习题答案第5章时变电磁场和平面电磁波解读
- 格式:doc
- 大小:101.00 KB
- 文档页数:13
第五章 恒定磁场重点和难点该章重点及处理方法与静电场类似。
但是磁感应强度的定义需要详细介绍,尤其要强调磁场与运动电荷之间没有能量交换,电流元受到的磁场力垂直于电流的流动方向。
说明磁导率与介电常数不同,磁导率可以小于1,而且大多数媒质的磁导率接近1。
讲解恒定磁场时,应与静电场进行对比。
例如,静电场是无散场,而恒定磁场是无旋场。
在任何边界上电场强度的切向分量是连续的,而磁感应强度的法向分量是连续的。
重要公式磁感应强度定义:根据运动电荷受力: B v F ⨯=q根据电流元受力: B l F ⨯=d I 根据电流环受力: B m T ⨯=真空中恒定磁场方程: 积分形式: I ⎰=⋅ll B 0d μ⎰=⋅SS B 0d微分形式:J B 0 μ=⨯∇0=⋅∇B已知电流分布求解电场强度:1,A B ⨯∇=V V ''-'=⎰'d )(4)( 0 r r r J r A πμ2,V V ''-'-⨯'=⎰'d )()( 4)(30 r r r r r J r B πμ 毕奥─萨伐定律。
3,I ⎰=⋅ll B 0d μ安培环路定律。
面电流产生的矢量磁位及磁感应强度分别为S ''-'=⎰'d )(4)(0 r r r J r A S S πμS ''-'-⨯'=⎰'d )()(4)( 30 r r r r r J r B S S πμ 线电流产生的矢量磁位及磁感应强度分别为⎰''-'=l r r l r A d 4)(0I πμ⎰''-'-⨯'=l r r r r l r B 30 )(d 4)(I πμ矢量磁位满足的微分方程:J A 0 2μ-=∇无源区中标量磁位满足的微分方程: 0 2=∇m ϕ 媒质中恒定磁场方程: 积分形式: I l =⋅⎰l H d⎰=⋅SS B 0d微分形式:J H =⨯∇ 0=⋅∇B磁性能均匀线性各向同性的媒质:场方程积分形式:⎰=⋅lI d μl B⎰=⋅BS H 0d场方程微分形式: J B μ=⨯∇ 0=⋅∇H矢量磁位微分方程:J A 2μ-=∇矢量磁位微分方程的解: V V ''-'=⎰'d )(4)(r r r J r A πμ 恒定磁场边界条件:1,t t H H 21=。
第一章 矢量场 1.1 z y x C z y x B z y x A ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+= 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B C ⨯ ; (e) () A B C ⨯⨯ (f) () A B C ⨯⋅ 解:(a) 14132222222=++=++=z y x A A A A ; (b) )ˆ2ˆˆ(61ˆz y x BB b -+== ( c) 7=⋅B A ; (d) z y xC B ˆ4ˆ7ˆ---=⨯ (e) z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯ (f) 19)(-=⋅⨯C B A 1.2 A z =++2 ρπϕ; B z =-+- ρϕ32 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) B A + 解:(a) 25π+=A ;(b) )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ;(c) 43-=⋅πB A (d) z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπ (e) z B A ˆˆ)3(ˆ-++=+ϕπρ 1.3 A r =+-22 πθπϕ; B r =- πθ 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) A B + 解:(a) 254π+=A ; (b) )ˆˆ(11ˆ2θππ-+=r b ; (c) 22π-=⋅B A ;(d) ϕπθππˆ3ˆ2ˆ22++=⨯r A B ; (e) ϕπˆ2ˆ3-=+r B A 1.4 A x y z =+- 2; B x y z =+-α 3 当 A B ⊥时,求α。
解:当 A B ⊥时, A B ⋅=0, 由此得 5-=α 1.5 将直角坐标系中的矢量场 F x y z x F x y z y 12(,,) ,(,,) ==分别用圆柱和圆球坐标系中的坐标分量表示。
电磁场与电磁波(第4版)第5章部分习题参考解答GG5.1 在自由空间中,已知电场E(z,t)=ey103sin(ωt?βz)V/m,试求磁场强度G H(z,t)。
解:以余弦为基准,重新写出已知的电场表示式GπGE(z,t)=ey103cos(ωt?βz?V/m 2这是一个沿+z方向传播的均匀平面波的电场,其初相角为?90D。
与之相伴的磁场为G1GG1GGπH(z,t)=ez×E(z,t)=ez×ey103cos(ωt?βz?η0η023πG10G=?excos(ωt?βz?)=?ex2.65sin(ωt?βz) A/m120π25.2 理想介质(参数为μ=μ0、ε=εrε0、ζ=0)中有一均匀平面波沿x方向传播,已知其电场瞬时值表达式为GGE(x,t)=ey377cos(109t?5x) V/m GG试求:(1) 该理想介质的相对介电常数;(2) 与E(x,t)相伴的磁场H(x,t);(3) 该平面波的平均功率密度。
G解:(1) 理想介质中的均匀平面波的电场E应满足波动方程G2G?E?2E?με2=0 ?tG据此即可求出欲使给定的E满足方程所需的媒质参数。
方程中2G?EyGGG229et?5x) ?E=ey?Ey=ey=?y9425cos(102?xG22?EG?EyG18937710cos(10eet?5x) ==?×yy22 ?t?x 故得?9425cos(109t?5x)+με*377×1018cos(109t?5x)+=0即9425με==25×10?18 18377×10故25×10?18εr==25×10?18×(3×108)2=2.25 μ0ε0其实,观察题目给定的电场表达式,可知它表征一个沿+x方向传播的均匀平面ω109波,其相速为vp===2×108m/s k5而vp====3×108 3故εr=()2=2.25 2GGGGG(2) 与电场E相伴的磁场H可由?×E=?jωμ0H求得。
