STM32 实验7 定时器中断实验
- 格式:pdf
- 大小:512.69 KB
- 文档页数:8
实验报告课程名称:单片微机原理与车载系统学生姓名蒋昭立班级电科1601学号***********指导教师易吉良成绩2018年12 月17 日实验1 GPIO实验1.1 实验目的1)熟悉MDK开发环境;2)掌握STM32单片机的GPIO使用方法。
1.2 实验设备1)一台装有Keil和串口调试软件的计算机;2)一套STM32F103开发板;3)STlink硬件仿真器。
1.3 基本实验内容1)熟悉MDK开发环境,参考《STM32F1开发指南(精英版)-寄存器版本_V1.0》第3章,安装MDK 并新建test工程,运行例程,在串口窗宽观察结果,并记录如下:从图片可以看出,例程运行成功,没有错误。
2)按键输入实验,《STM32F1开发指南(精英版)-寄存器版本_V1.0》第8章。
实现功能:3 个按钮(KEY_UP、KEY0和KEY1),来控制板上的2 个LED(DS0 和DS1)和蜂鸣器,其中KEY_UP 控制蜂鸣器,按一次叫,再按一次停;KEY1 控制DS1,按一次亮,再按一次灭;KEY0 则同时控制DS0 和DS1,按一次,他们的状态就翻转一次。
理解连续按概念及其实现代码。
参数mode 为0 的时候,KEY_Scan 函数将不支持连续按,扫描某个按键,该按键按下之后必须要松开,才能第二次触发,否则不会再响应这个按键,这样的好处就是可以防止按一次多次触发,而坏处就是在需要长按的时候比较不合适。
当mode 为1 的时候,KEY_Scan 函数将支持连续按,如果某个按键一直按下,则会一直返回这个按键的键值,这样可以方便的实现长按检测。
寄存器方法实现不支持连续按的关键代码,以及程序运行后的效果。
由程序可知,给KEY_Scan函数输入的值为0,为不支持连按模式。
寄存器方法实现支持连续按的关键代码,以及程序运行后的效果。
由程序可知,给KEY_Scan函数输入的值为1,为支持连按模式。
3)采用库函数方法实现按键输入实验,参考《STM32F1开发指南(精英版)-库函数版本_V1.0》第8章。
实验二定时器和中断应用程序设计与调试3页一、实验目的1. 掌握定时器的工作原理和应用;2. 掌握中断的工作原理和应用;3. 结合定时器和中断设计应用程序。
二、实验器材1. 现成的定时器和中断资源(例如 STM32F103C8T6 单片机板);2. 电脑、USB 电缆、串口调试工具、杜邦线等。
三、实验原理与步骤1. 定时器首先,定时器是一种计时装置,它能够在设定的时间间隔内,发出一个固定的时钟脉冲信号,用于控制外部器件的时间。
定时器通常由计数器和时钟源两部分组成,计数器用于计数,时钟源则提供时钟脉冲。
在 STM32F103C8T6 单片机中,STM32F1 系列具有三个基本定时器,包括 TIM2、TIM3 和 TIM4,以及一个高级定时器 TIM1,这些定时器都是 16 位计数器。
下面以 TIM2 为例,介绍定时器的工作原理和使用方法。
STM32F103C8T6 的时钟系统图如下图所示:其中,HCLK(高速时钟)的频率为 72MHz。
TIM2 的时钟源为:TIM2 的计数器是一个 16 位的寄存器,它的计数范围为 0-65535。
当计数器计数到最大值 65535 后,会自动从 0 开始重新计数。
TIM2 的数据和控制寄存器如下表所示:TIM2 的工作模式有四种,分别为向上计数、向下计数、向上/向下计数和单脉冲模式。
在本次实验中,我们选择向上计数模式,即计数器从 0 开始计数,当计数器计数到设定的值时,触发中断。
2. 中断中断是指由外部事件、硬件故障或软件请求而引起 CPU 暂停正在执行的当前程序,并转去执行一个特殊函数的程序执行机制。
中断是实现系统交互的重要手段,能够提高系统的响应速度和可靠性。
STM32F103C8T6 支持多种类型的中断,包括外部中断、定时器中断、USART 中断和 DMA 中断等。
在 STM32F103C8T6 中,各个中断向量表的地址为 0x0800 0000,STM32F1 系列的中断向量表共有 61 个中断向量,如下图所示:当有中断事件触发时,会自动跳转到相应的中断向量表所存的中断服务函数。
