4(x )=f (f 3(x ))=x15x +16,……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x )=f (f n -1(x ))=________.[答案]x(2n-1)x +2n[解析] 观察f 1(x )、f 2(x )、f 3(x )、f 4(x )的表达式可见,f n (x )的分子为x ,分母中x 的系数比常数项小1,常数项依次为2,4,8,16……2n .故f n (x )=x(2n-1)x +2n.14.(2014·厦门六中高二期中)在平面上,我们用一直线去截正方形的一个角,那么截下的一个直角三角形,按如图所标边长,由勾股定理有c 2=a 2+b 2.设想正方形换成正方体,把截线换成如图截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O -LMN ,如果用S 1、S 2、S 3表示三个侧面面积,S 表示截面面积,那么类比得到的结论是________.[答案] S 2=S 21+S 22+S 23[解析] 类比如下:正方形↔正方体;截下直角三角形↔截下三侧面两两垂直的三棱锥;直角三角形斜边平方↔三棱锥底面面积的平方;直角三角形两直角边平方和↔三棱锥三个侧面面积的平方和,结论S 2=S 21+S 22+S 23.证明如下:如图,作OE ⊥平面LMN ,垂足为E ,连接LE 并延长交MN 于F ,∵LO ⊥OM ,LO ⊥ON ,∴LO ⊥平面MON , ∵MN ⊂平面MON ,∴LO ⊥MN ,∵OE ⊥MN ,∴MN ⊥平面OFL ,∴S △OMN =12MN ·OF ,S △MNE =12MN ·FE ,S △MNL =12MN ·LF ,OF 2=FE ·FL ,∴S 2△OMN =(12MN ·OF )2=(12MN ·FE )·(12MN ·FL )=S △MNE ·S △MNL ,同理S 2△OML =S △MLE ·S △MNL ,S 2△ONL =S △NLE ·S △MNL ,∴S 2△OMN +S 2△OML +S 2△ONL =(S △MNE +S △MLE +S △NLE )·S △MNL =S 2△MNL ,即S 21+S 22+S 23=S 2.16.(2014·洛阳部分重点中学教学检测)观察下列等式:31×2×12=1-122,31×2×12+42×3×122=1-13×22,31×2×12+42×3×122+53×4×123=1-14×23,……,由以上等式推测到一个一般的结论:对于n ∈N *,31×2×12+42×3×122+…+n +2n (n +1)×12n =________. [答案] 1-1(n +1)·2n[解析] 由已知中的等式:31×2×12=1-12231×2×12+42×3×122=1-13×22,31×2×12+42×3×122+53×4×123=1-14×23,…, 所以对于n ∈N *,31×2×12+42×3×122+…+n +2n (n +1)×12n =1-1(n +1)2n.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)已知:a 、b 、c ∈R ,且a +b +c =1. 求证:a 2+b 2+c 2≥13.[证明] 由a 2+b 2≥2ab ,及b 2+c 2≥2bc ,c 2+a 2≥2ca . 三式相加得a 2+b 2+c 2≥ab +bc +ca .∴3(a 2+b 2+c 2)≥(a 2+b 2+c 2)+2(ab +bc +ca )=(a +b +c )2. 由a +b +c =1,得3(a 2+b 2+c 2)≥1, 即a 2+b 2+c 2≥13.18.(本题满分12分)设n ∈N +[解析] 记f (n ) 则f (1)=11-2=3,f (2)=1111-22=1089=33,f (3)=111111-222=110889=333.猜想f (n )=333…3n个. [点评] f (n )=333…3n个可证明如下: ∵111…12n 个=19(102n -1),222…2n 个2=29(10n -1),令10n =x >1,则f (n )=19(x 2-1)-29(x -1)=19(x 2-2x +1)=13(x -1)=13(10n -1), 即f (n )=33…3n个. 19.(本题满分12分)(2013·华池一中高二期中)在圆x 2+y 2=r 2(r >0)中,AB 为直径,C 为圆上异于A 、B 的任意一点,则有k AC ·k BC =-1.你能用类比的方法得出椭圆x 2a 2+y 2b 2=1(a >b >0)中有什么样的结论?并加以证明.[解析] 类比得到的结论是:在椭圆x 2a 2+y 2b 2=1(a >b >0)中,A 、B 分别是椭圆长轴的左右端点,点C (x ,y )是椭圆上不同于A 、B 的任意一点,则k AC ·k BC =-b 2a2证明如下:设A (x 0,y 0)为椭圆上的任意一点,则A 关于中心的对称点B 的坐标为B (-x 0,-y 0),点P (x ,y )为椭圆上异于A ,B 两点的任意一点,则k AP ·k BP =y -y 0x -x 0·y +y 0x +x 0=y 2-y 20x 2-x 20.由于A 、B 、P 三点在椭圆上,∴⎩⎨⎧x 2a 2+y 2b 2=1,x 20a 2+y20b 2=1.两式相减得,x 2-x 20a 2+y 2-y 20b 2=0,∴y 2-y 20x 2-x 20=-b 2a 2,即k AP ·k BP =-b 2a 2.故在椭圆x 2a 2+y 2b 2=1(a >b >0)中,长轴两个端点为A 、B 、P 为异于A 、B 的椭圆上的任意一点,则有k AB ·k BP =-b 2a2.20.(本题满分12分)已知函数f (x )=a x +x -2x +1(a >1).(1)证明:函数f (x )在(-1,+∞)上为增函数; (2)用反证法证明方程f (x )=0没有负数根.