第五章习题解答5.1真空中直线长电流I 的磁场中有一等边三角形回路,如题 5.1图所示,求三角形回路内的磁通。
解根据安培环路定理,得到长直导线的电流I 产生的磁场2IrB e穿过三角形回路面积的磁通为d SB S32322[d ]d d 2db db zd dI I z z xxxx由题 5.1图可知,()tan63x d zx d ,故得到32d 3db dIx dxx3[ln(1)]223Ib d b d5.2通过电流密度为J 的均匀电流的长圆柱导体中有一平行的圆柱形空腔,如题 5.2图所示。
计算各部分的磁感应强度B ,并证明腔内的磁场是均匀的。
解将空腔中视为同时存在J 和J 的两种电流密度,这样可将原来的电流分布分解为两个均匀的电流分布:一个电流密度为J 、均匀分布在半径为b 的圆柱内,另一个电流密度为J 、均匀分布在半径为a 的圆柱内。
由安培环路定律,分别求出两个均匀分布电流的磁场,然后进行叠加即可得到圆柱内外的磁场。
由安培环路定律d CI B l,可得到电流密度为J 、均匀分布在半径为b 的圆柱内的电流产生的磁场为2222b b bbbbr bbr br J r B J r 电流密度为J 、均匀分布在半径为a 的圆柱内的电流产生的磁场为2222a a aaaar aar ar J r B J r 这里a r 和br 分别是点a o 和b o 到场点P 的位置矢量。
将aB 和bB 叠加,可得到空间各区域的磁场为圆柱外:22222babab a r rBJr r ()br b 圆柱内的空腔外:2022ba aar BJr r (,)b ar b r a 空腔内:22b aBJr r J d()ar a 式中d 是点和b o 到点a o 的位置矢量。
由此可见,空腔内的磁场是均匀的。
5.3下面的矢量函数中哪些可能是磁场?如果是,求其源变量J 。
dbIzx题 5.1 图Sbr ar Jboao ab题5.2图d(1) 0,r ar H e B H(圆柱坐标)(2) 0(),x y ay ax H e e BH(3) 0,x y axay H e e BH(4) 0,ar He BH (球坐标系)解根据恒定磁场的基本性质,满足0B 的矢量函数才可能是磁场的场矢量,否则,不是磁场的场矢量。
第5章时变电磁场和平面电磁波5.1 / 5.1-1 已知z2=1+j,求复数z的两个解。
2[解] z=1+j=jπjπ2e z1=2e=1.189ej22.5=1.099+j0.455j22.5 z2=-1.189e=-1.099-j0.4555.2 / 5.1-2 已知α是正实数,试证:(a)若α<<1,jα⎫⎛+jα≈± 1+⎪; 2⎝⎭jα⎫⎛+jα≈± 1+⎪;。
2⎭⎝(b)若α>>1,[解] ( a) α<<1: +jα=(b) α>>1:+α2ejtan-1α≈e(jααα⎫α⎫⎛⎛=± cos+jsin⎪≈± 1+j⎪ 22⎭2⎭⎝⎝+jα=+α2ejtanα-1≈⎛αe⎝jπ⎫⎪⎭ππ⎫⎛=± co+jsi⎪ 44⎭⎝=±(1+j)2=e+je,H(t)的复振幅为H =h+jh,试证5.3 / 5.1-3设E(t)的复振幅为Eii H ejωt,并求E(t)E(t)H(t)≠ReE、H(t)。
ejωt=1E ejωt+E *e-jωt [解] E(t)=ReE[][](2)1 jωt *e-jωt He+H21 * * H ej2ωt+E *H *e-j2ωt 得 E(t)H(t)=EH+EH+E41 H *+E H ej2ωt≠ReE H ejωt =ReE2H(t)=()()[][]E(t)=Re(e+jei)ejωt=Re[(e+jei)(cosωt+jsinωt)]=ecosωt-eisinωt 1 []H(t)=Re(h+jhi)ejωt=hcosωt-hisinωt E(t)H(t)=ehcos2ωt+eihisin2ωt-ehicosωtsinωt-eihcosωtsinωt []=1[eh+eihi+(eh-eihi)cos2ωt-(eh i+eih)sin2ωt] 2可见,为恒定成分与二倍频成分的叠加.5.4 / 5.1-4 将下列场矢量的瞬时值变换为复矢量,或作相反的变换:ˆE0sin(ωt-kz)+yˆ3E0cos(ωt-kz); (a) (t)=xˆ⎢E0sinωt+3E0cos ωt+(b) (t)=x⎣ˆ+jyˆ)e(c) =(xˆjH0e(d) =-y⎡⎛⎝π⎫⎤⎪; 6⎭⎥⎦-jkz;。
第二篇 电磁学求解电磁学问题的基本思路和方法本书电磁学部分涉及真空中和介质中的静电场和恒定磁场、电磁感应和麦克斯韦电磁场的基本概念等内容,涵盖了大学物理课程电磁学的核心内容.通过求解电磁学方面的习题,不仅可以使我们增强对有关电磁学基本概念的理解,还可在处理电磁学问题的方法上得到训练,从而感悟到麦克斯韦电磁场理论所体现出来的和谐与美.求解电磁学习题既包括求解一般物理习题的常用方法,也包含一些求解电磁学习题的特殊方法.下面就求解电磁学方面的方法择要介绍如下.1.微元法在求解电场强度、电势、磁感强度等物理量时,微元法是常用的方法之一.使用微元法的基础是电场和磁场的叠加原理.依照叠加原理,任意带电体激发的电场可以视作电荷元d q 单独存在时激发电场的叠加,根据电荷的不同分布方式,电荷元可分别为体电荷元ρd V 、面电荷元σd S 和线电荷元λd l .同理电流激发的磁场可以视作为线电流元激发磁场的叠加.例如求均匀带电直线中垂线上的电场强度分布.我们可取带电线元λd l 为电荷元,每个电荷元可视作为点电荷,建立坐标,利用点电荷电场强度公式将电荷元激发的电场强度矢量沿坐标轴分解后叠加统一积分变量后积分,就可以求得空间的电场分布.类似的方法同样可用于求电势、磁感应强度的分布. 此外值得注意的是物理中的微元并非为数学意义上真正的无穷小,而是测量意义上的高阶小量.