太阳能电池
- 格式:doc
- 大小:95.50 KB
- 文档页数:7
太阳能电池关键参数
太阳能电池的关键参数主要包括:
1.开路电压(UOC):在光照条件下,太阳能电池的输出电压值。
2.短路电流(ISC):在输出端短路时,流过太阳能电池两端的电流值。
3.最大输出功率(pm):太阳能电池的工作电压和电流,乘积最大时可获得最大输出功率。
4.填充因子(FF):最大输出功率与开路电压和短路电流乘积之比,代表太阳能电池在带最佳负载时能输出的最大功率特性。
5.转换效率(CE):太阳能电池把光能转换成电能的能力,转换效率是最大输出功率与光功率的比值。
转换效率与填充因子有关,一般转换效率约为10%到20%。
6.光敏面积(A):太阳能电池的光敏面积越大,其接收光能的能力越强,但光敏面积增加到一定程度时,单位面积上接收到的光能就会减少。
7.暗电流(ID):在无光照条件下,太阳能电池中没有PN结反偏电压时,反向漏电流与反向饱和电流的统称。
8.暗电阻(RD):在无光照条件下,太阳能电池的电阻。
9.暗开路电压(UOD):在无光照条件下,太阳能电池
的开路电压。
10.暗短路电流(ISD):在无光照条件下,太阳能电池的短路电流。
这些参数用于描述太阳能电池在无光照条件下的性能,对于评估太阳能电池的质量和稳定性非常重要。
这些参数是描述太阳能电池性能的重要指标,不同的参数组合可以用于不同的应用场景,比如在低功耗设备、卫星通信、光伏电站等领域。
太阳能电池知识介绍什么是太阳能电池太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。
太阳能电池的原理太阳能电池发电的原理主要是半导体的光电效应,一般的半导体主要结构如下:图中,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。
当硅晶体中掺入其他的杂质,如硼、磷等,当掺入硼时,硅晶体中就会存在着一个空穴,它的形成可以参照下图:图中,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。
而黄色的表示掺入的硼原子,因为硼原子周围只有3个电子,所以就会产生入图所示的蓝色的空穴,这个空穴因为没有电子而变得很不稳定,容易吸收电子而中和,形成P(positive)型半导体。
同样,掺入磷原子以后,因为磷原子有五个电子,所以就会有一个电子变得非常活跃,形成N(negative)型半导体。
黄色的为磷原子核,红色的为多余的电子。
如下图。
N型半导体中含有较多的空穴,而P型半导体中含有较多的电子,这样,当P型和N型半导体结合在一起时,就会在接触面形成电势差,这就是PN结。
当P型和N型半导体结合在一起时,在两种半导体的交界面区域里会形成一个特殊的薄层),界面的P型一侧带负电,N型一侧带正电。
这是由于P型半导体多空穴,N型半导体多自由电子,出现了浓度差。
N区的电子会扩散到P区,P区的空穴会扩散到N区,一旦扩散就形成了一个由N指向P的“内电场”,从而阻止扩散进行。
达到平衡后,就形成了这样一个特殊的薄层形成电势差,这就是PN结。
当晶片受光后,PN结中,N型半导体的空穴往P型区移动,而P型区中的电子往N型区移动,从而形成从N型区到P型区的电流。
然后在PN结中形成电势差,这就形成了电源。
(如下图所示)由于半导体不是电的良导体,电子在通过p-n结后如果在半导体中流动,电阻非常大,损耗也就非常大。
但如果在上层全部涂上金属,阳光就不能通过,电流就不能产生,因此一般用金属网格覆盖p-n结(如图梳状电极),以增加入射光的面积。
太阳能电池的工作原理
太阳能电池是一种将太阳光直接转化为电能的装置。
它是由多个光电效应相互连接而成的半导体晶体。
典型的太阳能电池是由硅材料制成的,其中掺杂了两种不同类型的杂质。
太阳能电池的工作原理可以简述为以下几个步骤:
1. 光吸收:当太阳光照射到太阳能电池表面时,光子与半导体晶体中原子相互作用,吸收光能,并将其传递给半导体晶格的电子。
2. 电子激发:被吸收的光子能量使得半导体晶体中的电子激发到较高的能级,从而形成光生电子-空穴对。
3. 分离电荷:经过激发的电子和产生的正空穴分别在半导体晶体的n区和p区积累,并且在两个区域之间形成电势差。
4. 电流流动:由于n区和p区之间的电势差,电子和正空穴开始从n区和p区流动,形成电流。
这个电流可以在外部电路中推动电子流动,并产生实际可用的电能。
需要注意的是,太阳能电池的效率取决于吸收太阳能光谱的范围。
目前,太阳能电池的效率仍然相对较低,因此科学家一直在研究和改进太阳能电池的设计和制造方法,以提高其效率并降低制造成本,以便更广泛地应用于能源产业中。
太阳能电池存在的问题
尽管太阳能电池是一种环保、可再生的能源,但仍然存在一些问题:
