李春葆《数据结构教程》(第4版)课后习题-数组和广义表(圣才出品)
- 格式:pdf
- 大小:543.80 KB
- 文档页数:7
李春葆《数据结构教程》(第4版)笔记和课后习题详解第8章图8.1复习笔记一、图的基本概念1.图的定义图都是由顶点和边构成的。
采用形式化的定义,图G由两个集合V和E组成,记为G =(V,E),其中V是顶点的有限集合,记为V(G),E是连接V中两个不同顶点(顶点对)的边的有限集合,记为E(G)。
抽象数据类型图的定义如下:2.图的基本术语(1)端点和邻接点在一个无向图中,若存在一条边(i,j),则称顶点i和顶点j为该边的两个端点,并称它们互为邻接点,即顶点i是顶点j的一个邻接点,顶点j也是顶点i的一个邻接点。
(2)顶点的度、入度和出度①度在无向图中,某顶点所具有的边的数目称为该顶点的度。
②入度在有向图中,顶点i的度又分为入度和出度,以顶点i为终点的入边的数目,称为该顶点的入度。
③出度以顶点i为起点的出边的数目,称为该顶点的出度。
一个顶点的入度与出度的和为该顶点的度。
(3)完全图若无向图中每两个顶点之间都存在一条边,或有向图中每两个顶点之间都存在着方向相反的两条边,则称此图为完全图。
(4)稠密图和稀疏图①稠密图当一个图接近完全图时,称为稠密图。
②稀疏图当一个图含有较少的边数(即当e<<n(n-1))时,则称为稀疏图。
(5)子图设有两个图G=(V,E)和G′=(V′,E′),若V′是V的子集,即V′≤V,且E′是E的子集,即E′≤E,则称G′是G的子图。
(6)路径和路径长度①路径在一个图G=(V,E)中,从顶点i到顶点j的一条路径是一个顶点序列(i,i1,i2,…,i m),若此图G是无向图,则边(i,i1),(i1,i2),…,(i m-1,i m),(i m,j)属于E(G);若此图是有向图,N<i,i1>,<i1,i2>,…,<i m-1,i m>,<i m,j>属于E(G)。
②路径长度路径长度是指一条路径上经过的边的数目。
(7)回路或环若一条路径上的开始点与结束点为同一个顶点,则称此路径为回路或环。
李春葆《数据结构教程》(第4版)笔记和课后习题详解第11章外排序11.1复习笔记一、外排序概述文件存储在外存上,因此外排序方法与各种外存设备的特征有关。
外排序的基本方法是归并排序法。
它分为以下两个步骤:1.生成若干初始归并段(顺串)将一个文件(含待排序的数据)中的数据分段读入内存,在内存中对其进行内排序,并将经过排序的数据段(有序段)写到多个外存文件上。
2.多路归并对这些初始归并段进行多遍归并,使得有序的归并段逐渐扩大,最后在外存上形成整个文件的单一归并段,也就完成了这个文件的外排序。
二、磁盘排序1.磁盘排序概述磁盘是直接存取设备,读/写一个数据块的时间与当前读/写头所处的位置关系不大,存放在磁盘中的文件的排序属典型的外排序。
磁盘排序过程如图11-1所示.图11-1磁盘排序过程磁盘中的F in文件包括待排序的数据,通过相关算法将F in文件中数据一部分一部分地调入内存(每个记录被读一次)处理,产生若干个文件F1~F n(每个记录被写一次),它们都是有序的,称为顺串。
然后再次将F1~F n文件中的记录调入内存(每个记录被读一次),通过相关归并算法产生一个有序的F out文件(每个记录被写一次),从而达到数据排序的目的。
可见,提高排序速度很重要的一个方面是减少对数据的扫描遍数。
2.生成初始归并段使用置换—选择的排序算法用于生成较长的初始归并段。
采用置换—选择排序算法生成初始归并段时,内排序基于选择排序,即从若干个记录中通过关键字比较选择一个最小的记录,同时在此过程中进行记录的输入和输出,最后生成若干个长度可能各不相同的有序文件。
