高中数学专题学习:第1讲--集合思想及应用
- 格式:wps
- 大小:196.00 KB
- 文档页数:7
透过伪装抓本质—集合思想及集合语言在解题中的应用集合是高中数学的基础,也是高考常考的内容之一。
集合思想及集合语言可以渗透到高中数学的各个分支,它可与函数、方程和不等式等许多知识综合起来进行考查。
在解题时首先需要我们能读懂集合语言,将集合语言转换为数学语言,再用相关的知识解决问题。
本文将通过几个典型例题的剖析,与大家谈谈集合思想与集合语言与其它知识的综合应用。
一、集合与函数例1、已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于 ( )A.(0,2),(1,1)B.{(0,2),(1,1)}C. {1,2}D.{}2≤y y解析:由代表元素可知两集合均为数集,又P 集合中y 是函数22+-=x y 中的y 的取值范围,故P 集合的实质是函数22+-=x y 的值域。
而Q 集合则为函数2+-=x y 的定义域,从而易知=Q P {}2≤y y ,选D.评注:认识一个集合,首先要看其代表元素,再看该元素的属性,从而确定其实质。
例2、已知A=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=∈23sin x y R x ,B={}A k k x x k ∈+=-,12sin 322cos ,若Φ≠B ,求k 的取值范围。
分析:A 集合是函数23sin -=x y 的定义域,而B 集合中的方程可简化为: )32cos(21π+=+x k ,故本题的题意是使方程)32cos(21π+=+x k 有解的k 的取值范围,显然即求函数)32cos(2π+=x y 的值域。
解:由023sin ≥-x ,得A=⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,32232|ππππ,当 32232ππππ+≤≤+k x k 时,可得:354324πππππ+≤+≤+k x k , ∴1)32cos(212≤+=+≤-πx k ∴A=[-3,0] 二、集合与方程例3、已知{}φ=∈=+++=+R A R x x p x x A ,,01)2(2,求实数p 的取值范围。
§1.1集合¤学习目标:通过实例,了解集合的含义,体会元素及集合的“属于”关系;能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.(一)集合的有关概念⒈定义:一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集。
2.表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
3.集合相等:构成两个集合的元素完全一样。
4.元素及集合的关系:(元素及集合的关系有“属于∈”及“不属于∉两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。
5.常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;N内排除0的集.整数集,记作Z;有理数集,记作Q;实数集,记作R;6.关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。
如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。
“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的.⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。
.如:方程(x-2)(x-1)2=0的解集表示为{1,-2},而不是{1,1,-2}⑶无序性:即集合中的元素无顺序,可以任意排列、调换。
7.元素及集合的关系:(元素及集合的关系有“属于∈”及“不属于∉”两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。
例如,我们A表示“1~20以内的所有质数”组成的集合,则有3∈A,4∉A,等等。
练:A={2,4,8,16},则一、集合的表示方法⒈列举法:把集合中的元素一一列举出来, 并用花括号“{}”括起来表示集合的方法叫列举法。