定时器中断程序设计实验定时器中断程序设计实验简介定时器中断是嵌入式系统中的常见应用之一,通过配置定时器的相关寄存器,可以定时产生中断信号,从而实现定时功能。
本文档将介绍定时器中断的基本概念和在实验中如何设计和实现定时器中断程序。
一、定时器中断的概念定时器中断是通过硬件定时器产生的中断信号,可以用于在嵌入式系统中实现定时功能。
定时器中断的原理是定时器内部的计数器自动递增,并在计数到一个特定值时产生中断信号。
通过配置定时器的相关寄存器,可以设置定时器的计数范围、计数速度和中断触发条件等参数。
二、定时器中断的实验设计步骤以下是一个基本的定时器中断程序设计实验的步骤:1. 确定定时器的类型和工作模式根据实际需求和硬件平台的支持情况,选择合适的定时器类型和工作模式。
常见的定时器类型包括定时器/计数器和看门狗定时器,常见的工作模式包括定时模式和计数模式。
2. 配置定时器的相关寄存器根据定时器的类型和工作模式,配置定时器的相关寄存器。
主要包括计数范围、计数速度和中断触发条件等参数的设置。
3. 初始化中断控制器如果使用的嵌入式系统具有中断控制器,需要初始化中断控制器,并使能相应的中断通道。
4. 编写中断服务程序通过注册中断处理函数,并在其中编写中断服务程序。
中断服务程序主要包括对中断标志位的清除、中断处理、中断函数返回等操作。
5. 启动定时器配置完成后,启动定时器开始计数。
定时器将根据配置的参数自动递增,并在计数到设定的特定值时产生中断信号。
6. 整合定时器中断功能到主程序在主程序中,可以使用定时器中断提供的功能来实现定时任务。
可以通过在中断服务程序中设置标志位,并在主循环中检测该标志位来执行相应的任务。
三、实验注意事项在设计和实现定时器中断程序时,需要注意以下事项:1. 根据实际需求进行定时器的配置,确保定时器的参数设置合理。
2. 在中断服务程序中应尽量减少对全局变量和共享资源的访问,以避免竞态条件和数据不一致等问题的发生。
中断实验实验报告本实验是关于中断的学习和实验。
我们需要掌握中断的概念、分类、使用方法、实现过程等知识,并通过实际操作来理解中断的工作原理。
实验环境:硬件:STM32F103C8T6开发板、OLED显示屏、按键开关软件:Keil5、ST-LINK调试工具实验过程:1、准备工作首先,我们需要在Keil中新建一个STM32F103C8T6项目,然后将要使用到的头文件和驱动程序添加到项目中。
2、了解中断中断是指当CPU执行某个程序时,由于硬件或软件的干预而打断原来的程序执行,转而执行指定的中断服务程序(ISR),完成相应的工作后再回到被打断的程序。
中断可以提高系统响应速度,增强系统的可靠性和稳定性。
中断可分为外部中断和内部中断。
外部中断是由硬件引脚上的信号产生的中断请求。
内部中断是由软件产生的中断请求,例如软件中断、定时器中断等。
3、编写程序首先,我们要在程序中使能系统滴答定时器(SysTick)。
SysTick是STM32系统内置的一个定时器,可以在一定的时间周期内产生一次中断请求。
在这里,我们将SysTick的中断周期设置为1秒,以便后续实验中查看效果。
然后,我们编写一个中断服务程序,用来处理按键开关产生的中断请求。
当按键按下时,将在OLED屏幕上显示按键按下的次数,并通过串口向PC端发送按键按下的消息。
需要注意的是,为避免中断服务程序中使用延时函数(例如HAL_Delay),我们在程序中使用了定时器来延时。
最后,我们需要在程序中启用外部中断,以便可以检测到按键开关的中断请求。
在此实验中,我们使用了外部中断1,其对应的引脚为PA1。
4、实验结果当按键按下时,OLED屏幕上的数字会自动加1,并通过串口向PC端发送按键按下的消息。
可以看到,此实验中使用的中断机制可以在不占用CPU资源的情况下,实现对按键事件的响应和处理。
通过这次实验,我们对中断有了更深入的认识,了解了中断的工作原理、分类、使用方法和实现过程,掌握了在STM32中使用中断的具体操作方法。
一、实验背景随着电子技术的飞速发展,单片机因其体积小、成本低、功能强大等优点,在各个领域得到了广泛应用。
中断技术是单片机设计中非常重要的一部分,它允许单片机在执行程序的过程中,能够及时响应外部事件,从而提高系统的实时性和效率。