从形式上微元也不仅仅局限于体元、面元、线元,在物理问题中常常根据对称性适当地选取微元.例如,求一个均匀带电圆盘轴线上的电场强度分布,我们可以取宽度为d r 的同心带电圆环为电荷元,再利用带电圆环轴线上的电场强度分布公式,用叠加的方法求得均匀带电圆盘轴线上的电场强度分布.2.对称性分析对称性分析在求解电磁场问题时是十分重要的.通过分析场的对称性,可以帮助我们了解电磁场的分布,从而对求解电磁学问题带来极大方便.而电磁场的对称性有轴对称、面对称、球对称等.下面举两个例子.在利用高斯定律求电场强度的分布时,需要根据电荷分布的对称性选择适当的高斯面,使得电场强度在高斯面上为常量或者电场强度通量为零,就能够借助高斯定律求得电场强度的分布.相类似在利用安培环路定律求磁感强度的分布时,依照电流分布的对称性,选择适当的环路使得磁感强度在环路上为常量或者磁场环流为零,借助安培环路定律就可以求出磁感强度的分布.3.补偿法补偿法是利用等量异号的电荷激发的电场强度,具有大小相等方向相反的特性;或强度相同方向相反的电流元激发的磁感强度,具有大小相等方向相反这一特性,将原来对称程度较低的场源分解为若干个对称程度较高的场源,再利用场的叠加求得电场、磁场的分布.例如在一个均匀带电球体内部挖去一个球形空腔,显然它的电场分布不再呈现球对称.为了求这一均匀带电体的电场分布,我们可将空腔带电体激发的电场视为一个外半径相同的球形带电体与一个电荷密度相同且异号、半径等于空腔半径的小球体所激发电场的矢量和.利用均匀带电球体内外的电场分布,即可求出电场分布.4.类比法 在电磁学中,许多物理量遵循着相类似的规律,例如电场强度与磁场强度、电位移矢量与磁感强度矢量、电偶αr l λεE l l cos d π4122/2/0⎰-=极子与磁偶极子、电场能量密度与磁场能量密度等等.他们尽管物理实质不同,但是所遵循的规律形式相类似.在分析这类物理问题时借助类比的方法,我们可以通过一个已知物理量的规律去推测对应的另外一个物理量的规律.例如我们在研究L C 振荡电路时,我们得到回路电流满足的方程显然这个方程是典型的简谐振动的动力学方程,只不过它所表述的是含有电容和自感的电路中,电流以简谐振动的方式变化罢了.5.物理近似与物理模型几乎所有的物理模型都是理想化模型,这就意味着可以忽略影响研究对象运动的次要因素,抓住影响研究对象运动的主要因素,将其抽象成理想化的数学模型.既然如此,我们在应用这些物理模型时不能脱离建立理想化模型的条件与背景.例如当带电体的线度远小于距所考察电场这一点的距离时,一个带电体的大小形状可以忽略,带电体就可以抽象为点电荷.但是一旦去研究带电体临近周围的电场分布时,将带电体当作点电荷的模型就失效了.在讨论物理问题时一定要注意物理模型的适用条件.同时在适用近似条件的情况下,灵活应用理想化模型可大大简化求解问题的难度.电磁学的解题方法还有很多,我们希望同学们通过练习自己去分析、归纳、创新和总结.我们反对在学习过程中不深入理解题意、不分析物理过程、简单教条地将物理问题分类而“套”公式的解题方法.我们企盼同学们把灵活运用物理基本理论求解物理问题当成是一项研究课题,通过求解问题在学习过程中自己去领悟、体会,通过解题来感悟到用所学的物理知识解决问题后的愉悦和快乐,进一步加深理解物理学基本定律,增强学习新知识和新方法的积极性.01d d 22=+i LCt i第五章 静 电 场5 -1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( )分析与解 “无限大”均匀带电平板激发的电场强度为,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ).5 -2 下列说法正确的是( )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ).5 -3 下列说法正确的是( )(A ) 电场强度为零的点,电势也一定为零(B ) 电场强度不为零的点,电势也一定不为零(C ) 电势为零的点,电场强度也一定为零(D ) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解 电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D ).*5 -4 在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p 的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A ) 沿逆时针方向旋转直到电偶极矩p 水平指向棒尖端而停止(B ) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C ) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D ) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动2εσ分析与解 电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B ).5 -5 精密实验表明,电子与质子电量差值的最大范围不会超过±10-21 e ,而中子电量与零差值的最大范围也不会超过±10-21e ,由最极端的情况考虑,一个有8 个电子,8 个质子和8 个中子构成的氧原子所带的最大可能净电荷是多少? 若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小. 