第一讲、对集合的理解及集合思想应用的问题一、1、集合语言是一种特殊的符号语言,是现代数学的基本语言,所以要学好高中的数学,首先必须深层次的理解集合的概念及其内涵,跟我们生活是一样的,如果连语言都不通的话,就跟谈不上很好的交流和表达了。
2、《集合》的学习,不仅仅局限与集合里面简单的计算,而需要更深层次的理解集合思想内涵,许多同学在学习集合,在学习高中数学的时候,有种“力不从心”的感觉,总是“一看就会,一听就懂,一做就错”,很大程度上是因为没有真正理解其中的思想内涵,仅仅是停留在表面的理解。
3、集合是个原始概念,只作描述性的解释:若干个确定对象的全体,可以看作一个集合,组成集合的对象称为集合的元素。
从这个概念,至少可以看到三个研究方向:集合中元素的研究;单个集合本身的研究;若干个集合之间关系的研究(函数就是两个集合之间按照一定规则的对应关系)。
二、透过集合的描述法理解集合。
对于用描述法给出的集合{x |x ∈P }1、翻译,高中数学的学习,要注意自然语言,符号语言,图像语言……之间的相互转化。
代表元素x 可以翻译成:是什么?它所具有的性质P 可以翻译成:有多少?2、研究两个集合之间的关系,也就可以通过研究集合里面元素之间的关系来解决。
3、形式:对于性质P ,在数学语言中,代表着一种形式,也就是说,只要满足这样形式的个体x ,则可以看着是集合的元素。
在许多的数学题型中,需要对数学表达式进行变形,变成我们需要或者是熟悉的能够解决问题的形式。
如:+∈R y x ,,yx y x 21,2+=+求的最小值,这里有两种方式:1、用消元法,2、讲当成整体,y x +即:)21)((21yx y x ++=原式,这里显然方法第二种形式要简洁一些。
如:},14/{},,12/{Z k k x x B Z k k x x A ∈±==∈+==,(1)判断集合B A ,的关系 (2)证明B A ,之间的关系解析:(1)这作为一个判断题目,可以通过对集合的翻译研究他们之间的关系对集合A :1、x :数——2、奇数——3、观察,x 可以去到……-3,-2,1,3……——4、A 集合为全体奇数,同理:B 集合也是全体奇数,故:A=B(2)要证明A=B ,即需要证明A ,B 互为彼此的子集,即⎩⎨⎧∈⇒∈∀∈⇒∈∀⇔=Ax B x B x A x B A ,这里也就需要证明A 中的元素能够表示成B 中元素具有的形式P 的形式,反之亦然。
高一数学第一课集合知识点在高中数学的学习过程中,第一课往往是集合论。
集合论是数学的基础,它不仅在高中数学中具有重要的地位,而且在更高层次的数学学科中也起着关键的作用。
本文将介绍高一数学第一课的集合知识点,帮助学生更好地理解和掌握集合的概念和性质。
一、集合的概念首先我们来了解一下集合的概念。
集合是具有某种特定性质的事物的总体。
通常用大写字母A、B、C等表示集合,用小写字母a、b、c等表示集合的元素。
集合中的元素是不可重复的,集合的元素个数称为集合的基数,记作|A|。
集合可以通过列举法和描述法来表示。
列举法是将集合中的元素逐个列举出来,例如集合A={1,2,3,4,5}。
描述法是根据元素的某种特性来描述集合,例如集合B={x | x是偶数,0<x<10},表示集合B是由满足条件的偶数所组成的。
二、集合的运算集合的运算主要包括并、交、差和补四种。
1. 并集:表示两个或多个集合中所有的元素的总体。
用符号∪表示。
例如A∪B表示集合A和集合B的并集,即A∪B={x |x∈A或x∈B}。
2. 交集:表示两个或多个集合中共有的元素的总体。
用符号∩表示。
例如A∩B表示集合A和集合B的交集,即A∩B={x | x∈A 且x∈B}。
3. 差集:表示属于一个集合而不属于另一个集合的元素的总体。
用符号-表示。
例如A-B表示集合A与集合B的差集,即A-B={x | x∈A且x∉B}。
4. 补集:表示在某个给定的全集中,不属于集合的元素的总体。
用符号′或∁表示。
例如A′表示集合A的补集,即A′={x | x∉A}。
三、集合的性质集合有一些基本的性质,我们需要了解和熟练运用。
1. 子集:如果一个集合A的所有元素都是另一个集合B的元素,那么集合A是集合B的子集,记作A⊆B。
例如,集合A={1,2}是集合B={1,2,3}的子集。
2. 空集:不含任何元素的集合称为空集,记作∅。
例如,集合C={}就是一个空集。
3. 全集:包含所有元素的集合称为全集。
必修1第一章集合与函数基础知识点整理第1讲 §1。
1。
1 集合的含义与表示¤知识要点:1。