基本步骤如下:(1)从待排序文件F in中按内存工作区WA的容量(设为w)读入w个记录,设归并段编号i=1;(2)从WA中选出关键字最小的记录R min;(3)将R min 记录输出到文件F i 中,作为当前归并段的一个成员;(4)若F in 不空,则从F in 中读入下一个记录到WA 中替代刚输出的记录;(5)从WA 工作区中所有大于或等于R min 的记录中选择出最小记录作为新的R min ,转(3),直到选不出这样的R min ;(6)置i=i+1,开始一个新的归并段;(7)若WA 工作区已空,则初始归并段已全部产生,否则转(2)。
第2章线性表2.1 复习笔记一、线性表及其逻辑结构1.线性表的定义线性表是具有相同特性的数据元素的一个有限序列。
该序列中所含元素的个数叫做线性表的长度,用n表示,n≥0。
当n=0时,表示线性表是一个空表,即表中不包含任何元素。
2.线性表的表示设序列中第i(i表示逻辑序号)个元素为a i(1≤i≤n),则线性表的一般表示为:(a1,a2,…,a i,a i+1,…,a n)其中a1为第一个元素,又称做表头元素,a2为第二个元素,…,a n为最后一个元素,又称做表尾元素。
一个线性表可以用一个标识符来命名,如用L命名上面的线性表,则:L=(a1,a2,…,a i,a i+1,…,a n)线性表中的元素是与位置有关的,即第i个元素a i处在第i-1个元素a i-1的后面和第i+1个元素a i+1的前面。
这种位置上的有序性就是一种线性关系,所以线性表是一种线性结构,用二元组表示为:L=(D,R),其中:对应的逻辑结构如图2-1所示。
图2-1 线性表的逻辑结构示意图3.线性表的抽象数据类型描述抽象数据类型线性表的定义如下:二、线性表的顺序存储结构1.顺序表(1)线性表的存储结构线性表的顺序存储结构是把线性表中的所有元素按照其逻辑顺序依次存储到从计算机存储器中指定存储位置开始的一块连续的存储空间中,如图2-2所示。
图2-2 线性表到顺序表的映射由于线性表中逻辑上相邻的两个元素在对应的顺序表中的存储位置也相邻,所以这种映射称为直接映射。
这样,线性表中第一个元素的存储位置就是指定的存储位置,第i+1个元素(1≤i≤n-1)的存储位置紧接在第i个元素的存储位置的后面。
假定线性表的元素类型为ElemType,则每个元素所占用存储空间大小(即字节数)为sizeof(ElemType),整个线性表所占用存储空间的大小为n×sizeof(ElemType),其中n表示线性表的长度。
在C/C++语言中,线性表的顺序存储结构是利用数组来实现的,数组的基本类型就是线性表中元素的类型,数组的大小要大于等于线性表的长度。
第4章串1.采用顺序结构存储串,编写一个实现串通配符匹配的算法pattern______index(),其中的通配符只有“?”,它可以和任一字符匹配成功,例如,pattern______index(″? re″,″there are″)返回的结果是2。
答:本题的基础是Brute—Force模式匹配算法,只是增加了“?”的处理功能。
对应的算法如下:2.有两个串s1和s2,设计一个算法求这样一个串,该串中的字符是s1和s2中的公共字符。
答:扫描s1,对于当前字符s1.data[i],若在s2中,则将其加入到串s3中。
最后返回s3串。
对应的算法如下:3.设目标为t=’abcaabbabcabaacbacba’,模式p=’abcabaa’。
(1)计算模式P的nextval函数值。
(2)不写算法,只画出利用KMP算法进行模式匹配时的每一趟匹配过程。
答:(1)先计算next数组,在此基础上求nextval数组,如表4-1所示。
表4-1 计算next数组和nextval数组(2)采用KMP算法求子串位置的过程如下(开始时i=0,j=0):第1趟匹配:此时i=4,j=4,匹配失败,而nextval[4]=0,则i=4,j=nextval[4]=0,即:第2趟匹配:此时i=6,j=2,匹配失败,而nextval[2]=0,则i=6,j=nextval[2]=0,即:第3趟匹配:此时i=6,j=0,匹配失败,而nextval[0]=-1,则i=6,j=nextval[0]=-1。
