电气控制线路设计举例
- 格式:ppt
- 大小:840.00 KB
- 文档页数:16
设计电气控制线路举例
现用某专用机床给一箱体加工两侧平面。
加工方法是将箱体夹紧在可前后移动的滑台上,两侧平面用左右动力头铣削加工。
其要求如下:
第一,加工前滑台应快速移动到加工位置,然后改为慢速进给。
第二,滑台从快速移动到慢速进给应自动变换,铣削完毕要自动停车,然后由人工操作滑台快速退回原位后自动停车。
第三,具有短路、过载、欠压及失压保护。
1.选择基本控制线路
根据滑台电动机Ml需正反转,左右动力头电动机M2、M3只需单向运转的控制要求,选择接触器联锁正反转控制线路和接触器自锁正转控制线路,并进行有机地组合。
2.修改完善线路
3.校核完成线路。
电气控制线路设计实例下面通过一个实例介绍电气掌握线路的一般设计方法。
拟设计某机床主电动机掌握线路。
要求:1)可正反转;2)双向点动掌握13)双向反接制4)有短路和过载爱护。
1.电路设计(1)主电路设计点动时要频繁起动,定子回路应串入限流电阻,反接制动时为削减制动电流,定子回路也应串入限流电阻。
而在正常正反转运转时,应旁路限流电阻。
故主电路应具有正反转选择和是否串入限流电阻选择功能、如图1所示,正常正反转运转时,KM主触点应闭合;点动或制动时,KM主触点应断开。
图1 车床电气原理图(2)掌握电路设计图2 点动掌握线路图3 正反向及制动掌握线路1)点动掌握点动时定子回路应串入限流电阻,按下按钮SB4,接触器KM1得电吸台。
它的主触点闭合,KM 4不得电,电动机的定子绕组经限流电阻R和电源接通.电动机在较低速度下正向起动。
松开按钮SB4,KMl断电,电动机停止转动。
在点动过程中.继电器KM线圈不通电,KMl线圈不会自锁。
反方向时类同。
见图2。
2)主轴电动机的反接制动掌握反接制动时定子回路也应串人限流电阻。
速度继电器与被控电动机是同轴联结的,当电动机正转时.速度继电器正转动合触点KSl闭合;电动机反转时,速度继电器的反转动合触点KS2闭合。
当电动机正向旋转时,接触器KMl和KM都处于得电动作状态,速度继电器正转动合触点KS1闭合,这样就为电动机正转时的反接制动做好了预备。
当要停车制动时,按下制动按钮SBI,各接触器都失电;松开按钮SB1,经正转动合触点KSl接通反转接触器KM2。
当电动机的转速下降到速度继电器的复位转速时,速度继电器KSl动合触点断开,切断了接触器KM2线圈的通电回路,电动机停止。
电动机反转时的制动与正转时的制动相像,见图3。
3)主电动机的正反转掌握电路主电动机正转由正向起动按钮SB2掌握,按下按钮SB2时,接触器KM首先得电动作,它的主触点闭合将限流电阻短接。
接触器KM的帮助触点闭合使接触器KM1得电吸合,电动机在满电压下正向起动。
TKD-A 提升机电气控制线路设计概述TKD-A 电气控制系统是为单绳缠绕式交流提升机配套设计。
该系统在加速阶段采用转子附加电阻调速,减速阶段采用动力制动等减速方式,可实现六阶段提升。
转子回路切电阻采用电流附加时间原则。
该系统主要包括主回路(定子回路、转子回路)、测速回路、安全回路、控制回路、辅助回路、可调闸回路等。
第一节主回路设计一、主回路工作原理1、定子回路提升电动机M的定子绕组经高压隔离开关QS1、高压油断路器QFG和高压换向器(正向接触器KMZ或反向接触器KMF)及线路接触器KML与高压6KV 电源相连。
接触器KML及KMZ或KMF控制电动机的通断和转向。
高压油断路器设有失压脱扣器LSY及过流脱扣器LGL1 、LGL2 ,当电源电压过低或电动机过载时,QFG断开以保护电动机,同时串接在安全回路的常开触头断开,实现安全制动;与LSY串接了两个保护开关的闭锁触头:紧急情况下供司机控制的脚踏开关SJT的常开触头,高压换向室栏栅门闭锁开关SHL的常开触头。
后者的作用是,在提升机正常工作时,为保障生产和人身安全,防止人员误入换向室。
当采用动力制动时,控制回路将断开KMF或KMZ及KML,却保证动力制动接触器KMD有电,提升机电动机定子改由可控硅变流装置送入直流电。
QS2 和QS3 分别为6KV电源进线和备用线的高压隔离开关。
2、转子回路转子回路外接8段电阻,在加速和动力制动过程中,由加速接触器KM1-KM8分段切除,来改变电动机的起动和制动特性,以满足提升机对速度的要求,并限制转子电流。
第二节测速回路设计测速回路反映了提升系统的实际速度和提升机旋转方向。
测速回路的核心部件是他激直流发电机TG。
由主电动机拖动,测速发电机电枢电压与提升电动机转速成正比。
其励磁线圈LTG由稳压电源V WY及可控硅整流装置VG9单独供电。
当提升机以最大速度V M运转时,TGF的电枢电压为220V,电压的极性决定于提升机的转向。
电气控制线路设计及实例分析一、简介二、电气控制线路设计步骤1、了解设备工作原理和要求:首先需要了解所控制的设备的工作原理和控制要求,包括输入输出信号的特点和范围,以及设备的工作模式等。
这是设计电气控制线路的基础。
2、选择控制元件:根据设备的工作原理和要求,选择合适的控制元件,如开关、继电器、传感器等。
需要考虑元件的电气特性和可靠性。