把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性.2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }”括起来,基本形式为123{,,,,}n a a a a ⋅⋅⋅,适用于有限集或元素间存在规律的无限集. 描述法,即用集合所含元素的共同特征来表示,基本形式为{|()x A P x ∈},既要关注代表元素x ,也要把握其属性()P x ,适用于无限集.3。
通常用大写拉丁字母,,,A B C ⋅⋅⋅表示集合. 要记住一些常见数集的表示,如自然数集N ,正整数集*N 或N +,整数集Z ,有理数集Q ,实数集R 。
4. 元素与集合之间的关系是属于(belong to )与不属于(not belong to ),分别用符号∈、∉表示,例如3N ∈,2N -∉.¤例题精讲:【例1】试分别用列举法和描述法表示下列集合:(1)由方程2(23)0x x x --=的所有实数根组成的集合; (2)大于2且小于7的整数。
解:(1)用描述法表示为:2{|(23)0}x R x x x ∈--=; 用列举法表示为{0,1,3}-.(2)用描述法表示为:{|27}x Z x ∈<<; 用列举法表示为{3,4,5,6}.【例2】用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有: 17 A ; -5 A ; 17 B 。
解:由3217k +=,解得5k Z =∈,所以17A ∈;由325k +=-,解得73k Z =∉,所以5A -∉;由6117m -=,解得3m Z =∈,所以17B ∈。
【例3】试选择适当的方法表示下列集合:(教材P 6 练习题2, P 13 A 组题4) (1)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (2)二次函数24y x =-的函数值组成的集合; (3)反比例函数2y x =的自变量的值组成的集合。
高一数学第一课知识点总结在高一数学的第一课中,我们学习了一些基础的数学概念和方法。
本文将对这些知识点进行总结,以帮助大家更好地掌握和理解这些内容。
一、集合与集合运算1. 集合的概念:集合是由一些特定对象组成的整体,这些对象称为集合的元素。
用大写字母A、B、C等表示集合。
2. 元素与集合的关系:一个元素属于一个集合,我们用∈表示。
例如,若a是集合A的元素,则表示为a∈A;若b不是集合A的元素,则表示为b∉A。
3. 集合的表示方法:常见的表示方法有列举法、描述法、区间表示法等。
4. 集合的运算:常见的集合运算有并集、交集、补集和差集。
并集用符号∪表示,交集用符号∩表示,补集用符号'表示,差集用符号\表示。
二、函数与方程1. 函数的概念:函数是一种特殊的关系,它将一个集合的每个元素映射到另一个集合中的唯一元素。
函数常用f(x)或y来表示。
2. 函数的性质:函数有定义域、值域和对应关系等性质。
定义域是指函数所有可能输入的集合,值域是指函数所有可能输出的集合。
3. 方程的解与根:方程是等式的一种表示形式,方程的解是能使等式成立的变量的取值。
方程的根是使方程成立的解。
4. 一次函数与二次函数:一次函数是函数的一种特殊形式,表示为y=kx+b,其中k和b为常数。
二次函数是一次函数的平方,表示为y=ax^2+bx+c,其中a、b、c为常数,且a≠0。
三、数列与数列求和1. 数列的概念:数列是按照一定顺序排列的一组数,其中每个数称为数列的项。
2. 等差数列:等差数列是一个数列,其中相邻两项之间的差为常数d。
通项公式为an=a1+(n-1)d,其中an表示第n项,a1表示第一项,d为公差。
3. 等比数列:等比数列是一个数列,其中相邻两项之间的比为常数q。
通项公式为an=a1*q^(n-1),其中an表示第n项,a1表示第一项,q为公比。
4. 数列求和:求等差数列或等比数列的前n项和可用求和公式。
等差数列的前n项和公式为Sn=(a1+an)*n/2,等比数列的前n项和公式为Sn=a1*(q^n-1)/(q-1)。
高中数学核心知识点及基本思想方法总结 第一章 集合与简易逻辑¤第一部分·集合与集合运算¤◆内容概述◆集合是现代数学的基本概念,专门研究集合的理论叫做集合论。
“疯人数学家”康托尔(Cantor,G.F.P,1845-1918年,德国人)是集合论的创始者。
目前集合论的基本思想已渗透到现代数学的所有领域。
集合的思想、集合的语言和集合的符号在高中数学的很多章节如函数、数列、方程和不等式、立体几何、解析几何等中都被广泛的使用。
要求理解集合、子集、补集、交集、并集的概念。
了解空集和全集的意义。
了解属于、包含、相等关系的意义。
掌握有关术语和符号,并会用它们正确表示一些简单的集合。