[解析] (1)证法1:任取x 1、x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0,ax 2-x 1>1且ax 1>0,∴ax 2-ax 1=ax 1(ax 2-x 1-1)>0, 又∵x 1+1>0,x 2+1>0, ∴x 2-2x 2+1-x 1-2x 1+1=(x 2-2)(x 1+1)-(x 1-2)(x 2+1)(x 1+1)(x 2+1) =3(x 2-x 1)(x 1+1)(x 2+1)>0,于是f (x 2)-f (x 1)=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1>0, 故函数f (x )在(-1,+∞)上为增函数.证法2:f ′(x )=a x ln a +x +1-(x -2)(x +1)2=a x ln a +3(x +1)2 ∵a >1,∴ln a >0,∴a x ln a +3(x +1)2>0, f ′(x )>0在(-1,+∞)上恒成立, 即f (x )在(-1,+∞)上为增函数.(2)解法1:设存在x 0<0(x 0≠-1)满足f (x 0)=0, 则ax 0=-x 0-2x 0+1,且0<ax 0<1.∴0<-x 0-2x 0+1<1,即12<x 0<2,与假设x 0<0矛盾.故方程f (x )=0没有负数根. 解法2:设x 0<0(x 0≠-1),①若-1<x 0<0,则x 0-2x 0+1<-2,ax 0<1,∴f (x 0)<-1.②若x 0<-1则x 0-2x 0+1>0,ax 0>0,∴f (x 0)>0.综上,x <0(x ≠-1)时,f (x )<-1或f (x )>0,即方程f (x )=0无负数根. 21.(本题满分12分)(2014·哈六中期中)已知函数f (x )=(x -2)e x -12x 2+x +2.(1)求函数f (x )的单调区间和极值; (2)证明:当x ≥1时,f (x )>16x 3-12x .[解析] (1)f ′(x )=(x -1)(e x -1),当x <0或x >1时,f ′(x )>0,当0<x <1时,f ′(x )<0, ∴f (x )在(-∞,0),(1,+∞)上单调递增,在(0,1)上单调递减, 当x =0时,f (x )有极大值f (0)=0,当x =1时,f (x )有极小值f (1)=52-e.(2)设g (x )=f (x )-16x 3+12x ,则g ′(x )=(x -1)(e x -x 2-32),令u (x )=e x -x 2-32,则u ′(x )=e x -12,当x ≥1时,u ′(x )=e x -12>0,u (x )在[1,+∞)上单调递增,u (x )≥u (1)=e -2>0,所以g ′(x )=(x -1)(e x -x 2-32)≥0,g (x )=f (x )-16x 3+12x 在[1,+∞)上单调递增.g (x )=f (x )-16x 3+12x ≥g (1)=176-e>0,所以f (x )>16x 3-12x .22.(本题满分14分)设数列a 1,a 2,…a n ,…中的每一项都不为0.证明{a n }为等差数列的充分必要条件是:对任何n ∈N +,都有1a 1a 2+1a 2a 3+…+1a n a n +1=na 1a n +1. [分析] 本题考查等差数列、数学归纳法与充要条件等有关知识,考查推理论证、运算求解能力.解题思路是利用裂项求和法证必要性,再用数学归纳法或综合法证明充分性. [证明] 先证必要性.设数列{a n }的公差为d .若d =0,则所述等式显然成立.若d ≠0,则1a 1a 2+1a 2a 3+…+1a n a n +1=1d ⎝ ⎛⎭⎪⎫a 2-a 1a 1a 2+a 3-a 2a 2a 3+…+a n +1-a n a n a n +1 =1d ⎝⎛⎭⎫⎝⎛⎭⎫1a 1-1a 2+⎝⎛⎭⎫1a 2-1a 3+…+⎝⎛⎭⎫1a n -1a n +1 =1d ⎝⎛⎭⎫1a 1-1a n +1=1d a n +1-a 1a 1a n +1=n a 1a n +1. 再证充分性.证法1:(数学归纳法)设所述的等式对一切n ∈N +都成立.首先,在等式1a 1a 2+1a 2a 3=2a 1a 3两端同乘a 1a 2a 3,即得a 1+a 3=2a 2,所以a 1,a 2,a 3成等差数列,记公差为d ,则a 2=a 1+d .假设a k =a 1+(k -1)d ,当n =k +1时,观察如下两个等式 1a 1a 2+1a 2a 3+…+1a k -1a k =k -1a 1a k, ① 1a 1a 2+1a 2a 3+…+1a k -1a k +1a k a k +1=ka 1a k +1②将①代入②,得k -1a 1a k +1a k a k +1=k a 1a k +1,在该式两端同乘a 1a k a k +1,得(k -1)a k +1+a 1=ka k . 将a k =a 1+(k -1)d 代入其中,整理后,得a k +1=a 1+kd .由数学归纳法原理知,对一切n ∈N ,都有a n =a 1+(n -1)d ,所以{a n }是公差为d 的等差数列.证法2:(直接证法)依题意有 1a 1a 2+1a 2a 3+…+1a n a n +1=n a 1a n +1,① 1a 1a 2+1a 2a 3+…+1a n a n +1+1a n +1a n +2=n +1a 1a n +2. ②②-①得1a n +1a n +2=n +1a 1a n +2-n a 1a n +1,在上式两端同乘a 1a n +1a n +2,得a 1=(n +1)a n +1-na n +2. ③ 同理可得a 1=na n -(n -1)a n +1(n ≥2)④③-④得2na n +1=n (a n +2+a n ) 即a n +2-a n +1=a n +1-a n ,由证法1知a 3-a 2=a 2-a 1,故上式对任意n ∈N *均成立.所以{a n }是等差数列.1.已知数列2,5,22,11,…,则25是这个数列的( ) A .第6项 B .第7项 C .第19项 D .第11项[答案] B [解析]2,5,8,11,…,而25=20,可见各根号内被开方数构成首项为2,公差为3的等差数列,由20=2+(n -1)×3得n =7.2.