因j=-1,执行i=i+1=7,j=j+1=0,即:第4趟匹配:此时i=14,j=7,匹配成功,返回v=i-t.1ength=14-7=7。
上机实验题4实验题1编写一个程序algo4-1.cpp,实现顺序串的各种基本运算,并在此基础上设计一个程序exp4-1.cpp完成如下功能:(1)建立串s=″abcdefghefghijklmn″和串sl=″xyz″;(2)输出串s;(3)输出串s的长度;(4)在串s的第9个字符位置插入串s1而产生串s2;(5)输出串s2;(6)删除串s第2个字符开始的5个字符而产生串s2;(7)输出串s2;(8)将串s第2个字符开始的5个字符替换成串s1而产生串s2;(9)输出串s2;(10)提取串s的第2个字符开始的10个字符而产生串s3;(11)输出串s3;(12)将串s1和串s2连接起来而产生串s4;(13)输出串s4。
第6章数组和广义表一、选择题1.设有一个10阶的对称矩阵A,采用压缩存储方式,以行序为主存储,a11为第一元素,其存储地址为1,每个元素占一个地址空间,则a85的地址为()。
A.13B.33C.18D.40【答案】B【解析】对于对称矩阵,a i,j=a j,i。
为了节省存储空间,为多个相同的元素只分配一个存储空间。
对于对称矩阵,元素下表之间的对应关系为:当i>=j时,k=i(i-1)/2+j -1;当i< =j 时,k=j(j-1)/2+i-1。
其中k相当于地址空间的标号,i为行号,j为列号。
因为第一个元素存储地址为1,所以最后计算的k需要加1。
所以a85的存储位置为8*(8-1)/2+5=33。
2.设有数组A[i,j],数组的每个元素长度为3字节,i的值为1到8,j的值为1到10,数组从内存首地址BA开始顺序存放,当用以列为主存放时,元素A[5,8]的存储首地址为()。
A.BA+141B.BA+180C.BA+222D.BA+225【答案】B【解析】在计算中,可以考虑按照列存放时,A[5,8]在内存的位置,比较容易计算元素的首地址。
比如A[5,8]顺序存放时,它是第7*8+5=61个元素,由于首地址为BA,所以它的存储首地址为BA+(61-1)*3=180+BA。
3.数组通常具有的两种基本操作是()。
A.查找和修改B.查找和索引C.索引和修改D.建立和删除【答案】A【解析】数组中的元素是顺序存放的,通过下标可以很好地查找数组元素,同时通过对应的指针可以修改数组元素的值,因此数组通常具有的两种基本操作是查找和修改。
根据数组的性质,数组通常具有的两种基本运算是排序和查找。
4.将一个A[1..100,1..100]的三对角矩阵,按行优先存入一维数组B[1..298]中,A中元素A6665(即该元素下标i=66,j=65),在B数组中的位置K为()。
A.198B.195C.197【答案】B【解析】将对角矩阵a[i][j]存入b[k],三对角矩阵压缩地址计算公式如下:k=2i+j-2。
第二部分课后习题第1章绪论1.简述数据与数据元素的关系与区别。
答:凡是能被计算机存储、加工的对象统称为数据,数据是一个集合。
数据元素是数据的基本单位,是数据的个体。
数据与元素之间的关系是元素与集合之间的关系。
2.数据结构和数据类型有什么区别?答:数据结构是互相之间存在一种或多种特定关系的数据元素的集合,一般包括三个方面的内容,即数据的逻辑结构、存储结构和数据的运算。
而数据类型是一个值的集合和定义在这个集合上的一组运算的总称,如C语言中的int数据类型是由-32768~32767(16位机)的整数和+、-、*、/、%等运算符组成。