分析 考虑到极限情况, 假设电子与质子电量差值的最大范围为2×10-21 e ,中子电量为10-21 e ,则由一个氧原子所包含的8 个电子、8 个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解 一个氧原子所带的最大可能净电荷为二个氧原子间的库仑力与万有引力之比为显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 5 -6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带 的上夸克和两个带的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子内的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律F 与径向单位矢量e r 方向相同表明它们之间为斥力.5 -7 质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k .证明电子的旋转频率满足其中ε0 是真空电容率,电子的运动可视为遵守经典力学规律.分析 根据题意将电子作为经典粒子处理.电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷.点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有由此出发命题可证.()e q 21max 10821-⨯⨯+=1108.2π46202max <<⨯==-Gmεq F F g e e 32e 31-()r r r r e εr q q εe e e F N 78.3π41π412202210===4320232me E εk =v 2202π41r e εr m =v证 由上述分析可得电子的动能为电子旋转角速度为由上述两式消去r ,得5 -8 在氯化铯晶体中,一价氯离子Cl -与其最邻近的八个一价铯离子Cs +构成如图所示的立方晶格结构.(1) 求氯离子所受的库仑力;(2) 假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力.分析 铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加.为方便计算可以利用晶格的对称性求氯离子所受的合力.解 (1) 由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故F 1 =0.(2) 除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力F 2 的值为F 2 方向如图所示.5 -9 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为(2) 在棒的垂直平分线上,离棒为r 处的电场强度为 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.re εm E K 202π8121==v 3022π4mr εe ω=432022232π4me E εωK ==v N 1092.1π3π4920220212⨯===aεe r εq q F 2204π1Lr Q εE -=2204π21L r r Q εE +=分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为整个带电体在点P 的电场强度接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,(2) 若点P 在棒的垂直平分线上,如图(A )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是证 (1) 延长线上一点P 的电场强度,利用几何关系 r ′=r -x 统一积分变量,则电场强度的方向沿x 轴. (2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为利用几何关系 sin α=r /r ′, 统一积分变量,则当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度r r q εe E 20d π41d '=⎰=E E d ⎰=LE i E d ⎰⎰==Ly E αE j j E d sin d ⎰'=L r πεq E 202d ()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰E r εq αE L d π4d sin 2⎰'=22x r r +='()2203/22222041π2d π41L r r εQ r x L xrQ εE L/-L/+=+=⎰此结果与无限长带电直线周围的电场强度分布相同[图(B )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线. 5 -10 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第5 -3 节的例1 可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元,在点O 激发的电场强度为由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系,统一积分变量,有积分得 5 -11 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.rελL r L Q r εE l 0220π2 /41/π21lim =+=∞→θθR δS δq d sin π2d d 2⋅==()i E 3/2220d π41d r x qx ε+=θR x cos =θR r sin =()θθθεδθθR πδR θR πεr x q x πεE d cos sin 2 d sin 2cos 41d 41d 02303/2220=⋅=+=02/004d cos sin 2εδθθθεδE π⎰==分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为,而夹角为2θ.叠加后水分子的电偶极矩大小为,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布.