本实训旨在通过实验,加深对单片机中断系统的理解,掌握中断系统的使用方法,并学会在实际应用中灵活运用中断技术。
二、实验目的1. 熟悉单片机中断系统的基本概念和原理。
2. 掌握中断源、中断优先级、中断服务程序等基本概念。
3. 学会使用单片机的中断系统实现实时响应外部事件。
4. 培养动手实践能力和问题解决能力。
三、实验器材1. 单片机实验板2. 示波器3. 电源4. 连接线5. 逻辑分析仪(可选)四、实验内容1. 实验一:外部中断实验(1)实验目的:验证外部中断功能,实现按键控制LED灯的点亮和熄灭。
(2)实验步骤:a. 将外部中断0(INT0)引脚连接到按键,按键按下时产生低电平信号。
b. 编写中断服务程序,实现按键按下时点亮LED灯,按键释放时熄灭LED灯。
c. 编译程序,下载到单片机实验板上。
d. 测试实验效果,观察LED灯的点亮和熄灭情况。
2. 实验二:定时器中断实验(1)实验目的:验证定时器中断功能,实现LED灯的定时闪烁。
(2)实验步骤:a. 配置定时器T0为模式1,设置定时器初值,使定时器溢出时间为1秒。
b. 开启定时器中断,编写定时器中断服务程序,实现LED灯的定时闪烁。
c. 编译程序,下载到单片机实验板上。
d. 测试实验效果,观察LED灯的闪烁情况。
3. 实验三:中断嵌套实验(1)实验目的:验证中断嵌套功能,实现定时器中断和外部中断的嵌套。
(2)实验步骤:a. 配置定时器T0为模式1,设置定时器初值,使定时器溢出时间为1秒。
b. 开启定时器中断和外部中断,设置中断优先级。
c. 编写定时器中断服务程序和外部中断服务程序,实现中断嵌套。
d. 编译程序,下载到单片机实验板上。
stm32外部中断实验报告_STM32实例外部中断实验上⼀篇⽂章我们介绍了 STM32F10x 的中断,这次我们就来学习下外部中断。
本⽂中要实现的功能与按键实验⼀样,即通过按键控制LED,只不过这⾥采⽤外部中断⽅式进⾏控制。
学习时可以参考《STM32F10x 中⽂参考⼿册》-9 中断和事件章节。
外部中断介绍EXTI 简介STM32F10x 外部中断/事件控制器(EXTI)包含多达 20 个⽤于产⽣事件/中断请求的边沿检测器。
EXTI 的每根输⼊线都可单独进⾏配置,以选择类型(中断或事件)和相应的触发事件(上升沿触发、下降沿触发或边沿触发),还可独⽴地被屏蔽。
EXTI 结构框图EXTI 框图包含了 EXTI 最核⼼内容,掌握了此框图,对 EXTI 就有⼀个全局的把握,在编程的时候思路就⾮常清晰。
从图中可以看到,有很多信号线上都有标号 9 样的“20”字样,这个表⽰在控制器内部类似的信号线路有 20 个,这与 STM32F10x 的 EXTI 总共有20 个中断/事件线是吻合的。
因此我们只需要理解其中⼀个的原理,其他的 19个线路原理都是⼀样的。
EXTI 分为两⼤部分功能,⼀个产⽣中断,另⼀个产⽣事件,这两个功能从硬件上就有所差别,这个在框图中也有体现。
从图中标号 3 的位置处就分出了两条线路,⼀条是 3-4-5 ⽤于产⽣中断,另⼀条是 3-6-7-8⽤于产⽣事件。
下⾯我们就来介绍下这两条线路:(1)⾸先看下产⽣中断的这条线路(1-2-3-4-5)1.标号 1 为输⼊线,EXTI 控制器有 20 个中断/事件输⼊线,这些输⼊线可以通过寄存器设置为任意⼀个 GPIO,也可以是⼀些外设的事件,这部分内容我们会在后⾯专门讲解。
输⼊线⼀般是存在电平变化的信号。
2.边沿检测电路,EXTI 可以对触发⽅式进⾏选择,通过上升沿触发选择寄存器和下降沿触发选择寄存器对应位的设置来控制信号触发。
边沿检测电路以输⼊线作为信号输⼊端,如果检测到有边沿跳变就输出有效信号 1 给红⾊框 3 电路,否则输出⽆效信号 0。
stm32单片机设计定时器中断实现1s的led灯闪烁知识应用要实现1s的LED灯闪烁,可以使用STM32单片机的定时器中断来控制LED的开关。
以下是实现的步骤:1. 配置定时器:选择一个定时器(如TIM2)并设置适当的预分频和计数值,以实现1s的定时周期。
2. 配置中断:使能定时器中断,并将中断优先级设置为适当的值(较高优先级)。
3. 初始化LED引脚:将LED引脚设置为输出,并初始化为高电平(LED关闭)。
4. 编写中断处理程序:在中断处理程序(如TIM2_IRQHandler)中,切换LED引脚的状态。