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两名是对的,则获奖的歌手是__________________.[答案] 丙[解析] 若甲获奖,则甲、乙、丙、丁说的都是错的,同理可推知乙、丙、丁获奖的情况,最后可知获奖的歌手是丙.3.(1)由“若a 、b 、c ∈R ,则(ab )c =a (bc )”类比“若a 、b 、c 为三个向量,则(a ·b )c =a (b ·c )”;(2)在数列{a n }中,a 1=0,a n +1=2a n +2,猜想a n =2n -2;(3)“在平面内,三角形的两边之和大于第三边”类比“在空间中,四面体的任意三个面的面积之和大于第四个面的面积”;上述三个推理中结论正确的序号为________. [答案] ②③[解析] (a ·b )c =a (b ·c )不一定成立,其左边为平行于c 的向量,右边为平行于a 的向量,即命题(1)不正确;由a 1=0,a n +1=2a n +2可得a n +1+2=2(a n +2),则数列{a n +2}是首项为2,公比为2的等比数列,a n +2=2n ,即a n =2n -2,命题(2)正确;(3)正确,可结合三个侧面在底面上的射影去证明; 综上可得正确的结论为(2)(3).4.若x >0,y >0,用分析法证明:(x 2+y 2)12>(x 3+y 3)13.[证明] 要证(x 2+y 2)12>(x 3+y 3)13,只需证(x 2+y 2)3>(x 3+y 3)2,即证x 6+3x 4y 2+3x 2y 4+y 6>x 6+2x 3y 3+y 6, 即证3x 4y 2+3y 4x 2>2x 3y 3. 又因为x >0,y >0,所以x 2y 2>0, 故只需证3x 2+3y 2>2xy .而3x 2+3y 2>x 2+y 2≥2xy 成立,所以(x 2+y 2)12>(x 3+y 3)13成立. 5.已知a 是正整数,且a 3是偶数,求证:a 也是偶数.[分析] 已知a 3的奇偶性研究a 的奇偶性,不易直接证明,但如果已知a 的奇偶性研究a 3的奇偶性则较容易证明,故可用反证法.[证明] 假设a 不是偶数,则a 必为奇数,设a =2k +1(k ∈N ),则a 3=(2k +1)3=8k 3+12k 2+6k +1=2(4k 3+6k 2+3k )+1,由于k ∈N ,所以4k 2+6k 2+3k ∈N ,故2(4k 3+6k 2+3k )是偶数,2(4k 3+6k 2+3k )+1为奇数,即a 3为奇数,这与a 3是偶数相矛盾.故假设不正确,即a 也是偶数.6.我们知道,在△ABC 中,若c 2=a 2+b 2,则△ABC 是直角三角形.现在请你研究:若c n =a n +b n (n >2),问△ABC 为何种三角形?为什么?[解析] 锐角三角形 ∵c n =a n +b n (n >2),∴c >a, c >b ,由c 是△ABC 的最大边,所以要证△ABC 是锐角三角形,只需证角C 为锐角,即证cos C >0.∵cos C =a 2+b 2-c 22ab, ∴要证cos C >0,只要证a 2+b 2>c 2,① 注意到条件:a n +b n =c n ,于是将①等价变形为:(a 2+b 2)c n -2>c n . ② ∵c >a ,c >b ,n >2,∴c n -2>a n -2,c n -2>b n -2,即c n -2-a n -2>0,c n -2-b n -2>0, 从而(a 2+b 2)c n -2-c n =(a 2+b 2)c n -2-a n -b n =a 2(c n -2-a n -2)+b 2(c n -2-b n -2)>0, 这说明②式成立,从而①式也成立.故cos C >0,C 是锐角,△ABC 为锐角三角形.。
第二章检测(B)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1下列说法正确的有()①演绎推理是由一般到特殊的推理;②演绎推理得到的结论一定是正确的;③演绎推理的一般模式是“三段论”形式;④演绎推理得到的结论的正误与大前提、小前提和推理形式有关.A.1个B.2个C.3个D.4个解析演绎推理只有大前提、小前提和推理形式都正确才能保证结论正确,故②错误,其他都正确.故选C.答案C2有一段演绎推理是这样的:“若直线平行于平面,则该直线平行于平面内所有直线;已知直线b⊄平面α,a⊂平面α,直线b∥平面α,则直线b∥直线a”,这显然是错误的,这是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误解析“直线平行于平面,则该直线平行于平面内所有直线”是错误的,即大前提是错误的.故选A.答案A3(1)已知p3+q3=2,求证:p+q≤2.用反证法证明此命题时可假设p+q≥2;(2)已知a,b∈R,|a|+|b|<1,求证:关于x的方程x2+ax+b=0的两根的绝对值都小于1.用反证法证明此命题时可假设方程至少有一根的绝对值大于或等于1.以下结论正确的是()A.(1)与(2)的假设都错误B.(1)与(2)的假设都正确C.(1)的假设正确,(2)的假设错误D.(1)的假设错误,(2)的假设正确解析反证法证明问题的第一步是“假设命题的结论不成立,即假设结论的反面成立”,而命题(1)结论的反面应为“p+q>2”;对命题(2),其结论的反面为“方程x2+ax+b=0的两根的绝对值至少有一个大于或等于1”.故选D.答案D4如图,4个小动物换座位,开始时鼠、猴、兔、猫分别坐1,2,3,4号座位,如果第1次前后排动物互换座位,第2次左右列动物互换座位,第3次前后排动物互换座位,第4次左右列动物互换座位,……这样交替进行下去,那么第2 017次互换座位后,小兔所坐的座位号为()A.1B.2C.3D.4解析由题意得第4次互换座位后,4个小动物又回到了原座位,即每经过4次互换座位后,小动物回到原座位,而2 017=4×504+1,所以第2 017次互换座位后结果与第1次互换座位结果相同,故小兔坐在1号座位上,故选A.答案A5若f0(x)=sin x,f1(x)=f0'(x),f2(x)=f1'(x),…,f n+1(x)=f n'(x),n∈N*,则f2 017(x)等于()A.sin xB.-sin xC.cos xD.