解1 水分子的电偶极矩在电偶极矩延长线上解2 在对称轴线上任取一点A ,则该点的电场强度由于 代入得 测量分子的电场时, 总有x >>r 0 , 因此, 式中,将上式化简并略去微小量后,得 5 -12 两条无限长平行直导线相距为r 0 ,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.00er P =θer P cos 20=302π41x p εE =θer θP P cos 2cos 200==30030030cos π1cos 4π412π41x θer εx θer εx p εE ===+-+=E E E 2020π42π4cos 2cos 2x εe r εθer E βE E -=-=+θxr r x r cos 202022-+=rθr x βcos cos 0-=()⎥⎥⎦⎤⎢⎢⎣⎡--+-=23/20202001cos 2cos π42x θxr r x θr x εe E ()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x θr x x θr x θxr r x cos 2231cos 21cos 2033/2033/20202300cos π1x θe r εE =分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力. 解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有(2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有 显然有F +=F -,相互作用力大小相等,方向相反,两导线相互吸引.5 -13 如图为电四极子,电四极子是由两个大小相等、方向相反的电偶极子组成.试求在两个电偶极子延长线上距中心为z 的一点P 的电场强度(假设z >>d ).分析 根据点电荷电场的叠加求P 点的电场强度.解 由点电荷电场公式,得()i i E E E x r x r ελx r x ελ-=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2i E F 00π2r ελλ==-+i E F 002π2r ελλ-=-=+-考虑到z >>d ,简化上式得 通常将Q =2qd 2 称作电四极矩,代入得P 点的电场强度5 -14 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.分析 方法1:由电场强度通量的定义,对半球面S 求积分,即 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而解1 由于闭合曲面内无电荷分布,根据高斯定理,有依照约定取闭合曲面的外法线方向为面元d S 的方向,解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为① ()()k k k E 202020π41π412π41d z q εd z q εz q ε++-+=()()k k k E 42022220222206π4...321...32112π4/11/1112π4z qd εq z d z d z d z d z z εq z d z d z z εq =⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡++-+++++-=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+-+-=k E 403π41zQ ε=⎰⋅=S S d s E Φ∑⎰==⋅01d 0q εS S E ⎰⎰'⋅-=⋅=S S S E S E Φd d ⎰⎰'⋅-=⋅=S S S E S E Φd d E R πR E 22πcos π=⋅⋅-=Φ()r θθθE e e e E sin sin cos sin cos ++=5 -15 边长为a 的立方体如图所示,其表面分别平行于Oxy 、Oyz 和Ozx 平面,立方体的一个顶点为坐标原点.现将立方体置于电场强度 (k ,E 1 ,E 2 为常数)的非均匀电场中,求电场对立方体各表面及整个立方体表面的电场强度通量.解 如图所示,由题意E 与Oxy 面平行,所以任何相对Oxy 面平行的立方体表面,电场强度的通量为零,即.而考虑到面CDEO 与面ABGF 的外法线方向相反,且该两面的电场分布相同,故有同理因此,整个立方体表面的电场强度通量5 -16 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径(为地球平均半径).由高斯定理r θθR e S d d sin d 2=ER θθER θθER SS2π0π2222πdsin d sin dd sin sin d ===⋅=⎰⎰⎰⎰S E Φ()12E kx E +E =i +j 0==DEFG OABC ΦΦ()[]()2221ABGF d a E dS E kx E =⋅++=⋅=⎰⎰j j i S E Φ22a E ABGF CDEO -=-=ΦΦ()[]()2121AOEF d a E dS E E -=-⋅+=⋅=⎰⎰i j i S E Φ()[]()()2121BCDG d a ka E dS E ka E Φ+=⋅++=⋅=⎰⎰i j i S E 3ka ==∑ΦΦ1m V 120-⋅E R R ≈E R ∑⎰=-=⋅q εR E E 021π4d S E地球表面电荷面密度单位面积额外电子数5 -17 设在半径为R 的球体内,其电荷为球对称分布,电荷体密度为k 为一常量.试分别用高斯定理和电场叠加原理求电场强度E 与r 的函数关系.分析 通常有两种处理方法:(1) 利用高斯定理求球内外的电场分布.由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有根据高斯定理,可解得电场强度的分布. (2) 利用带电球壳电场叠加的方法求球内外的电场分布.