例如,如果LED引脚当前为高电平,则将其设置为低电平,反之亦然。
5. 启动定时器:启动定时器以开始定时。
整个步骤如下所示的代码示例:```c#include "stm32fxx.h"void TIM2_IRQHandler(void){if(TIM2->SR & TIM_SR_UIF){TIM2->SR &= ~TIM_SR_UIF; // 清除中断标志位// 切换LED引脚状态if(GPIOC->ODR & GPIO_ODR_ODR0)GPIOC->ODR &= ~GPIO_ODR_ODR0; // 关闭LEDelseGPIOC->ODR |= GPIO_ODR_ODR0; // 打开LED}}int main(){// 初始化LED引脚RCC->AHB1ENR |= RCC_AHB1ENR_GPIOCEN; // 使能GPIOC时钟GPIOC->MODER |= GPIO_MODER_MODER0_0; // 将PC0设置为输出模式GPIOC->OSPEEDR |= GPIO_OSPEEDR_OSPEED0; // 设置PC0输出速度// 配置定时器RCC->APB1ENR |= RCC_APB1ENR_TIM2EN; // 使能TIM2时钟TIM2->PSC = 8399; // 将预分频设置为8400-1,得到10kHz 的计数频率TIM2->ARR = 9999; // 将计数值设置为10000-1,得到1s的定时周期// 配置中断TIM2->DIER |= TIM_DIER_UIE; // 使能更新中断NVIC_EnableIRQ(TIM2_IRQn); // 使能TIM2中断NVIC_SetPriority(TIM2_IRQn, 0); // 设置TIM2中断优先级为最高// 启动定时器TIM2->CR1 |= TIM_CR1_CEN; // 启动TIM2定时器while(1){// 程序主循环}return 0;}```以上代码使用了TIM2定时器和PC0引脚作为LED灯的控制。
stm32 定时器中断配置
stm32 中断
stm32 的Cortex 内核具有强大的异常响应系统,它把能够打断当前代码执行流程的事件分为异常(excepTIon)和中断(terryp),并把它们用二个表管理起来,编号为0~15 的称为内核异常,而16 以上的则称为外部中断(外,相对内核而言),这个表就称为中断向量表。
而STM32 对这个表重新进行了编排,把编号从-3 至6 的中断向量定义为系统异常,编号为负的内核异常不能被设置优先级,如复位(Reset)、不可屏蔽中断(NMI)、硬错误(Hardfault)。
从编号7 开始的为外部中断,这些中断的优先级都是可以自行设置的。
STM32 的中断如此之多,配置起来并不容易,因此,我们需要一个
强大而方便的中断控制器NVIC,NVIC 是属于Cortex 内核的器件。
stm32 中断配置
配置STM32 的中断只需要理解2 个内容,配置4 个变量即可。
stm32定时器定时器中断PWM输出输⼊捕获STM32F4 的通⽤定时器包含⼀个 16 位或 32 位⾃动重载计数器(CNT),该计数器由可编程预分频器(PSC)驱动。
STM32F4 的通⽤定时器可以被⽤于:测量输⼊信号的脉冲长度(输⼊捕获)或者产⽣输出波形(输出⽐较和 PWM)等。
使⽤定时器预分频器和 RCC 时钟控制器预分频器,脉冲长度和波形周期可以在⼏个微秒到⼏个毫秒间调整。
STM32F4 的每个通⽤定时器都是完全独⽴的,没有互相共享的任何资源。
STM3 的通⽤ TIMx (TIM2~TIM5 和 TIM9~TIM14)定时器功能包括:1)16 位/32 位(仅 TIM2 和 TIM5)向上、向下、向上/向下⾃动装载计数器(TIMx_CNT),注意: TIM9~TIM14 只⽀持向上(递增)计数⽅式。
2)16 位可编程(可以实时修改)预分频器(TIMx_PSC),计数器时钟频率的分频系数为 1~65535 之间的任意数值。
3) 4 个独⽴通道(TIMx_CH1~4, TIM9~TIM14 最多 2 个通道),这些通道可以⽤来作为:A.输⼊捕获B.输出⽐较C. PWM ⽣成(边缘或中间对齐模式) ,注意: TIM9~TIM14 不⽀持中间对齐模式D.单脉冲模式输出4)可使⽤外部信号(TIMx_ETR)控制定时器和定时器互连(可以⽤ 1 个定时器控制另外⼀个定时器)的同步电路。