-cos x解析由题意可知,函数f n(x)的表达式是呈周期性变化的,周期为4,而2 017=4×504+1, 故f2 017(x)=f1(x)=cos x,故选C.答案C6观察式子:1+,1+,1+,……,则可归纳出一般式子为()A.1++…+(n≥2,n∈N)B.1++…+(n≥2,n∈N)C.1++…+(n≥2,n∈N)D.1++…+(n≥2,n∈N)答案C7已知a,b为两条不同的直线,α,β为两个不同的平面,则下列四个命题中正确的是()A.若a,b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b解析对于选项A,直线a,b有可能相交或异面;对于选项B,直线a,b有可能相交或异面;对于选项C,平面α,β有可能相交;对于选项D,若a⊥α,b⊥β,当a⊂β时,有b⊥a,当a⊄β时,因为α⊥β,所以a∥β,所以b⊥a,故选D.答案D8对于奇数列1,3,5,7,9,…,现在进行如下分组:第一组有1个数{1},第二组有2个数{3,5},第三组有3个数{7,9,11},……,则每组内奇数之和S n与其所在组的编号数n的关系是()A.S n=n2B.S n=n3C.S n=n4D.S n=n(n+1)解析当n=1时,S1=1;当n=2时,S2=8=23;当n=3时,S3=27=33;故归纳猜想S n=n3,故选B.答案B9古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:①②他们研究过图①中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图②中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数,又是正方形数的是()A.289B.1 024C.1 225D.1 378解析根据图形的规律可知,第n个三角形数为a n=,第n个正方形数为b n=n2,由此可排除选项D(1 378不是平方数),将选项A,B,C中的数代入到三角形数与正方形数表达式中检验可知,符合题意的是选项C,故选C.答案C10六个面都是平行四边形的四棱柱称为平行六面体.如图①所示,在平行四边形ABCD中,有AC2+BD2=2(AB2+AD2),在如图②所示的平行六面体ABCD-A1B1C1D1中,A+B+C+D等于()A.2(AB2+AD2+A)B.3(AB2+AD2+A)C.4(AB2+AD2+A)D.4(AB2+AD2)解析如图,连接A1C1,AC,则四边形AA1C1C是平行四边形,故A1C2+A=2(A+AC2).连接BD,B1D1,则四边形BB1D1D是平行四边形,∴B+D=2(B+BD2).又在▱ABCD中,AC2+BD2=2(AB2+AD2).∵A=B,∴A+B+C+D=2(A+AC2)+2(B+BD2)=2(AC2+BD2+B+A)=2[2(AB2+AD2)+2A]=4(A B2+AD2+A).故选C.答案C二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11用三段论证明f(x)=x3+sin x(x∈R)为奇函数的步骤为.答案对定义域内的任意x,若满足f(-x)=-f(x),则函数f(x)为奇函数, 大前提因为x∈R,则-x∈R,f(-x)=(-x)3+sin(-x)=-x3-sin x=-f(x), 小前提所以函数f(x)=x3+sin x(x∈R)为奇函数.结论12观察分析下表中的数据:猜想一般凸多面体中F,V,E所满足的等式是.解析因为5+6-9=2,6+6-10=2,6+8-12=2,故可猜想F+V-E=2.答案F+V-E=213为了保证信息安全传输必须使用加密方式,有一种方式其加密、解密的原理如下:明文密文密文明文已知加密为y=a x-2(x为明文,y为密文),明文“3”通过加密后得到的密文为“6”,再发送,接收方通过解密得到明文“3”,若接收方收到的密文为“14”,则原发送的明文为.解析由题意知,当x=3时,函数y=a x-2的函数值为6,即6=a3-2,∴a3=8,∴a=2.∴y=2x-2.则当y=14时,有14=2x-2,∴2x=16.∴x=4,故原发送的明文为4.答案414观察图象,第行的各数之和等于2 0172.解析观察知,题图中的第n行的各数构成一个首项为n,公差为1,共(2n-1)项的等差数列,其各项和为:S n=(2n-1)n+=(2n-1)n+(2n-1)(n-1)=(2n-1)2.令(2n-1)2=2 0172,得2n-1=2 017,∴n=1 009.答案1 00915蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看做是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f(n)表示第n个图的蜂巢总数,则用n表示的f(n)=.解析由于f(2)-f(1)=7-1=6,f(3)-f(2)=19-7=2×6,推测当n≥2时,有f(n)-f(n-1)=6(n-1),∴f(n)=[f(n)-f(n-1)]+[f(n-1)-f(n-2)]+[f(n-2)-f(n-3)]+…+[f(2)-f(1)]+f(1)=6[(n-1)+(n-2)+…+2+1]+1=3n2-3n+1.又f(1)=1=3×12-3×1+1,∴f(n)=3n2-3n+1.答案3n2-3n+1三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16(8分)实数的乘法与向量的数量积有以下类似的性质:a·b=b·a,a·b=b·a,(a+b)·c=a·c+b·c,(a+b)·c=a·c+b·c.则由①(a·b)·c=a·(b·c),②若a≠0,a·c=a·b,则b=c,猜想对于向量的数量积有什么样的结论,猜想是否正确?解猜想:①(a·b)·c=a·(b·c),②若a≠0,a·c=a·b,则b=c.这两个结论都不正确.①式左边表示与c共线的向量,右边表示与a共线的向量,c与a不一定共线,故等式不一定成立.②设a与c的夹角为α,a与b的夹角为β,由a·c=a·b,得|a||c|cos α=|a||b|cos β,可得|c|cos α=|b|cos β,则c,b在a方向上的投影相等,b,c不一定相等.