3.设3个表示算法频度的函数f、g和h分别为:f(n)=100n3+n2+1000g(n)=25n3+5000n2h(n)=n1.5+5000nlog2n求它们对应的时间复杂度。
答:f(n)=100n3+n2+1000=O(n3),g(n)=25n3+5000n2=O(n3),当n→∞时,√n>log2n,所以h(n)=n1.5+5000nlog2n=O(n1.5)。
4.用C/C++语言描述下列算法,并给出算法的时间复杂度。
(1)求一个n阶方阵的所有元素之和。
(2)对于输入的任意三个整数,将它们按从小到大的顺序输出。
(3)对于输入的任意n个整数,输出其中的最大和最小元素。
答:(1)算法如下:本算法的时间复杂度为O(n2)。
(2)算法如下:本算法的时间复杂度为O(1)。
(3)算法如下:本算法的时间复杂度为O(n)。
5.设n为正整数,给出下列各种算法关于n的时间复杂度。
(1)(2)(3)答:(1)设while循环语句执行次数为T(n),则:(2)算法中的基本运算语句是if(b[k]>b[j])k=j,其执行次数T(n)为:(3)设while循环语句执行次数为T(n),则:则6.有以下递归算法用于对数组a[i..j]的元素进行归并排序:求mergesort(a,0,n-1)的时间复杂度。
第二部分课后习题第1章绪论1.简述数据与数据元素的关系与区别。
答:凡是能被计算机存储、加工的对象统称为数据,数据是一个集合。
数据元素是数据的基本单位,是数据的个体。
数据与元素之间的关系是元素与集合之间的关系。
2.数据结构和数据类型有什么区别?答:数据结构是互相之间存在一种或多种特定关系的数据元素的集合,一般包括三个方面的内容,即数据的逻辑结构、存储结构和数据的运算。
而数据类型是一个值的集合和定义在这个集合上的一组运算的总称,如C语言中的int数据类型是由-32768~32767(16位机)的整数和+、-、*、/、%等运算符组成。
3.设3个表示算法频度的函数f、g和h分别为:f(n)=100n3+n2+1000g(n)=25n3+5000n2h(n)=n1.5+5000nlog2n求它们对应的时间复杂度。
答:f(n)=100n3+n2+1000=O(n3),g(n)=25n3+5000n2=O(n3),当n→∞时,√n>log2n,所以h(n)=n1.5+5000nlog2n= O(n1.5)。
4.用C/C++语言描述下列算法,并给出算法的时间复杂度。
(1)求一个n阶方阵的所有元素之和。
(2)对于输入的任意三个整数,将它们按从小到大的顺序输出。
(3)对于输入的任意n个整数,输出其中的最大和最小元素。
答:(1)算法如下:本算法的时间复杂度为O(n2)。
(2)算法如下:本算法的时间复杂度为O(1)。
(3)算法如下:本算法的时间复杂度为O(n)。
5.设n为正整数,给出下列各种算法关于n的时间复杂度。
(1)(2)(3)答:(1)设while循环语句执行次数为T(n),则:(2)算法中的基本运算语句是if(b[k]>b[j])k=j,其执行次数T(n)为:(3)设while循环语句执行次数为T(n),则:则6.有以下递归算法用于对数组a[i..j]的元素进行归并排序:求mergesort(a,0,n-1)的时间复杂度。
第10章内排序10.1 复习笔记一、排序的基本概念1.定义排序,就是整理表中的元素,使之按关键字递增或递减的顺序排列,本章仅讨论递增排序的情况。
其确切定义如下:输入:n个元素,R0,R1,…,R n-1,相应的关键字分别为k0,k1,…,k n-1。
输出:R i0,R i1,…,R in-1,使得k i0≤k i1≤…≤k in-1。
因此,排序算法就是要确定0,1,…,n-1的一种排列i0,i1,…,i n-1,使表中的元素依此排列整理后按关键字有序。