5)如下事件发⽣时产⽣中断/DMA(TIM9~TIM14 不⽀持 DMA):A.更新:计数器向上溢出/向下溢出,计数器初始化(通过软件或者内部/外部触发)B.触发事件(计数器启动、停⽌、初始化或者由内部/外部触发计数)C.输⼊捕获D.输出⽐较E.⽀持针对定位的增量(正交)编码器和霍尔传感器电路(TIM9~TIM14 不⽀持)F.触发输⼊作为外部时钟或者按周期的电流管理(TIM9~TIM14 不⽀持)下⾯我们介绍⼀下与我们这章的实验密切相关的⼏个通⽤定时器的寄存器(以下均以 TIM2~TIM5 的寄存器介绍, TIM9~TIM14 的略有区别,具体请看《STM32F4xx 中⽂参考⼿册》对应章节)。
定时器中断实验报告
《定时器中断实验报告》
实验目的:通过定时器中断实验,掌握定时器中断的原理和应用,加深对嵌入式系统中断处理的理解。
实验原理:定时器中断是一种常见的嵌入式系统中断方式,通过设置定时器的计数值和中断触发条件,可以实现定时中断功能。
在实验中,我们通过配置定时器的工作模式、计数值和中断触发条件,来实现定时中断功能。
实验过程:首先,我们在实验板上搭建了一个简单的嵌入式系统,包括主控芯片、定时器模块和LED灯。
然后,我们编写了一段简单的程序,配置定时器的工作模式为定时模式,设置定时器的计数值为1000ms,并配置定时器中断触发条件为计数器溢出。
接着,我们将LED灯的亮灭控制放在定时器中断服务函数中,当定时器中断触发时,LED灯状态发生改变。
最后,我们下载程序到实验板上,观察LED灯的亮灭情况。
实验结果:经过实验,我们成功实现了定时器中断功能,当定时器计数器溢出时,定时器中断触发,LED灯状态发生改变。
通过调整定时器的计数值,我们还可以实现不同的定时中断周期,满足不同的应用需求。
实验结论:定时器中断是一种常见的嵌入式系统中断方式,可以实现定时中断功能,用于实现定时任务、定时采样等应用场景。
通过本次实验,我们深入理解了定时器中断的原理和应用,为进一步深入学习嵌入式系统中断处理打下了坚实的基础。
通过本次实验,我们不仅掌握了定时器中断的原理和应用,还提高了对嵌入式系统中断处理的理解,为今后的嵌入式系统开发工作奠定了基础。
希望通过更
多的实验和学习,我们能够进一步提升自己的嵌入式系统开发能力,为未来的科研和工程实践做出更大的贡献。
单片机中断实验报告单片机中断实验报告引言:单片机是一种集成电路,具有微处理器、存储器和各种输入输出设备等功能模块。
中断是单片机中的一种重要机制,它可以使单片机在执行某个任务时,暂停当前操作,转而执行其他紧急任务。
本次实验旨在深入了解单片机中断的原理和应用,以及如何在程序中实现中断功能。
一、实验目的本次实验的目的是通过编写程序,实现单片机中断功能,并验证中断的正确性和可靠性。
具体而言,我们将使用单片机的外部中断和定时器中断功能,分别实现按键中断和定时中断。
二、实验器材1. 单片机开发板2. 按键模块3. 七段数码管模块4. 电源模块5. 连接线等三、实验原理1. 外部中断外部中断是通过外部中断引脚与外部电路连接来实现的。
当外部电路触发中断条件时,单片机将暂停当前操作,转而执行中断服务程序。
在本实验中,我们将按键模块连接到外部中断引脚,当按下按键时,触发外部中断,实现按键中断功能。
2. 定时器中断定时器中断是通过定时器模块来实现的。
定时器可以按照设定的时间间隔产生中断请求信号,从而实现定时中断功能。
在本实验中,我们将使用定时器模块来实现每隔一段时间触发一次中断,实现定时中断功能。
四、实验步骤1. 连接电路将按键模块的输出引脚连接到单片机的外部中断引脚,将七段数码管模块连接到单片机的IO口。
接通电源,确保电路连接正确。
2. 编写程序使用C语言编写程序,首先需要初始化单片机的中断向量表和相关寄存器。
然后编写中断服务程序,根据实验要求实现按键中断和定时中断功能。
最后,在主程序中设置中断使能位,使得中断能够正常触发。
3. 烧录程序使用烧录器将编写好的程序烧录到单片机中。
4. 实验验证按下按键,观察七段数码管的显示是否按照预期变化。