◆知识点拨◆※< 1 >※ 集合与元素。
一般地,某些指定的对象.....集在一起就成为一个集合(确定性)。
集合中每个对象叫做这个集合的元素。
【注意】①集合的确定性如何体现?(例如很高的山,一条快乐的鱼能成为一个集合么) ②元素与集合的关系。
(属于∈、不属于∉)【例题】设集合},12|{},,2|{Z k k x x B Z k k x x A ∈+==∈==,若B b A a ∈∈,,试判断a+b 与A 、B 的关系。
〖分析〗两个集合中的k 不可以理解成是同一个变量,即解作:Z k k b a k b B b k a A a ∈+=+∴+=∴∈=∴∈,14,12,,2,,此法失去任意性。
〖解答〗.,,.1)(2,,12,,,2,21212211A b a B b a Z k k k k b a Z k k b B b Z k k a A a ∉+∈+∴∈+++=+∴∈+=∴∈∈=∴∈③集合中元素的三个特征。
(确定性、互异性、无序性)【例题】已知}1,12,3{2+--=a a a A ,其中R a ∈。
(1)若A ∈-3,求实数a 的值;(2)当a 为何值时,集合A 的表示不正确?〖解答〗.2,,,11213123:,,3,)2(;10,12333,13)1(222-=∴∈+=-+=--=--==-=--=-∴+≠-a R a A a a a a a a A a a a a a 的表示不正确时或或即表示不正确集合个元素有重复情况时当由集合中元素的互异性或解得或显然④集合的表示方法有哪些?(列举法、描述法、图示法、区间法)【思考】各表示方法的特点,比如描述法注意限制决定条件、条件决定元素、元素决定集合。
高一上册数学知识点全面总结及详细解析2024版引言高一上册数学是高中数学学习的基础阶段,涵盖了代数、几何、函数等多个方面的知识点。
本文将对这些知识点进行详细总结,帮助学生更好地掌握和应用这些知识。
第一章:集合与函数1. 集合的概念集合的定义与表示方法:集合是指某些确定的、不同的对象的全体。
常用大写字母表示集合,小写字母表示集合中的元素。
集合的表示方法有列举法和描述法。
集合的基本运算(并集、交集、补集):并集是指两个集合中所有元素的集合,交集是指两个集合中共有元素的集合,补集是指全集中不属于某集合的元素的集合。
子集与全集:如果集合A的所有元素都是集合B的元素,则A是B的子集。
全集是指包含所有讨论对象的集合。
2. 函数的概念函数的定义与表示方法:函数是指两个集合之间的一种对应关系,其中每个元素在第一个集合中都有唯一的元素与之对应。
常用符号f(x)表示函数。
函数的性质(单调性、奇偶性、周期性):单调性指函数在某区间内是否保持递增或递减,奇偶性指函数是否关于原点对称或关于y轴对称,周期性指函数是否存在一个周期使得函数值重复出现。
反函数与复合函数:反函数是指将原函数的自变量与因变量互换得到的新函数,复合函数是指两个函数的组合。
第二章:基本初等函数1. 一次函数一次函数的定义与图像:一次函数是指形如y=ax+b的函数,其图像是一条直线。
一次函数的性质与应用:一次函数的斜率a决定了直线的倾斜程度,截距b 决定了直线与y轴的交点。
一次函数广泛应用于实际问题的建模与求解。
2. 二次函数二次函数的定义与图像:二次函数是指形如y=ax^2+bx+c的函数,其图像是一条抛物线。
二次函数的性质(顶点、对称轴、开口方向):二次函数的顶点是抛物线的最高或最低点,对称轴是通过顶点的垂直线,开口方向由系数a的正负决定。
二次函数的应用:二次函数在物理、经济等领域有广泛应用,如抛物运动、利润最大化等问题。
3. 指数函数与对数函数指数函数的定义与性质:指数函数是指形如y=a^x的函数,其图像呈指数增长或衰减。
集合的认识与运用集合是数学中的一个基本概念,它是由一些确定的事物组成的整体。
在日常生活和各个学科中,集合的概念都有着广泛的应用。
本文将介绍集合的基本定义、运算及其在代数、概率等领域中的应用。
一、集合的基本定义在数学中,集合是由一些确定的元素组成的整体。
集合常用大写字母表示,其中的元素用小写字母表示。
例如,集合A可以表示为:A = {a, b, c},其中a、b、c为集合A的元素。
1.1 集合的元素与成员关系集合中的元素是指组成集合的事物。
一个元素可以同时属于多个集合,也可以属于一个集合。
例如,元素b可以属于集合A,同时也可以属于集合B。
成员关系是指某个元素是否属于集合。
常用符号"∈"表示元素属于某个集合,符号"∉"表示元素不属于某个集合。
例如,如果元素b属于集合A,则可以表示为b ∈ A。