故等式不一定成立.17(8分)已知△ABC的三边a,b,c的倒数成等差数列,证明角B为锐角.分析在△ABC中,要证角B为锐角,只要证cos B>0,结合余弦定理可解决问题.证明要证明角B为锐角,只需证cos B>0.又因为cos B=,所以只需证明a2+c2-b2>0,即a2+c2>b2.因为a2+c2≥2ac,所以只需证明2ac>b2.由已知,得,即2ac=b(a+c).所以只需证明b(a+c)>b2,即只需证明a+c>b.而已知a,b,c为△ABC的三边,即a+c>b成立,所以角B为锐角.18(9分)设{a n},{b n}是公比不相等的两个等比数列,c n=a n+b n,证明数列{c n}不是等比数列.分析假设数列{c n}是等比数列,利用{a n},{b n}是公比不相等的等比数列的条件推出矛盾,即知假设不成立.证明假设数列{c n}是等比数列,则当n≥2时,(a n+b n)2=(a n-1+b n-1)(a n+1+b n+1).①因为{a n},{b n}是公比不相等的两个等比数列,设公比分别为p,q,所以=a n-1a n+1,=b n-1b n+1.代入①并整理,得2a n b n=a n+1b n-1+a n-1b n+1=a n b n,即2=.②当p,q异号时,<0,与②相矛盾;当p,q同号时,因为p≠q,所以>2,与②相矛盾.故数列{c n}不是等比数列.19(10分)已知椭圆=1(a>b>0)的离心率为,短轴的一个端点为M(0,1),直线l:y=kx-与椭圆相交于不同的两点A,B.(1)若|AB|=,求k的值;(2)求证:不论k取何值,以AB为直径的圆恒过点M.(1)解由题意知,b=1.由a2=b2+c2可得c=b=1,a=,所以椭圆的方程为+y2=1.由消去y得(2k2+1)x2-kx-=0.Δ=k2-4(2k2+1)×=16k2+>0恒成立.设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=-.所以|AB|=·|x1-x2|=,化简得23k4-13k2-10=0,即(k2-1)(23k2+10)=0,解得k=±1.(2)证明因为=(x1,y1-1),=(x2,y2-1),所以=x1x2+(y1-1)(y2-1)=(1+k2)x1x2-k(x1+x2)+=-=0.所以不论k取何值,以AB为直径的圆恒过点M.20(10分)已知数列{a n}的各项均为正数,b n=n a n(n∈N*),e为自然对数的底数.(1)求函数f(x)=1+x-e x的单调区间,并比较与e的大小;(2)计算,由此推测计算的公式,并给出证明;(3)令c n=(a1a2…a n,数列{a n},{c n}的前n项和分别记为S n,T n,证明:T n<e S n.解(1)f(x)的定义域为(-∞,+∞),f'(x)=1-e x.当f'(x)>0,即x<0时,f(x)单调递增;当f'(x)<0,即x>0时,f(x)单调递减.故f(x)的单调递增区间为(-∞,0),单调递减区间为(0,+∞).当x>0时,f(x)<f(0)=0,即1+x<e x.令x=,得1+,即<e.①(2)=1·=1+1=2;=2·2=(2+1)2=32;=32·3=(3+1)3=43.由此推测:=(n+1)n.②下面用数学归纳法证明②.(ⅰ)当n=1时,左边=右边=2,②成立.(ⅱ)假设当n=k时,②成立,即=(k+1)k.当n=k+1时,b k+1=(k+1)a k+1,由归纳假设可得=(k+1)k(k+1)=(k+2)k+1.所以当n=k+1时,②也成立.根据(ⅰ)(ⅱ),可知②对一切正整数n都成立.(3)由c n的定义、②、算术-几何平均值不等式、b n的定义及①得T n=c1+c2+c3+…+c n=(a1+(a1a2+(a1a2a3+…+(a1a2…a n=+…+≤+…+=b1+b2+…++…+b n·=b1+b2+…+b n+…+a1+a2+…+a n<e a1+e a2+…+e a n=e S n,即T n<e S n.。
选修2-2 第一章 1.3 1.3.3一、选择题1.函数y =2x 3-3x 2-12x +5在[-2,1]上的最大值、最小值分别是( ) A .12;-8 B .1;-8 C .12;-15 D .5;-16[答案] A[解析] y ′=6x 2-6x -12,由y ′=0⇒x =-1或x =2(舍去).x =-2时y =1;x =-1时y =12;x =1时y =-8.∴y max =12,y min =-8.故选A.2.(2014·北京东城区联考)如图是函数y =f (x )的导函数f ′(x )的图象,则下面判断正确的是( )A .在区间(-2,1)上f (x )是增函数B .在(1,3)上f (x )是减函数C .在(4,5)上f (x )是增函数D .当x =4时,f (x )取极大值[答案] C[解析] 由导函数y =f ′(x )的图象知,f (x )在(-2,1)上先减后增,在(1,3)上先增后减,在(4,5)上单调递增,x =4是f (x )的极小值点,故A 、B 、D 错误,选C.3.(2014·安徽程集中学期中)已知函数f (x )(x ∈R )满足f ′(x )>f (x ),则( ) A .f (2)<e 2f (0) B .f (2)≤e 2f (0) C .f (2)=e 2f (0) D .f (2)>e 2f (0)[答案] D[分析] 所给四个选项实质是比较f (2)与e 2f (0)的大小,即比较f (2)e 2与f (0)e 0的大小,故构造函数F (x )=f (x )ex 解决.[解析] 设F (x )=f (x )e x ,则F ′(x )=f ′(x )-f (x )e x>0, ∴F (x )在R 上为增函数,故F (2)>F (0), ∴f (2)e 2>f (0)e 0即f (2)>e 2f (0).4.函数f (x )=x (1-x 2)在[0,1]上的最大值为( ) A .239 B .229C .329D .38[答案] A[解析] f ′(x )=1-3x 2=0,得x =33∈[0,1], ∵f ⎝⎛⎭⎫33=239,f (0)=f (1)=0. ∴f (x )max =239. 