等待一段时间,观察定时中断是否按照设定的时间间隔触发。
五、实验结果与分析经过实验验证,按键中断和定时中断功能均能够正常运行。
按下按键时,七段数码管的显示会按照预期变化,定时中断也能够按照设定的时间间隔触发。
stm32外部中断实验原理STM32是意法半导体公司推出的一款32位单片机系列产品,具有高性能、低功耗和广泛的外设功能。
其中外部中断是其重要的功能之一,可以实现外部事件的异步处理,适用于各种实时应用。
外部中断的原理是通过外部引脚和STM32之间的触发信号来实现中断的触发和处理。
STM32支持多种中断模式,包括上升沿触发、下降沿触发、双边沿触发和低电平触发等。
如何使用外部中断呢?首先,在程序中需要使用到外部中断的引脚上要连接一个外部触发源,比如按键或传感器等。
然后,在程序中对该引脚进行配置,指定外部中断的触发方式。
接下来,在程序中编写中断处理函数,在中断触发时执行相应的处理逻辑。
最后,在启动中断之前,需要使能相应的中断,并配置优先级。
STM32外部中断是基于NVIC(Nested Vectored Interrupt Controller)的,它是ARM Cortex-M处理器的一部分。
它能够支持多重中断,并可配置中断优先级。
当一个外部中断触发时,会产生一个中断请求,然后被NVIC捕获,并根据优先级进行中断处理。
在硬件层面上,外部中断将通过外部中断控制器(EXTI)和GPIO控制器进行连接。
外部中断的引脚通过GPIO控制器配置为中断模式,并通过EXTI控制器与NVIC连接。
当外部触发源产生中断信号时,通过GPIO控制器将该中断信号传递给EXTI控制器,然后触发中断处理。
在软件编程方面,首先需要对GPIO和EXTI进行相应的初始化配置。
对于GPIO,我们需要设置引脚的模式、速度和上下拉等参数。
对于EXTI,我们需要设置中断触发方式(例如上升沿触发)和中断屏蔽(可以选择屏蔽或非屏蔽中断)等。
接着,使用STM32提供的库函数进行中断处理的配置。
首先,我们需要使用NVIC_Init函数来配置NVIC,使能相应的中断和设置中断优先级。
然后,使用EXTI_Init函数设置外部中断的触发方式和屏蔽等。
最后,编写中断处理函数,当外部中断触发时进行相应的处理。
stm32寄存器版学习笔记定时计数器中断STM32共有8个定时计数器,⾼级定时器: TIME1 TIME8是通⽤定时器:TIME2~TIME5基本定时器: TIME6和TIME7以TIME3通⽤定时器为例总结定时计数器的基本⽤法⼀:TIM3时钟使能APB1外设时钟使能寄存器(RCC_APB1ENR)Eg:RCC->APB1ENR|=1<<1; //使能TIM3时钟⼆:设置TIM3_ARR和TIM3_PSC的值通过这两个寄存器来设置⾃动重装的值以及分频系数⾃动重装载寄存器(TIMx_ARR)预分频器(TIMx_PSC)三:设置TIM3_DIER允许更新中断中断使能寄存器(TIMx_DIER)Eg: TIM3->DIER|=1<<0; //允许更新中断四:允许TIM3⼯作控制寄存器1(TIMx_CR1)CEN:使能计数器位0 0:禁⽌计数器; 1:使能计数器Eg: TIM3->CR1|=0x01; //使能定时器3 或 TIM3->CR1|=1<<0;五:TIM3中断分组设置直接调⽤MY_NVIC_Init()函数Eg:MY_NVIC_Init(1,3,TIM3_IRQChannel,2);//抢占1,⼦优先级3,组2六:编写中断服务函数状态寄存器(TIMx_SR)Eg: if(TIM3->SR&0X0001)//溢出中断Eg: //定时器3中断服务程序 void TIM3_IRQHandler(void) //TIM3_Int_Init(5000,7199); //10Khz的计数频率,计数到5000为500ms//500ms中断⼀次 { if(TIM3->SR&0X0001) //溢出中断 { //add your code } TIM3->SR&=~(1<<0); //清除中断标志位 }六:关于溢出事件的计算因为Stm32_Clock_Init函数⾥⾯已经初始化APB1的时钟为2分频,所以APB1的时钟是32MHz(系统时钟72MHz)。