1.2 集合的特点集合的两个基本特点是确定性和互异性。
确定性是指一个元素要么属于某个集合,要么不属于某个集合,不存在模糊的情况。
互异性是指集合中的元素互不相同,不重复。
二、集合的运算2.1 并集并集是指将两个或多个集合中的元素合并在一起得到的新集合。
常用符号"∪"表示并集。
如果集合A = {a, b},集合B = {b, c},则它们的并集可以表示为:A ∪ B = {a, b, c}。
2.2 交集交集是指两个或多个集合中共有的元素组成的集合。
常用符号"∩"表示交集。
如果集合A = {a, b},集合B = {b, c},则它们的交集可以表示为:A ∩ B = {b}。
2.3 差集差集是指从一个集合中去除另一个集合中的元素后所得到的集合。
常用符号"\"表示差集。
如果集合A = {a, b, c},集合B = {b, c},则它们的差集可以表示为:A \ B = {a}。
2.4 对称差对称差是指两个集合的差集的并集。
第1讲 集合思想及应用一、知识梳理1.元素与集合:把一些能够确定的不同的对象看作一个整体,就说这个整体是由这些对象的全体构成的集合(或集).构成集合的每个对象叫做这个集合的元素.常用数集的符号:自然数集N ,正整数集+N 或*N ,整数集Z ,有理数集Q ,实数集R .不含任何元素的集合叫做空集,记为∅.2.集合与元素的关系:如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A ;如果a 不是集合A 的元素,就说a 不属于集合A ,记作a∉A . 3.集合表示法列举法:将元素一一列出并用花括号括起来表示集合.描述法:用集合所含元素的特征性质描述集合.{})(x p I x ∈表示集合A 是由集合I 中具有性质)(x p 的所有元素构成的.4.集合的关系子集:如果集合A 中的任意一个元素都是集合B 中的元素,我们称集合A 为集合B 的子集,记作A ⊆B ,读作A 含于B .空集是任何一个集合的子集.真子集:如果集合A ⊆B ,但存在元素x ∈B ,且x ∉A ,我们称集合A 为集合B 的真子集,记作A B .集合的相等:如果构成两个集合的元素是一样的,我们就称这两个集合是相等的.集合A 与集合B 是相等的,记作A =B .集合关系与其特征性质之间的关系:设A ={})(x p x ,B ={})(x q x .如果A ⊆B ,则)()(x q x p ⇒.如果 )()(x q x p ⇒,则A ⊆B .5.集合的运算交集:由属于集合A 且属于集合B 的所有元素组成的集合,称为集合A 与B 的交集,记作:A ∩B ,读作:A 交B .并集:由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A 与B 的并集,记作:A ∪B ,读作:A 并B .补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合,叫做集合A 在全集U 中的补集,记作:∁U A ,读作:A 在U 中的补集.二、方法归纳1.解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三个特征;对于用描述法给出的集合{})(x p x ,要紧紧抓住竖线前面的代表元素x 以及它所具有的性质)(x p ;在读懂集合的基础上尽可能化简集合,化难为易,化隐为显是常用技巧;要重视发挥图示法的作用,通过数形结合直观地解决问题.2.注意空集∅的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如A ⊆B ,则有A =∅或A ≠∅两种可能,此时应分类讨论.3.数集的运算往往用数轴法.4.用Card (A )表示有限集A 的元素个数,则由A ⊆B ,可得Card (A )≤Card (B );由A =B ,可得Card (A )=Card (B );Card (∅)=0.5.容斥原理:Card(A ∪B )=Card(A )+Card(B )-Card(A ∩B )Card(A ∪B ∪C )=Card(A )+Card(B )+Card(C )-Card(A ∩B )-Card(B ∩C )-Card(C ∩A )+Card(A ∩B ∩C )6.n 个元素的集合所有子集个数为n 2,所有真子集个数为n 2-1. 三、典型例题精讲【例1】若集合}4,,2,1{x A =,}1,{2x B =,A ∩B ={1,4},则满足条件的实数x 的值为 ( )A .4B .2或-2C .