5.(2014·河南淇县一中模拟)设a ∈R ,若函数y =e ax +3x ,x ∈R 有大于零的极值点,则( )A .a >-3B .a <-3C .a >-13D .a <-13[答案] B[解析] y ′=a e ax +3,由条件知,方程a e ax+3=0有大于零的实数根,∴0<-3a <1,∴a <-3.6.(2014·开滦二中期中)若函数f (x )=x 3-6bx +3b 在(0,1)内有极小值,则实数b 的取值范围是( )A .(0,1)B .(-∞,1)C .(0,+∞)D .(0,12)[答案] D[解析] f ′(x )=3x 2-6b ,∵f (x )在(0,1)内有极小值,∴在(0,1)内存在点x 0,使得在(0,x 0)内f ′(x )<0,在(x 0,1)内f ′(x )>0,由f ′(x )=0得,x 2=2b >0,∴⎩⎪⎨⎪⎧b >02b <1,∴0<b <12.7.(2014·抚顺市六校联合体期中)已知R 上可导函数f (x )的图象如图所示,则不等式(x 2-2x -3)f ′(x )>0的解集为( )A.(-∞,-2)∪(1,+∞)B.(-∞,-2)∪(1,2)C.(-∞,-1)∪(-1,0)∪(2,+∞)D.(-∞,-1)∪(-1,1)∪(3,+∞)[答案] D[解析]由f(x)的图象知,在(-∞,-1)上f′(x)>0,在(-1,1)上f′(x)<0,在(1,+∞)上f′(x)>0,又x2-2x-3>0的解集为(-∞,-1)∪(3,+∞),x2-2x-3<0的解集为(-1,3).∴不等式(x2-2x-3)f′(x)>0的解集为(-∞,-1)∪(-1,1)∪(3,+∞).二、填空题8.(2014·三亚市一中月考)曲线y=x2x-1在点(1,1)处的切线为l,则l上的点到圆x2+y2+4x+3=0上的点的最近距离是________.[答案]22-1[解析]y′|x=1=-1(2x-1)2|x=1=-1,∴切线方程为y-1=-(x-1),即x+y-2=0,圆心(-2,0)到直线的距离d=22,圆的半径r=1,∴所求最近距离为22-1.9.已知函数f(x)=x(x-c)2在x=2处取极大值,则常数c的值为________.[答案] 6[解析]f(x)=x(x-c)2=x3-2cx2+c2x,f′(x)=3x2-4cx+c2,令f′(2)=0解得c=2或6.当c=2时,f′(x)=3x2-8x+4=(3x-2)(x-2),故f(x)在x=2处取得极小值,不合题意舍去;当c=6时,f′(x)=3x2-24x+36=3(x2-8x+12)=3(x-2)(x-6),故f(x)在x=2处取得极大值.三、解答题10.(2014·淄博市临淄中学学分认定考试)已知函数f(x)=x3+ax2+bx+5,曲线y=f(x)在点P(1,f(1))处的切线方程为y=3x+1.(1)求a、b的值;(2)求y=f(x)在[-3,1]上的最大值.[解析](1)依题意可知点P(1,f(1))为切点,代入切线方程y=3x+1可得,f(1)=3×1+1=4,∴f(1)=1+a+b+5=4,即a+b=-2,又由f(x)=x3+ax2+bx+5得,f′(x)=3x2+2ax+b,而由切线y =3x +1的斜率可知f ′(1)=3, ∴3+2a +b =3,即2a +b =0, 由⎩⎪⎨⎪⎧a +b =-2,2a +b =0.解得⎩⎪⎨⎪⎧a =2,b =-4,∴a =2,b =-4.(2)由(1)知f (x )=x 3+2x 2-4x +5, f ′(x )=3x 2+4x -4=(3x -2)(x +2), 令f ′(x )=0,得x =23或x =-2.当x 变化时,f (x ),f ′(x )的变化情况如下表:∴f (x )的极大值为f (-2)=13,极小值为f (3)=27又f (-3)=8,f (1)=4, ∴f (x )在[-3,1]上的最大值为13.一、选择题11.函数f (x )=x 4-4x (|x |<1)( ) A .有最大值,无最小值 B .有最大值,也有最小值 C .无最大值,有最小值 D .既无最大值,也无最小值[答案] D[解析] f ′(x )=4x 3-4=4(x -1)(x 2+x +1). 令f ′(x )=0,得x =1.又x ∈(-1,1)且1∉(-1,1), ∴该方程无解,故函数f (x )在(-1,1)上既无极值也无最值.故选D.12.(2013·海淀区高二期中)函数f (x )在其定义域内可导,其图象如图所示,则导函数y =f ′(x )的图象可能为( )[答案] C[解析] 由图象知,f (x )在x <0时,图象增→减→增,x >0时,单调递增,故f ′(x )在x <0时,其值为+→-→+,在x >0时为+,故选C.13.若函数f (x )=x 3-12x 在区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是( )A .k ≤-3或-1≤k ≤1或k ≥3B .-3<k <-1或1<k <3C .-2<k <2D .不存在这样的实数[答案] B[解析] 因为y ′=3x 2-12,由y ′>0得函数的增区间是(-∞,-2)和(2,+∞),由y ′<0得函数的减区间是(-2,2),由于函数在(k -1,k +1)上不是单调函数,所以有k -1<-2<k +1或k -1<2<k +1,解得-3<k <-1或1<k <3,故选B.14.函数f (x )=x 3+ax -2在区间[1,+∞)上是增函数,则实数a 的取值范围是( ) A .[3,+∞) B .[-3,+∞) C .(-3,+∞) D .(-∞,-3)[答案] B[解析] ∵f (x )=x 3+ax -2在[1,+∞)上是增函数,∴f ′(x )=3x 2+a ≥0在[1,+∞)上恒成立,即a ≥-3x 2在[1,+∞)上恒成立, 又∵在[1,+∞)上(-3x 2)max =-3, ∴a ≥-3,故应选B. 二、填空题15.