中断及定时器实验报告中断及定时器实验报告引言:中断是计算机系统中一种重要的机制,它可以打破程序的顺序执行,响应外部事件的发生。
中断的引入使得计算机可以同时处理多个任务,提高了系统的效率和可靠性。
定时器是中断的一种常见应用,它可以在一定时间间隔内产生中断信号,实现定时任务的功能。
本实验旨在通过编程实现中断和定时器的功能,并测试其正确性和稳定性。
一、实验目的1. 学习中断的概念和原理;2. 掌握中断的编程方法和中断处理程序的编写;3. 理解定时器的工作原理和应用场景;4. 实现定时器的功能,并测试其正确性和稳定性。
二、实验过程1. 硬件准备在实验中,我们使用了一台基于8051单片机的开发板,通过连接外部电路和开发板的引脚,实现对定时器的控制。
2. 软件编程首先,我们需要在开发板上搭建一个简单的电路,包括一个LED灯和一个按钮。
然后,我们使用汇编语言编写中断处理程序,实现当按钮按下时,LED灯闪烁的功能。
具体的编程步骤如下:(1)设置中断向量表:将中断处理程序的地址存储到中断向量表中,以便系统在中断发生时能够正确地跳转到相应的处理程序;(2)初始化定时器:设置定时器的计数器初值和工作模式;(3)编写中断处理程序:当中断发生时,执行相应的处理程序。
在本实验中,我们编写了一个简单的中断处理程序,当按钮按下时,将LED灯的状态取反;(4)启用中断:使能中断,使得系统能够响应外部事件的发生。
3. 实验测试将编写的程序下载到开发板上,并连接相应的电路。
按下按钮,观察LED灯是否按照预期的频率闪烁。
通过调整定时器的计数器初值和工作模式,可以改变LED灯闪烁的频率。
三、实验结果经过多次实验测试,我们发现中断和定时器的功能正常,LED灯能够按照预期的频率闪烁。
通过改变定时器的计数器初值和工作模式,我们成功地实现了LED灯闪烁频率的调节。
实验结果表明,中断和定时器是一种有效的方法,可以实现对外部事件的及时响应和定时任务的精确控制。
理工大学实验报告(模板)实验时间:年月日星期时间::~ :实验室(房间号):实验台:班级::指导教师签字:成绩:实验三外部中断/INT0实验一、实验目的和要求学习、掌握单片机的中断原理。
正确理解中断矢量入口、中断调用和中断返回的概念与物理过程。
学习编写“软件防抖”程序,了解“软件防抖”原理。
对/int0、/int1两个外部中断进行编程,其中:●主程序的功能:LDE灯“全亮”、“全灭”交替进行 --------(状态2);●Int0中断服务程序功能:2个相邻的LED灯被点亮且循环左移(状态0);●Int1中断服务程序功能:1个LED灯被点亮且循环右移 ---(状态1);【注意】:实验仪上的LED灯物理位置最左侧为d0;最右侧为d7。
二、实验算法1 在主程序中利用CPL P3.3的指令驱动其电平不断地转换(由逻辑笔电路做程序状态监视)。
2 在中断服务程序中将P3.3置位(P3.3=1),实现对计数器“加1”并(通过P1口)显示的功能。
3 中断结束后回到主程序,程序继续对P3.3的电平不断取反。
三、实验电路图四、实验流程图主程序入口INT0入口设置中断允许P3.2置1设置中断优先级调用延时子程序设TCON 计数器加一并显示CLR A开中断(P0)—(A) P3.2=0?调用延时子程序调用延时子程序(A)—(A) RETI INT1同理五、程序清单ORG 0000HLJMP STARTORG 0003HLJMP INT_0ORG 0013HLJMP INT_1ORG 0100H ;主程序START: MOV SP,#60HMOV IE,#85HMOV IP,#04HMOV TCON,#05HLP1: M OV P0,ALCALL DELAYCPL ASJMP LP1INT_0: PUSH PSW ;中断T0入口PUSH ACCLCALL DELAYMOV A,#3FHLP2: M OV P0,ARR ALCALL DELAYSETB P3.2JNB P3.2,LP2LCALL DELAYPOP ACCPOP PSWRETIINT_1: PUSH PSW ;中断T1入口PUSH ACCLCALL DELAYLP3: M OV P0,ARL ALCALL DELAYSETB P3.3JNB P3.3,LP3LCALL DELAYPOP ACCPOP PSWRETIDELAY: PUSH 02HPUSH 03HMOV R2,#00HDL1: MOV R3,#00H DJNZ R3,$DJNZ R2,DL1POP 03HPOP 02HRETEND六、实验结果与分析LED灯按程序设计的规则亮灭,可调至3个状态,两个中断分高低优先级,实验成功。