将带电球分割成无数个同心带电球壳,球壳带电荷为,每个带电球壳在壳内激发的电场,而在球壳外激发的电场由电场叠加可解得带电球体内外的电场分布解1 因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定理得球体内(0≤r ≤R )∑--⨯-=-≈=2902cm 1006.1π4/E εR q σE 25cm 1063.6/-⨯=-=e σn ()()R r ρkr ρ>=≤≤= 0R r 02Sπ4d r E ⋅=⋅⎰S E ⎰⎰=⋅V ρεd 1d 0S E r r ρq ''⋅=d π4d 20d =E rrεqe E 20π4d d =()()()()R r r r Rr>=≤≤=⎰⎰d R r 0d 0E E E E ⎰⎰=⋅V ρεd 1d 0S E ()4202πd π41π4r εk r r kr εr r E r==⎰球体外(r >R )解2 将带电球分割成球壳,球壳带电由上述分析,球体内(0≤r ≤R )球体外(r >R )5 -18 一无限大均匀带电薄平板,电荷面密度为σ,在平板中部有一半径为r 的小圆孔.求圆孔中心轴线上与平板相距为x 的一点P 的电场强度.分析 用补偿法求解利用高斯定理求解电场强度只适用于几种非常特殊的对称性电场.本题的电场分布虽然不具有这样的对称性,但可以利用具有对称性的无限大带电平面和带电圆盘的电场叠加,求出电场的分布.若把小圆孔看作由等量的正、负电荷重叠而成,挖去圆孔的带电平板等效于一个完整的带电平板和一个带相反电荷(电荷面密度σ′=-σ)的小圆盘.这样中心轴线上的电场强度等效于平板和小圆盘各自独立在该处激发电场的矢量和. 解 由教材中第5 -4 节例4 可知,在无限大带电平面附近为沿平面外法线的单位矢量;圆盘激发的电场它们的合电场强度为()r εkr r e E 024=()4202πd π41π4r εk r r kr εr r E R==⎰()r εkR r e E 024=r r r k V ρq '''==d π4d d 2()r r rεkr r r r r k εr e e E 0222004d π4π41=''⋅'=⎰()r r Rr εkR r r r πr k πεr e e E 20222004d 441=''⋅'=⎰n εσe E 012=n e n r x x εσe E ⎪⎪⎭⎫⎝⎛+--=220212在圆孔中心处x =0,则E =0在距离圆孔较远时x >>r ,则上述结果表明,在x >>r 时,带电平板上小圆孔对电场分布的影响可以忽略不计.5 -19 在电荷体密度为ρ 的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O ′的矢量用a 表示(如图所示).试证明球形空腔中任一点的电场强度为分析 本题带电体的电荷分布不满足球对称,其电场分布也不是球对称分布,因此无法直接利用高斯定理求电场的分布,但可用补偿法求解.挖去球形空腔的带电球体在电学上等效于一个完整的、电荷体密度为ρ 的均匀带电球和一个电荷体密度为-ρ、球心在O ′的带电小球体(半径等于空腔球体的半径).大小球体在空腔内P 点产生的电场强度分别为E 1 、E 2 ,则P 点的电场强度 E =E 1 +E 2 . 证 带电球体内部一点的电场强度为所以 , 根据几何关系,上式可改写为n rx x εσe E E E 22212+=+=n nεσx r εσe e E 02202/112≈+=a E 03ερ=r E 03ερ=r E 013ερ=2023r E ερ-=()210213r r E E E -=+=ερa r r =-21a E 03ερ=5 -20 一个内外半径分别为R 1 和R 2 的均匀带电球壳,总电荷为Q 1 ,球壳外同心罩一个半径为R 3 的均匀带电球面,球面带电荷为Q 2 .求电场分布.电场强度是否为离球心距离r 的连续函数? 试分析.分析 以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面.由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等.因而 .在确定高斯面内的电荷后,利用高斯定理即可求出电场强度的分布.解 取半径为r 的同心球面为高斯面,由上述分析r <R 1 ,该高斯面内无电荷,,故 R 1 <r <R 2 ,高斯面内电荷 故 R 2 <r <R 3 ,高斯面内电荷为Q 1 ,故r >R 3 ,高斯面内电荷为Q 1 +Q 2 ,故电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图(B )所示.在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r =R 3 的带电球面两侧,电场强度的跃变量这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有一定厚度的球壳,壳层内外的电场强度也是连续变化的,本题中带电球壳内外的电场,在球壳的厚度变小时,E 的变化就变陡,最后当厚度趋于零时,E 的变化成为一跃变.5 -21 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 >R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .24d r πE ⋅=⎰S E ∑q ∑⎰=/d εq S E ∑=⋅02/π4εq r E 0=∑q 01=E ()31323131R R R r Q q --=∑()()23132031312π4r R R εR r Q E --=2013π4r εQ E =20214π4r εQ Q E +=230234π4ΔεσR εQ E E E ==-=分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且,求出不同半径高斯面内的电荷.即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理r <R 1 ,在带电面附近,电场强度大小不连续,电场强度有一跃变 R 1 <r <R 2 ,r >R 2,在带电面附近,电场强度大小不连续,电场强度有一跃变这与5 -20 题分析讨论的结果一致.5 -22 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.