(2013·苏州五中高二期中)已知函数f (x )是定义在R 上的奇函数,f (1)=0,当x >0时,有xf ′(x )-f (x )x2>0,则不等式x 2f (x )>0的解集是________. [答案] (-1,0)∪(1,+∞)[解析] 令g (x )=f (x )x (x ≠0),∵x >0时,xf ′(x )-f (x )x2>0, ∴g ′(x )>0,∴g (x )在(0,+∞)上为增函数,又f (1)=0,∴g (1)=f (1)=0,∴在(0,+∞)上g (x )>0的解集为(1,+∞),∵f (x )为奇函数,∴g (x )为偶函数,∴在(-∞,0)上g (x )<0的解集为(-1,0),由x 2f (x )>0得f (x )>0,∴f (x )>0的解集为(-1,0)∪(1,+∞).三、解答题16.(2013·陕西师大附中一模)设函数f (x )=e x -k22-x .(1)若k =0,求f (x )的最小值; (2)若k =1,讨论函数f (x )的单调性.[解析] (1)k =0时,f (x )=e x-x ,f ′(x )=e x-1.当x ∈(-∞,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0,所以f (x )在(-∞,0)上单调减小,在(0,+∞)上单调增加,故f (x )的最小值为f (0)=1.(2)若k =1,则f (x )=e x -12x 2-x ,定义域为R .∴f ′(x )=e x -x -1,令g (x )=e x -x -1,则g ′(x )=e x -1, 由g ′(x )≥0得x ≥0,所以g (x )在[0,+∞)上单调递增, 由g ′(x )<0得x <0,所以g (x )在(-∞,0)上单调递减, ∴g (x )min =g (0)=0,即f ′(x )min =0,故f ′(x )≥0. 所以f (x )在R 上单调递增.17.(2014·沈阳市模拟)设函数f (x )=x 3+ax 2+x +1,a ∈R .(1)若x =1时,函数f (x )取得极值,求函数f (x )的图像在x =-1处的切线方程; (2)若函数f (x )在区间(12,1)内不单调,求实数a 的取值范围.[解析] (1)f ′(x )=3x 2+2ax +1,由f ′(1)=0, 得a =-2,∴f (x )=x 3-2x 2+x +1,当x =-1时,y =-3, 即切点(-1,-3),k =f ′(x 0)=3x 20-4x 0+1令x 0=-1得k =8, ∴切线方程为8x -y +5=0.(2)f (x )在区间(12,1)内不单调,即f ′(x )=0在(12,1)有解,所以3x 2+2ax +1=0,2ax =-3x 2-1,由x ∈(12,1),2a =-3x -1x ,令h (x )=-3x -1x,∴h ′(x )=-3+1x 2<0,知h (x )在(33,1)单调递减,在(12,33]上单调递增,所以h (1)<h (x )≤h (33), 即h (x )∈[-4,-23],-4≤2a ≤-23, 即-2<a ≤-3,而当a =-3时,f ′(x )=3x 2-23x +1=(3x -1)2≥0,∴舍去, 综上a ∈(-2,-3).。
人教a 版(数学选修2-2)测试题第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( )A .7米/秒B .6米/秒C .5米/秒D .8米/秒 3.函数3y x x =+的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞ 4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316 C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件 6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________; 2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。
三、解答题1.求垂直于直线2610x y -+=并且与曲线3235y x x =+-相切的直线方程。
2.求函数()()()y x a x b x c =---的导数。
3.求函数543()551f x x x x =+++在区间[]4,1-上的最大值与最小值。
4.已知函数23bx ax y +=,当1x =时,有极大值3; (1)求,a b 的值;(2)求函数y 的极小值。
人教a 版(数学选修2-2)测试题第一章 导数及其应用[综合训练B 组] 一、选择题1.函数()323922y x x x x =---<<有( )A .极大值5,极小值27-B .极大值5,极小值11-C .极大值5,无极小值D .极小值27-,无极大值 2.若'0()3f x =-,则000()(3)limh f x h f x h h→+--=( )A .3-B .6-C .9-D .12-3.曲线3()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( ) A .(1,0) B .(2,8) C .(1,0)和(1,4)-- D .(2,8)和(1,4)--4.()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =,则()f x 与()g x 满足( )A .()f x =()g xB .()f x -()g x 为常数函数C .()f x =()0g x =D .()f x +()g x 为常数函数 5.函数xx y 142+=单调递增区间是( ) A .),0(+∞ B .)1,(-∞ C .),21(+∞ D .),1(+∞ 6.函数xxy ln =的最大值为( ) A .1-e B .e C .2e D .310 二、填空题1.函数2cos y x x =+在区间[0,]2π上的最大值是 。
2.函数3()45f x x x =++的图像在1x =处的切线在x 轴上的截距为________________。
3.函数32x x y -=的单调增区间为 ,单调减区间为___________________。