-2D .2 解析:根据}1,{2x B =,得42=x ,2±=x ,但}4,,2,1{x A =,由元素的互异性2≠x .∴2x =-.答案:C【技巧提示】牵涉到集合中的元素,必须考虑集合中元素具有确定性、互异性、无序性. 又例:若3∉{1,a ,2a },求实数a 的范围.答案:a ≠0,±1,3,±3【例2】已知{}1+==x y y M ,{}1),(22=+=y x y x N ,则集合N M 中元素的个数是 ( )A .0B .1C .2D .多个 【错解分析】根据M 为直线1+=x y 上的点集,N 为单位圆122=+y x 上的点集,∴N M 中元素的个数是2,选C .解析:根据{}1+==x y y M ,得R M =,为数集,{}1),(22=+=y x y x N 为单位圆122=+y x 上的点集, ∴=N M ∅.答案:A【技巧提示】用描述法给出的集合一定要先看代表元素,再看代表元素满足的条件.交集是由两个集合的公共元素组成的集合.又例:设集合{}1),(2-==x y y x A ,{}1),(22=+=y x y x B ,则B A 的子集的个数是( )A .0B .2C .4D .8解析:显然B A ,都是坐标平面内的点集,抛物线12-=x y 与圆122=+y x 有三个交点,即集合B A 有3个元素, ∴ B A 有8个子集.答案:D【例3】若C B A ,,为三个集合,A ∪B =B ∩C ,则一定有 ( )A .A ⊆CB .C ⊆A C .A ≠CD .A =∅解析:∵A ⊆(A ∪B ),(B ∩C )⊆ C又∵A ∪B =B ∩C ,∴A ⊆C , 故选A .答案:A【技巧提示】理解集合的运算性质是解答本题的关键.A ⊆(A ∪B ),(B ∩C )⊆C 就是交运算和并运算的重要性质.本题也可利用文氏图直接得出结论.集合中图形语言具有直观形象的特点,将集合问题图形化,利用Venn 图的直观性,可以深刻理解集合有关概念、运算公式,而且有助于显示集合间的关系.又例:已知全集U =R ,则正确表示集合M ={-1,0,1}和N ={x | x 2+x =0}关系的韦恩(Venn)图是 ( )解析:∵N ={0,-1}, M ={-1,0,1},∴N M ⊆U .答案:B .【例4】设集合A ={x |x 2+ax -12=0},B ={x |x 2+bx +c =0},且A ≠B ,A ∪B ={-3,4},A ∩B ={-3},求a 、b 、c 的值.解析:∵A ∩B ={-3},∴-3∈A 且-3∈B ,将-3代入方程:x 2+ax -12=0中,得a =-1,从而A ={-3,4}.将-3代入方程x 2+bx +c =0,得3b -c =9.∵A ∪B ={-3,4},∴A ∪B =A ,∴B ⊆A .∵A ≠B ,∴B A ,∴B ={-3}.∴方程x 2+bx +c =0的判别式△=b 2-4c =0,∴⎩⎪⎨⎪⎧3b -c =9 ①b 2-4c =0 ② 由①得c =3b -9,代入②整理得:(b -6)2=0,∴b =6,c =9.故a =-1,b =6,c =9.【技巧提示】 由于集合中的元素是以方程的解的形式给出的,因此要从集合中元素的特性和交、并集的含义进行思考.【例5】设集合A 、B 是非空集合,定义A ×B ={x |x ∈A ∪B 且x ∉A ∩B },已知A ={x |y =2x -x 2},B ={y |y =2x 2},则A ×B 等于 ( )A .(2,+∞)B .[0,1]∪[2,+∞)C .[0,1)∪(2,+∞)D .[0,1]∪(2,+∞)解析:A ={x |y =2x -x 2}={x |0≤x ≤2},B ={y |y =2x 2}={y |y ≥0},∴A ∪B =[0,+∞),A ∩B =[0,2] ,因此A ×B =(2,+∞),故选A .答案:A【例6】已知全集U =R ,集合A ={x |log 2(3-x )≤2},集合B ={x |5x +2≥1}.(1)求A 、B ;(2)求(∁U A )∩B .解析:(1)由已知得:log 2(3-x )≤log 24,∴⎩⎪⎨⎪⎧3-x ≤43-x >0,解得-1≤x <3,∴A ={x |-1≤x <3}. 由5x +2≥1,得(x +2)(x -3)≤0,且x +2≠0,解得-2<x ≤3.∴B ={x |-2<x ≤3}.(2)由(1)可得∁U A ={x |x <-1或x ≥3},故(∁U A )∩B ={x |-2<x <-1或x =3}.【技巧提示】本题考查简单的分式不等式和对数不等式求解.