⎰⋅=rL E d π2S E ∑q ∑=⋅0/π2εq rL E 0=∑q 01=E L λq =∑rελE 02π2=0=∑q 03=E 000π2π2ΔεσrL εL λr ελE ===分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为其中E 是点电荷Q 1 、Q 3 产生的合电场强度. (2) 根据电场力作功与电势能差的关系,有其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势). 解1 由题意Q 1 所受的合力为零解得由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为解2 与解1相同,在任一点电荷所受合力均为零时,并由电势 的叠加得Q 1 、Q 3 在点O 的电势将Q 2 从点O 推到无穷远处的过程中,外力作功比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多.5 -23 已知均匀带电长直线附近的电场强度近似为l E d 02⎰∞=Q W ()0202V Q V V Q W =-=∞()02π4π420312021=+d εQ Q d εQ Q Q Q Q 414132-=-=()2/322031π2yd εQ E E E yy y +=+=()dεQ y y d εQ Q Q W y 022/322002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E Q Q 412-=dεQd εQ d εQ V 003010π2π4π4=+=dεQ V Q W 0202π8=-='。
第5章时变电磁场和平面电磁波5.1 / 5.1-1 已知z2=1+j,求复数z的两个解。
2[解] z=1+j=jπjπ2e z1=2e=1.189ej22.5=1.099+j0.455j22.5 z2=-1.189e=-1.099-j0.4555.2 / 5.1-2 已知α是正实数,试证:(a)若α<<1,jα⎫⎛+jα≈± 1+⎪; 2⎝⎭jα⎫⎛+jα≈± 1+⎪;。
2⎭⎝(b)若α>>1,[解] ( a) α<<1: +jα=(b) α>>1:+α2ejtan-1α≈e(jααα⎫α⎫⎛⎛=± cos+jsin⎪≈± 1+j⎪ 22⎭2⎭⎝⎝+jα=+α2ejtanα-1≈⎛αe⎝jπ⎫⎪⎭ππ⎫⎛=± co+jsi⎪ 44⎭⎝=±(1+j)2=e+je,H(t)的复振幅为H =h+jh,试证5.3 / 5.1-3设E(t)的复振幅为Eii H ejωt,并求E(t)E(t)H(t)≠ReE、H(t)。
ejωt=1E ejωt+E *e-jωt [解] E(t)=ReE[][](2)1 jωt *e-jωt He+H21 * * H ej2ωt+E *H *e-j2ωt 得 E(t)H(t)=EH+EH+E41 H *+E H ej2ωt≠ReE H ejωt =ReE2H(t)=()()[][]E(t)=Re(e+jei)ejωt=Re[(e+jei)(cosωt+jsinωt)]=ecosωt-eisinωt 1 []H(t)=Re(h+jhi)ejωt=hcosωt-hisinωt E(t)H(t)=ehcos2ωt+eihisin2ωt-ehicosωtsinωt-eihcosωtsinωt []=1[eh+eihi+(eh-eihi)cos2ωt-(eh i+eih)sin2ωt] 2可见,为恒定成分与二倍频成分的叠加.5.4 / 5.1-4 将下列场矢量的瞬时值变换为复矢量,或作相反的变换:ˆE0sin(ωt-kz)+yˆ3E0cos(ωt-kz); (a) (t)=xˆ⎢E0sinωt+3E0cos ωt+(b) (t)=x⎣ˆ+jyˆ)e(c) =(xˆjH0e(d) =-y⎡⎛⎝π⎫⎤⎪; 6⎭⎥⎦-jkz;。
-jkzsinθ-j-jkzˆE0ee2+yˆ3E0e-jkz=(-jxˆ+yˆ3)E0e-jkz [解] (a) =xπππ⎡j⎤-j⎡⎛3⎛31⎫⎤1⎫⎪⎥=x⎪ ˆ⎢E0e2+3E0e6⎥=xˆE0⎢-j+3 ˆE0 (b) =x+j+j 2⎪2⎭⎥2⎪⎢⎝⎝2⎭⎣⎦⎣⎦ˆcos(ωt-kz)+yˆcos ωt-kz+(c) (t)=x⎛⎝π⎫ˆcos(ωt-kz)-yˆsin(ωt-kz) ⎪=x2⎭ˆH0co (d) (t)=ysωt-kzsinθ-⎛⎝π⎫ˆH0sin(ωt-kzsinθ) ⎪=y2⎭ˆE0sin(ωt-kz)5.5 / 5.2-1 已知自由空间某点的电场强度(t)=x(a) 磁场强度(t);(b) 坡印廷矢量(t)及其一周T=2π/ω内的平均值S[解] (a)αv(Vm),求。
Ekπ⎫⎛jωt=yˆˆ0sin(ωt-kz) (t)=ReE0cos ωt-kz-⎪=yωμ02⎭η0⎝[]式中ωμ0k=ωμ0=ωμ0ε0E02μ0=η0 ε022Eˆ⨯yˆˆ0[1-cos2(ωt-kz)] sin(ωt-kz)=z(b) (t)=(t)⨯(t)=xη02η0av1=T⎰T0Eˆ0 (t)dt=z2η025.6 / 5.2-2 对于非均匀的各向同性线性媒质,请导出其无源区电场强度复矢量的波动方程。
[解] 无源区限定形式麦氏方程为=-jωμ (1) ∇⨯=jωε ∇⨯(2) (3) (4) +⋅∇ε=0 =0, 即ε∇⋅∇⋅ε())=0 ∇⋅(μ由(1),∇⨯∇⨯=-jω∇⨯2) (μ)-∇=-jω(μ∇⨯+∇μ⨯) ∇(∇⋅⎛∇ε⎫22⎪+∇=-ωμε+jω∇μ⨯ε⎭⎝利用(2)(3)后, ∇⋅再利用(1)式代入, 得+ω2με+∇∇2 ⋅⎛⎝∇ε⎫∇μ=0 ⨯∇⨯⎪+ε⎭μ-jk1zˆE10e5.7 / 5.3-1设真空中同时存在两个时谐电磁场,其电场强度分别为1=x 试证总平均功率流密度等于两个时谐场的平均功率流密度之和。