4.若32()(0)f x ax bx cx d a =+++>在R 增函数,则,,a b c 的关系式为是 。
5.函数322(),f x x ax bx a =+++在1=x 时有极值10,那么b a ,的值分别为________。
三、解答题1. 已知曲线12-=x y 与31x y +=在0x x =处的切线互相垂直,求0x 的值。
2.如图,一矩形铁皮的长为8cm ,宽为5cm ,在四个角上截去 四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长 为多少时,盒子容积最大?3. 已知c bx ax x f ++=24)(的图象经过点(0,1),且在1x =处的切线方程是2y x =-(1)求)(x f y =的解析式;(2)求)(x f y =的单调递增区间。
4.平面向量11),(2a b =-=,若存在不同时为0的实数k 和t ,使2(3),,x a t b y ka tb =+-=-+ 且x y ⊥ ,试确定函数()k f t =的单调区间。
人教a 版(数学选修2-2)测试题第一章 导数及其应用 [提高训练C 组]一、选择题1.若()sin cos f x x α=-,则'()f α等于( ) A .sin α B .cos α C .sin cos αα+D .2sin α2.若函数2()f x x bx c =++的图象的顶点在第四象限,则函数'()f x 的图象是( )3.已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的取值范围是( )A .),3[]3,(+∞--∞B .]3,3[-C .),3()3,(+∞--∞D .)3,3(- 4.对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有( )A . (0)(2)2(1)f f f +< B. (0)(2)2(1)f f f +≤ C.(0)(2)2(1)f f f +≥ D. (0)(2)2(1)f f f +>5.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++=6.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点(A .1个B .2个C .3个D .4个二、填空题1.若函数()()2f x x x c =-在2x =处有极大值,则常数c 的值为_________; 2.函数x x y sin 2+=的单调增区间为3.设函数())(0)f x ϕϕπ=+<<,若()()f x f x '+为奇函数,则ϕ=__________ 4.设321()252f x x x x =--+,当]2,1[-∈x 时,()f x m <恒成立,则实数m 的 取值范围为 。
5.对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则 数列1n a n ⎧⎫⎨⎬+⎩⎭的前n 项和的公式是 三、解答题1.求函数3(1cos 2)y x =+的导数。
2.求函数y =3.已知函数32()f x x ax bx c =+++在23x =-与1x =时都取得极值 (1)求,a b 的值与函数()f x 的单调区间(2)若对[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围。
4.已知23()log x ax bf x x++=,(0,)x ∈+∞,是否存在实数a b 、,使)(x f 同时满足下列两个条件:(1))(x f 在(0,1)上是减函数,在[)1,+∞上是增函数;(2))(x f 的最小值是1,若存在,求出a b 、,若不存在,说明理由.人教a 版(数学选修2-2)测试题 第二章 推理与证明[基础训练A 组]一、选择题1.数列2,5,11,20,,47,x …中的x 等于( ) A .28 B .32 C .33 D .272.设,,(,0),a b c ∈-∞则111,,a b c b c a+++( ) A .都不大于2- B .都不小于2- C .至少有一个不大于2- D .至少有一个不小于2-3.已知正六边形ABCDEF ,在下列表达式①EC CD BC ++;②DC BC +2;③ED FE +;④FA ED -2中,与AC 等价的有( ) A .1个 B .2个 C .3个 D .4个 4.函数]2,0[)44sin(3)(ππ在+=x x f 内( ) A .只有最大值 B .只有最小值 C .只有最大值或只有最小值 D .既有最大值又有最小值 5.如果821,,a a a ⋅⋅⋅为各项都大于零的等差数列,公差0≠d ,则( )A .5481a a a a >B .5481a a a a <C .5481a a a a +>+D .5481a a a a = 6. 若234342423log [log (log )]log [log (log )]log [log (log )]0x x x ===,则x y z ++=( )A .123B .105C .89D .58 7.函数xy 1=在点4=x 处的导数是 ( )A .81 B .81- C .161 D .161- 二、填空题1.从222576543,3432,11=++++=++=中得出的一般性结论是_____________。
2.已知实数0≠a ,且函数)12()1()(2ax x a x f +-+=有最小值1-,则a =__________。
3.已知b a ,是不相等的正数,b a y b a x +=+=,2,则y x ,的大小关系是_________。
4.若正整数m 满足m m 102105121<<-,则)3010.02.(lg ______________≈=m5.若数列{}n a 中,12341,35,7911,13151719,...a a a a ==+=++=+++则10____a =。
三、解答题1.观察(1)0tan10tan 20tan 20tan 60tan 60tan101;++=(2)0tan5tan10tan10tan 75tan 75tan51++= 由以上两式成立,推广到一般结论,写出你的推论。