又例: 已知全集U =R ,集合A ={y |-2≤y ≤2},集合B ={y |y =2x },那么集合A ∩(∁U B )等于 () A .{y |-2≤y ≤0} B .{y |0≤y ≤2}C .{y |y ≥-2}D .{y |y ≤0}解析:由题意易得:B =(0,+∞),∁R B =(-∞,0],所以A ∩∁R B ={y |-2≤y ≤0}.答案:A【例7】已知集合A ={x |x 2-6x +8<0},B ={x |(x -a )(x -3a )<0}.(1)若A ⊆B ,求a 的取值范围;(2)若A ∩B =∅,求a 的取值范围;(3)若A ∩B ={x |3<x <4},求a 的值或取值范围.解析:∵A ={x |x 2-6x +8<0},∴A ={x |2<x <4}.(1)当a =0时,B =∅,不合题意.当a >0时,B ={x |a <x <3a },应满足⎩⎨⎧ a ≤23a ≥4即43≤a ≤2,当a <0时,B ={x |3a <x <a },应满足⎩⎨⎧ 3a ≤2a ≥4即a ∈∅.∴当A ⊆B 时,43≤a ≤2.(2)要满足A ∩B =∅,当a >0时,B ={x |a <x <3a },∴a ≥4或3a ≤2,∴0<a ≤23或a ≥4;当a <0时,B ={x |3a <x <a },a ≤2或a ≥43,∴a <0时成立,当a =0时,B =∅,A ∩B =∅也成立.综上所述,a ≤23或a ≥4时,A ∩B =∅.(3)要满足A ∩B ={x |3<x <4},显然a >0且a =3时成立,∵此时B ={x |3<x <9},而A ∩B ={x |3<x <4},故所求a 的值为3.【技巧提示】(1)本题为集合在一定约束条件下求参数的问题,涉及集合的运算,其转化途径常通过两个方面:一是分析、简化每个集合;二是利用两集合元素的性质.(2)本题体现了分类讨论的思想,分类的关键点在于比较出a 与3a 的大小,进而将集合B 表示出来. 又例:已知集合A ={x |mx 2-2x +3=0,m ∈R }.(1)若A 是空集,求m 的取值范围;(2)若A 中只有一个元素,求m 的值;(3)若A 中含有两个元素,求m 的取值范围.解析:集合A 是方程mx 2-2x +3=0在实数范围内的解集.(1)∵A 是空集,∴方程mx 2-2x +3=0无解.∴△=4-12m <0,即m >13.(2)∵A 中只有一个元素,∴方程mx 2-2x +3=0只有一解.若m =0,方程为-2x +3=0,只有一个解x =32;若m ≠0,则△=0,即4-12m =0,m =13.∴m =0或m =13.(3)∵A 中含有两个元素,∴方程mx 2-2x +3=0有两解,满足⎩⎪⎨⎪⎧ m ≠0△>0,即⎩⎪⎨⎪⎧ m ≠04-12m >0,∴m <13且m ≠0.四、课后训练1.已知集合P ={x |x 2=1},Q ={x |mx =1},若Q ⊆P ,则实数m 的数值为( )A .1B .-1C .1或-1D .0,1或-12.已知U ={2,3,4,5,6,7},M ={3,4,5,7},N ={2,4,5,6},则 ( )A .M ∩N ={4,6}B .M ∪N =UC .(∁U N )∪M =UD .(∁U M )∩N =N3.设I 为全集,S 1,S 2,S 3是I 的三个非空子集,且S 1∪S 2∪S 3=I ,则下面论断正确的是A .∁I S 1∩(S 2∪S 3)=∅B .S 1⊆( ∁I S 2∩∁I S 3)C.∁I S1∩∁I S2∩∁I S3=∅D.S1⊆(∁I S2∪∁I S3)4.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=_____5.已知全集U=A∪B中有m个元素,(∁U A)∪(∁U B)中有n个元素.若A∩B非空,则A∩B的元素个数为() A.mn B.m+n C.n-m D.m-n6.设集合A={x|-12<x<2},B={x|x2≤1},则A∪B=()A.{x|-1≤x<2} B.{x|-12<x≤1}C.{x|x<2} D.{x|1≤x<2}7.设全集为U,且2011∈U,与2011∉(A∪B)意义相同的是()A.2011∈A∪B B.2011∉A或2011∉BC.2011∈(∁U A)∩(∁U B)D.2011∈(∁U A)∪(∁U B)8.设P和Q是两个集合,又集合P-Q={x|x∈P,且x∉Q},如果P={x|log2x<1},Q={x||x-2|<1},那么P-Q等于()A.{x|0<x<1{ B.{x|0<x≤1}C.{x|1≤x≤2} D.{x|2≤x<3}。