STM32实验报告一、实验目的本次实验的目的是了解并掌握STM32单片机的基本使用方法,学习如何通过编程控制STM32来完成一系列操作,包括输入输出控制、定时器控制等。
二、实验器材和材料1.STM32单片机开发板B数据线3. 开发环境:Keil uVision 5(或其他适用于STM32的编程软件)三、实验过程1. 配置开发环境:安装Keil uVision 5,并将STM32单片机开发板与计算机连接。
2.创建一个新的工程,并选择适当的芯片型号。
3.对芯片进行配置:选择适合的时钟源,设置GPIO端口等。
4.编写程序代码:根据实验要求,编写相应的程序代码。
5. 编译程序:在Keil uVision中进行编译,生成可执行文件。
6.烧录程序:将生成的可执行文件烧录到STM32单片机中。
7.调试与测试:连接各种外设并进行测试,检查程序功能的正确性。
8.实验结果分析:根据测试结果,分析并总结实验结果。
四、实验结果在本次实验中,我成功完成了以下几个实验任务:1.输入输出控制:通过配置GPIO端口为输入或输出,我成功实现了对外部开关、LED 等外设的控制。
通过读取外部开关的状态,我能够进行相应的逻辑操作。
2.定时器控制:通过配置并启动定时器,我成功实现了定时中断的功能。
可以通过定时中断来触发一系列事件,比如定时更新数码管的显示,控制电机的运动等。
3.串口通信:通过配置UART串口模块,我成功实现了与计算机的串口通信。
可以通过串口与计算机进行数据的收发,实现STM32与计算机的数据交互。
五、实验总结通过本次实验,我对STM32单片机的使用方法有了更深入的了解。
学会了如何配置GPIO端口、定时器、串口等,掌握了相应的编程技巧。
此外,还学会了如何进行调试和测试,检查程序功能的正确性。
通过实验的实际操作,我对STM32的各项功能有了更深入的理解。
需要注意的是,在实验过程中,我遇到了一些问题,比如代码编写错误、烧录问题等,但经过仔细分析和调试,最终都得到了解决。
stm32定时器初始化后⾃动进⼊⼀次中断问题今天在调试定时器时,定时器3出现了⾃动停⽌⼯作的问题,中断设置是每过⼀秒,进⼀次中断,相应标志位+1,然后每次都是在标志位=4时停⽌⼯作,但是有时候⼜能正常⼯作,暂时未解决。
在调试时,发现⼀个有趣的现象,本次项⽬我同时配置了定时器4,初始化后是DISABLE未使能状态,但是开始运⾏,定时器还是会进⼀次中断,相应的标志位+1,后⾯不能继续增加。
motor_run_time这个标志位在程序启动后会进⼀次中断导致+1,⽽我的定时器并未使能。
我的相关代码是初始化部分代码:TIM_ITConfig(TIM4, TIM_IT_Update, ENABLE); //允许定时器4更新中断TIM_Cmd(TIM4, DISABLE); //关闭定时器4//定时器4中断服务函数void TIM4_IRQHandler(void){if (TIM_GetITStatus(TIM4, TIM_IT_Update) != RESET) //溢出中断{motor_run_time++;}TIM_ClearITPendingBit(TIM4, TIM_IT_Update); //清除中断标志位}增加部分: TIM_ClearITPendingBit(TIM4, TIM_IT_Update); //清除中断标志位TIM_ITConfig(TIM4, TIM_IT_Update, ENABLE); //允许定时器4更新中断TIM_Cmd(TIM4, DISABLE); //关闭定时器4//定时器4中断服务函数void TIM4_IRQHandler(void){if (TIM_GetITStatus(TIM4, TIM_IT_Update) != RESET) //溢出中断{motor_run_time++;}TIM_ClearITPendingBit(TIM4, TIM_IT_Update); //清除中断标志位}。