3、确定控制回路结构:根据设备的控制要求和元件的特性,确定控制回路的结构。
通常包括控制信号的产生、传输、处理和继电器等元件的选择和安装。
4、绘制电气控制图:根据控制回路的结构,使用电气图符和符号,绘制电气控制图。
电气控制图应清晰、准确地表达控制回路的结构和各个元件之间的连接关系。
5、进行电气控制线路的布线和接线:根据电气控制图,进行电气控制线路的布线和接线。
布线和接线应符合电气安全规范,减少干扰和误操作的可能。
6、进行电气控制线路的调试和测试:完成电气控制线路的布线和接线后,需要进行电气控制线路的调试和测试,以确保线路的正常工作和稳定性。
可以通过模拟信号和实际设备进行测试。
7、对电气控制线路进行优化和改进:在实际使用中,对电气控制线路进行优化和改进,提高设备的控制效率和安全性。
可以通过改变控制元件和参数,优化控制策略等方式实现。
三、电气控制线路设计实例分析以一个自动化生产线的电气控制线路设计为例,进行实例分析。
该自动化生产线由多个工作站组成,每个工作站需要进行自动控制。
整个生产线的主要任务是将原材料进行分配和加工,最终得到成品。
1、了解设备工作原理和要求:每个工作站的具体工作原理和控制要求不同,需要了解每个工作站的输入输出信号特点和范围,以及工作模式等。
2、选择控制元件:对于每个工作站,根据其控制要求选择适合的控制元件,如开关、继电器等。
比如,在装配工作站中可以使用继电器实现电机的正反转控制。
3、确定控制回路结构:根据每个工作站的控制要求和元件的特性,确定每个工作站的控制回路结构。
电气控制电路设计例题 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】电气控制设计例题1.一运料小车由一台笼型异步电动机拖动,要求:(1)小车运料到位自动停车;(2)延时一定时间后自动返回;(3)回到原位自动停车。
试画出控制电路。
并说明工作原理。
工作原理:QS+ — SB2 — KM1+ —M转动,到位压下SQ1 —M停转,KT+ —延时到—KM2+ — M反转—到位压下SQ2,M停。
2.设计一个电气控制线路,要求第一台电机起动后,第二台电机才能起动;第二台电机停止后,第一台电机才能停止。
3.设计一电气控制线路,要求第一台电动机起动10s后,第二台电动机自行起动,运行5s后,第一台电动机停止并同时使第三台电动机起动。
再运行15s,第一台电机停止。
4.画出一种实现电动机点动控制及连续运转控制的控制线路。
5.设计一电气控制线路。
有一台三级皮带运输机,分别由M1、M2、M3三台电动机拖动。
其动作要求如下:1)起动时要求按M1M2M3顺序起动。
2)停车时要求按M3M2M1顺序停车。
3)上述动作要求有一定时间间隔。
6.为两台异步电动机设计一个控制线路,其要求如下:1)两台电动机互不影响地独立操作。
2)能同时控制两台电动机的起动和停止。
3)当一台电动机发生过载时,两台电动机均停止。
7、某水泵由一台三相笼型异步电动机拖动,按下列要求设计电气控制电路:1)采用Y-Δ减压起动;2)三处控制电动机的起动和停止;3)要有必要的保护环节。
8、试画出异步电动机既能正转连续运行,又能正、反转点动的控制线路。
电气控制线路设计方法目录:一、电气原理图设计的基本步骤 (1)二、电气原理图的设计方法及设计实例 (1)三、原理图设计中应注意的问题 (6)原理线路设计是原理设计的核心内容。
在总体方案确定之后,具体设计是从电气原理图开始的,各项设计指标是通过控制原理图来实现的,同时它又是工艺设计和编制各种技术资料的依据。
一、电气原理图设计的基本步骤1、根据选定的拖动方案及控制方式设计系统的原理框图,拟订出各部分的主要技术要求和主要技术参数。
2、根据各部分的要求,设计出原理框图中各个部分的具体电路。
对于每一部分的设计总是按主电路→控制电路→辅助电路→联锁与保护→总体检查→反复修改与完善的步骤进行。
3、绘制总原理图。
按系统框图结构将各部分联成一个整体。
4、正确选用原理线路中每一个电器元件,并制订元器件目录清单。
对于比较简单的控制线路,例如普通机床的电气配套设计,可以省略前两步,直接进行原理图设计和选用电器元件。
但对于比较复杂的自动控制线路,例如专用的数控生产机械或者采用微机或电子控制的专用检测与控制系统,要求有程序预选、刀具调整与补偿和一定的加工精度、生产效率、自动显示、各种保护、故障诊断、报警、打印记录等,就必须按上述过程一步一步进行设计。
只有各个独立部分都达到技术要求,才能保证总体技术要求的实现,保证总装调试的顺利进行。
二、电气原理图的设计方法及设计实例电气原理图的设计方法主要有分析设计法和逻辑设计法两种,分别介绍如下。
1、分析设计法所谓分析设计法是根据生产工艺的要求去选择适当的基本控制环节(单元电路)或经过考验的成熟电路,按各部分的联锁条件组合起来并加以补充和修改,综合成满足控制要求的完整线路。
当找不到现成的典型环节时,可根据控制要求边分析边设计,将主令信号经过适当的组合与变换,在一定条件下得到执行元件所需要的工作信号。
设计过程中,要随时增减元器件和改变触点的组合方式,以满足拖动系统的工作条件和控制要求,经过反复修改得到理想的控制线路。