2.排序的稳定性(1)稳定如果待排序的表中,存在多个关键字相同的元素,经过排序后这些具有相同关键字的元素之间的相对次序保持不变,则称这种排序方法是稳定的。
(2)不稳定若具有相同关键字的元素之间的相对次序发生变化,则称这种排序方法是不稳定的。
注意:排序算法的稳定性是针对所有输入实例而言的。
在所有可能的输入实例中,只要有一个实例使得算法不满足稳定性要求,则该排序算法就是不稳定的。
3.内排序和外排序(1)内排序在排序过程中,若整个表都是放在内存中处理,排序时不涉及内、外存数据的交换,则称之为内排序。
内排序适用于元素个数不很多的小表。
(2)外排序若排序过程中要进行内、外存数据的交换,则称之为外排序。
外排序则适用于元素个数很多,不能一次将全部元素放入内存的大表。
内排序是外排序的基础。
(3)排序方法的其他分类①需要关键字比较的排序需要关键字比较的排序方法有插入排序、选择排序、交换排序和归并排序等。
②不需关键字比较的排序不需要关键字比较的排序方法有基数排序。
4.排序数据的组织在本章中,以顺序表作为排序数据的存储结构,假设关键字类型为整型。
待排序的顺序表中数据元素的类型定义如下:二、插入排序1.插入排序的思想及方法基本思想是:每次将一个待排序的元素,按其关键字大小插入到已经排好序的子表中的适当位置,直到全部元素插入完成为止。
主要有两种插入排序方法,即直接插入排序和希尔排序。
1章答案1.简述数据与数据元素的关系与区别。
解:凡是能被计算机存储、加工的对象统称为数据,数据是一个集合。
数据元素是数据的基本单位,是数据的个体。
数据与元素之间的关系是元素与集合之间的关系。
2.数据结构和数据类型有什么区别?解:数据结构是互相之间存在一种或多种特定关系的数据元素的集合,一般包括三个方面的内容,即数据的逻辑结构、存储结构和数据的运算。
而数据类型是一个值的集合和定义在这个集合上的一组运算的总称,如C语言中的int数据类型是由-32768~32767(16位机)的整数和+、-、*、/、%等运算符组成。
3.设3个表示算法频度的函数f、g和h分别为:f(n)=100n3+n2+1000 g(n)=25n3+5000n2 h(n)=n1.5+5000nlog2n求它们对应的时间复杂度。
解:f(n)=100n3+n2+1000=O(n3),g(n)=25n3+5000n2=O(n3),当n→∞时,√n>log2n,所以h(n)=n1.5+5000nlog2n= O(n1.5)。
4.用C/C++语言描述下列算法,并给出算法的时间复杂度。
(1)求一个n阶方阵的所有元素之和。
(2)对于输入的任意三个整数,将它们按从小到大的顺序输出。
(3)对于输入的任意n个整数,输出其中的最大和最小元素。
解:(1)算法如下:本算法的时间复杂度为O(n2)。
(2)算法如下:本算法的时间复杂度为O(1)。
(3)算法如下:本算法的时间复杂度为O(n)。
5.设n为正整数,给出下列各种算法关于n的时间复杂度。
(1)(2)(3)解:(1)设while循环语句执行次数为T(n),则:(2)算法中的基本运算语句是if(b[k]>b[j])k=j,其执行次数T(n)为:(3)设while循环语句执行次数为T(n),则:则6.有以下递归算法用于对数组a[i..j]的元素进行归并排序:求mergesort(a,0,n-1)的时间复杂度。
第6章数组和广义表
1.简述数组属于线性表的原因。
答:数组可以看成是线性表在下述含义上的扩展:线性表中的数据元素本身也是一个线性表。
在n维数组中的每个数据元素都受着n个关系的约束,在每个关系中,数据元素都有一个后继元素(除去最后一个元素)和一个前驱元素(除去最前一个元素)。
因此,这n个关系中的任一关系,就其单个关系而言仍是线性关系。
例如,m×n的二维数组的形式化定义如下:
2.n阶对称矩阵A的下三角元素存储在一维数组B中,则B包含多少个元素?