[证1] av122E10E20avˆˆ=z,2=z 2η02η022E10+E20ˆ=z=1av+2av 2η0ˆE20e,2=y-jk2z,故 avE10-jk1z-jk1z=1z=y=xˆˆˆEe⨯e[证2] ,11011η0η0E20-jk2z-jk2z=1z=-x=yˆˆˆEe⨯e,22022η0η0av12⎡E102⎤E10⎡1*⎤ˆˆ=Re⎢1⨯1⎥=Re⎢z,⎥=z2η0⎣2⎦⎢2η0⎦⎥⎣av22E20*ˆ=Re2⨯2=z 2η0[]⎛E10jk1zE20jk2z⎫⎤⎡1⨯*+*⎤=Re⎡1x-jk1z-jk2z ˆˆˆˆSav=Re⎢+Ee+yEe⨯ye-xe⎪⎢⎥ 1212⎥1020 ⎪η0⎣2⎦⎢2⎥⎝η0⎭⎦⎣()()()222⎡E102E20⎤E10+E20ˆˆˆ=Re⎢z+z=1av+2av ⎥=z2η0⎦2η0⎣2η0,外5.8 / 5.3-2同轴线内导体半径为a,外导体内半径为b,某截面处内外导体间电压的复振幅为U。
试用复坡印廷矢量计算内、外导体间向负载传输的总功率。
导体上电流的复振幅为II *b1U1 *⋅2π⎰2⋅ρdρ=UI [解] P=⎰⋅ds=Saρb24πlna5.9 / 5.3-3在理想导体平面上方的空气区域(z>0)存在时谐电磁场,其电场强度为ˆE0sinkzcosωt。
(t)=x(a) 求磁场强度(t);(b) 求在z=0,π/4k和π/2k处的坡印廷矢量瞬时值及平均值;(c) 求导体表面的面电流密度。
[解] (a) (t)=Rek[]=yˆωμjωt2Eπ⎫⎛ˆ0coskzsinωt, η0=E0coskzcos ωt+⎪=-y2⎭η0⎝0 ε0Eˆ0sn2kzsin2ωt (b)(t)=(t)⨯(t)=-z4η0z=0, (t)=0Eˆ0sin2ωt z=, (t)=-z4η04kπ2z=π2k, (t)=0av1=Tav⎰T0E1ˆ0sin2kz⋅(t)⋅dt=-z4η0T2⎰T0sin4πt=0 T或⎡j⎤⎡1*⎤2ˆ=Re⎢⨯⎥=Re⎢zE0sin2kz⎥=0 ⎣2⎦⎣4η0⎦ˆ⨯(c) s=n⎡⎣z=0ˆjˆ⨯y=zE0E0η0ˆj=-xE0η0 ˆj s(t)=Re⎢-x5.10 / 5.3-4⎤EEπ⎫⎛ˆ0co ˆ0sinejωt⎥=xsωt-⎪=xωt η0η2η⎝⎭00⎦已知时谐电磁场瞬时值为ˆ2Eecos(ωt+30 ),Ee(t)=xe和,求坡印廷矢量瞬时值ˆ2Hecos(ωt+30 )。
请写出其复矢量He(t)=yˆEeHe。
(t)=e(t)⨯e(t),并证明其一周平均值为Sαv=zˆ2Eee[解] e=xj30 =yj30 ˆ2He ee2ˆ2EeHecos (t)=Ee(t)⨯He(t)=zav=ˆ[EH(ωt+30)=z ee+EeHecos(2ωt+60 ) ]1T1T ˆˆEeHe, 得证.()tdt=zEH+EHcos2ωt+60dt=zeeee⎰⎰00TT[()]5.11 / 5.3-5 设时谐电磁场瞬时值为jωt,(t)=Imjωt (t)=Im试求坡印廷矢量瞬时值(t)=(t)⨯(t),并求其一周内平均值S [解] (t)=Imαv][]。
[]=21j[jωtjωt*e-jωt -](t)=Im[]=21j[jωtjωt*e-jωt -]1j2ωt****-j2ωt ⨯-⨯-⨯+⨯e41 *-⨯j2ωt ⨯ =ReE2 ∴(t)=(t)⨯(t)=-][]av=1T1⎡1T*j2ωt⎤1⨯* ()tdt=Re⨯-⨯dt=Re⎰⎥2T⎰02⎢⎣T0⎦()[]5.12 / 5.4-1 氦氖激光器发射的激光束在空气中的波长为6.328×10-7m,计算其频率、周期和波数(标出单位)。
[解] k=2πλc=2π=9.929⨯106m-1 -76.328⨯103⨯108f===4.741⨯1014Hz -7λ6.328⨯10T=1 =2.109⨯10-15secf5.13 / 5.4-2 人马座α星离地球4.33光年,1光年是光在一年中传播的距离。
问该星座离地球多少km?[解] r=ct=3⨯10⨯4.33⨯365⨯24⨯3600=4.097⨯10m=4.1⨯10km5.14 / 5.4-3 地球接收太阳全部频率的辐射功率密度约为1.4kW/m2。
问:(a) 若设到达地面的是单一频率的平面波,则其电场强度和磁场强度振幅多大?(b) 地球接收太阳能总功率约为多少?地球半径为6380km。
(c) 若太阳的辐射是各向同性的,那么太阳总辐射功率约为多大?太阳与地球相距约1.5×108km。
81613E2=1.3⨯103 [解] (a) 2η0∴E=2η0⨯1.3⨯10=990V/m, H=23263Eη0=2.63A/m 1711(b)P=S⋅4πa=1.4⨯10⨯π⨯6380⨯10=7.16⨯10W=7.16⨯10MW(c) P=S⋅4πR2=1.4⨯103⨯4π⨯1.52⨯1016⨯106=3.68⨯1026W=3.68⨯1020MW 65.15 / 5.4-4图5-1所示为对称振子天线。
若用它来接收波长λ的电视信号,当其长度L≈λ/2时最有效。
问接收下列频道时,L应取多长:(a) 5频道(f0=88MHz); (b) 8频道(f0=187MHz);(c) 26频道(f0=618MHz)。
c3⨯108[解] (a) λ===3.41m,f88⨯1062c3⨯108==1.604m, (b) λ=f187⨯106∴L=∴L=λ=1.71m λ2=0.802mc3⨯108λ==0.485m(c) λ=, ∴L==0.243m=24.3cm f618⨯1062ˆE0e5.16 / 5.4-5 设=z-jkz,该电场是否满足无源区麦氏方程组?若满足,求出其场;若不满足,请指出为什么。
ˆ⋅=-jkE[解] ∇⋅=-jkz0e-jkz≠0 该电场不满足无源区麦氏方程组.ˆ)的坡印廷矢量,即不可能沿纵向传播,与假这是因为该电场无横向分量,因而不会形成沿纵向(z设矛盾.5.17 / 5.4-6 在理想介质中一平面波的电强度为ˆ5cos2π108t-z(t)=x()(Vm)(a) 求介质中波长及自由空间波长;(b) 已知介质μ=μ0,ε=ε0εr,求介质的εr;(c) 写出磁场强度的瞬时表示式。