答:B中包含n阶对称矩阵A的下三角和主对角线上的元素,其元素个数为1+2+…+n=(n(n+1))/2,所以B包含(n(n+1))/2个元素。
3.设有三对角矩阵A n×n(从A1,1开始),将其三对角线上元素逐行存于数组B [1..m]中,使B[k]=A i,j,求:
(1)用i,j表示k的下标变换公式;
(2)用k表示i,j的下标变换公式。
答:在三对角矩阵中,除了第一行和最后一行各有两个元素外,其余各行均有三个非零元素,所以共有3n-2个非零元素。
(1)主对角线左下角的对角线上的元素的下标有关系式:i=j+1,此时的k有:
k=3(i-1)=2(i-1)+j
主对角线上的元素的下标有关系式:i=j,此时的k有:
k=3(i-1)+1=2(i-1)+j
主对角线右上角的对角线上的元素的下标有关系式:i=j-1,此时的k有:
k=3(i-1)+2=2(i-1)+j
综合起来得到:k=2(i-1)+j
(2)k与i,j的变换公式为:i=k/3+1;j=k-2(i-1)
4.用十字链表表示一个有k个非0元素的m×n的稀疏矩阵,则其总的节点数为多少?
答:该十字链表有一个十字链表头节点,MAX(m,n)个行、列头节点。
另外,每个非零元素对应一个节点,即k个元素节点,所以共有MAX(m,n)+k+1个节点。
5.设定二维整数数组B[0..m-1,0..n-1]的数据在行、列方向上都按从小到大的顺序排序,且整型变量x中的数据在B中存在。
试设计一个算法,找出一对满足B[i][j]=x的i,j值。
要求比较次数不超过m+n。
答:从二维数组B的右上角的元素开始比较。
每次比较有三种可能的结果:若相等,则比较结束;若右上角的元素小于x,则可断定二维数组的最上面一行肯定没有与x相等的数据,下次比较时搜索范围可以减少一行;若右上角的元素大于x则可断定二维数组的
最右面一列肯定不包含与x相等的数据,下次比较时可把最右一列剔除出搜索范围。
这样,每次比较可使搜索范围减少一行或一列,最多经过m+n次比较就可找到要求的与x 相等的数据。
对应程序如下:
6.编写一个算法,计算一个三元组表表示的稀疏矩阵的对角线元素之和。
答:对于稀疏矩阵三元组表a,从a.data[1]开始查看,若其行号等于列号,表示是一个对角线上的元素,则进行累加,最后返回累加值。
算法如下:
7.设3个广义表为:A=(a,b,c),B=(A,(c,d)),C=(a,(B,A),(e,f)),请给出下列各运算的结果:
答:(1)
(2)
(3)
8.设计一个算法Same(*g1,*g2),判断两个广义表g1和g2是否相同答:判断广义表是否相同过程是,若g1和g2均为NULL,则返回true;若g1和g2中一个为NULL,另一个不为NULL,则返回false;若g1和g2均不为NULL,若同为原子且原子值不相等,则返回false,若同为原子且原子值相等,则返回
若同为子表,则返回
的结果,若一个为原子另一个为子表,则返回false。
对应的算法如下:
上机实验题6
实验题1 以下是一个5×5阶螺旋方阵。
设计一个程序exp6-1.cpp输出该形式的n ×n(n<10)阶方阵(顺时针方向旋进)。
实验题2 如果矩阵A中存在一个元素A[i][j]满足条件:A[i][j]是第i行中值最小的元素,且又是第J列中值最大的元素,则称为该矩阵的一个马鞍点。
设计一个程序
exp6-2.cpp计算出m×n的矩阵A的所有马鞍点。
实验题3 已知A和B为两个n×n阶的对称矩阵,输入时,对称矩阵只输入下三角形元素,存入一维数组,如图6.10所示(对称矩阵M存储在一维数组A中),设计一个程序exp6-3.cpp实现如下功能:
(1)求对称矩阵A和B的和。
(2)求对称矩阵A和B的乘积。
图6.10 对称矩阵的存储转换形式
实验题4 假设n×n的稀疏矩阵A采用三元组表示,设计一个程序exp6-4.cpp实现如下功能:
(1)生成如下两个稀疏矩阵的三元组a和b;
(2)输出a转置矩阵的三元组;
(3)输出a+b的三元组;
(4)输出a×b的三元组。