1. 昂贵的成本:太阳能电池的制造成本相对较高,使得其价格较高,限制了其普及程度。
2. 依赖天气条件:太阳能电池需要阳光才能产生电能,因此在阴雨天或夜晚效能较低,需要其
他能源作为补充。
3. 大面积需求:太阳能电池的能量转化效率相对较低,需要大面积的太阳能电池板才能满足大
规模电力需求。
4. 能量储存问题:太阳能电池产生的电能往往不能直接用于供电,需要进行储存或转换。
目前
常用的储能技术仍然存在一些问题,如储能成本高、能量密度低等。
5. 稳定性和耐久性问题:太阳能电池板在长时间使用后效能会逐渐下降,需要定期维护和更换,增加了维护成本。
6. 环境污染:太阳能电池的制造过程中使用的某些化学物质可能对环境造成污染,如铅、硫酸等。
尽管存在这些问题,太阳能电池作为一种可再生能源仍然具有很高的发展潜力,可以在改善相
关技术和降低成本的基础上更广泛地应用。
一,基础知识(1)太阳能电池的发电原理太阳能电池是利用半导体材料的光电效应,将太阳能转换成电能的装置。
●半导体的光电效应所有的物质均有原子组成,原子由原子核和围绕原子核旋转的电子组成。
半导体材料在正常状态下,原子核和电子紧密结合(处于非导体状态),但在某种外界因素的刺激下,原子核和电子的结合力降低,电子摆脱原子核的束搏,成为自由电子.光激励核核电子空穴电子●PN 结合型太阳能电池电子对太阳能电池是由P 型半导体和N 型半导体结合而成,N 型半导体中含有较多的空穴,而 P 型半导体中含有较多的电子,当 P 型和 N 型半导体结合时在结合处会形成电势当芯片在受光过程中,带正电的空穴往 P 型区移动,带负电子的电子往 N 型区移动,在接上连线和负载后,就形成电流.。
-+-N 型PN结+-++-+-+-N 区------PN 结合+-++-+-+-电势++++++P 区-+-P 型(2)太阳能电池种类硅半导体结晶类非晶类单晶硅电池多晶硅电池非晶硅电池转换效率:17%转换效率:14%转换效率:6-7%空间用民用民用3—5 族化合※在现在的太阳能电池产品中,以硅半导体材料为主,其中又以单晶硅和多晶硅为代表.由于 其原材料的广泛性,较高的转换效率和可靠性,被市场广泛接受.非晶硅在民用产品上也有 广泛的应用(如电子手表,计算器等),但是它的稳定性和转换效率劣于结晶类半导体材料. 化合物太阳能电池由于其材料的稀有性和部分材料具有公害,现阶段未被市场广泛采用。
※现在太阳能电池的主流产品的材料是半导体硅,是现代电子工业的必不可少的材料,同时 以氧化状态的硅原料是世界上第二大的储藏物质。
※京瓷公司早在上世纪的八十年代就认识到多晶硅太阳能电池的光阔前景和美好未来,率先 开启多晶硅太阳能电池的工业化生产大门。
现在已经是行业的龙头,同时多晶硅太阳能电 池也结晶类太阳能电池的主流产品(太阳能电池的 70%以上)。
(3)多晶硅太阳能电池的制造方法破锭(150mm *155mm )切片(线切割)N 极烧结 电极 印刷 ( 正 反压芯片串,并联,形成设计需要 的 电 流( 一片芯 片 的 电封装 工 艺组配叠片层压玻璃(防冲 EVA (缓冲) 芯片(发电) EVA(缓冲) 背垫(防湿)模拟光源,输出测试边框安装(4)太阳能电池关连的名称和含义●转换效率太阳能电池的转换效率是指电池将接收到的光能转换成电能的比率输出功率 转换效率 =100% 太阳能电池板被照射的太阳能※标准测试状态 由于太阳能电池的输出受太阳能的辐射强度,温度等自然条件的影响,为了表述太 阳能电池的输出和评价其性能,设定在太阳能电池板的表面温度为 25 度,太阳能辐 射强度为 1000 w/㎡、分光分布 AM1。
太阳能电池的基本原理及应用技巧1. 太阳能电池的基本原理1.1 直接转换式太阳能电池直接转换式太阳能电池是将太阳光直接转换为电能的一种装置。
目前最常见的一种直接转换式太阳能电池是硅晶太阳能电池。
其基本原理是利用太阳光中光子的能量将硅晶中的电子激发出来,形成电流。
当太阳光照射到硅晶太阳能电池上时,光子会与硅晶中的硅原子发生相互作用。
光子的能量将硅原子中的电子激发出来,形成电子-空穴对。
在太阳能电池的 p-n结中,电子-空穴对会被分离,电子会通过外部电路从n 区向p 区移动,形成电流。
1.2 间接转换式太阳能电池间接转换式太阳能电池是先将太阳光转换为其他形式的能量,再将这种能量转换为电能的一种装置。
一种常见的间接转换式太阳能电池是光化学太阳能电池。
其基本原理是利用太阳光激发光敏剂,产生电荷分离,形成电流。
当太阳光照射到光化学太阳能电池的光敏剂上时,光子会将光敏剂中的电子激发出来,形成电子-空穴对。
在光化学电池的电荷分离层中,电子-空穴对会被分离,电子会通过外部电路从光敏剂向电荷分离层移动,形成电流。
2. 太阳能电池的应用技巧2.1 太阳能电池组件的安装太阳能电池组件的安装是太阳能电池应用的重要环节。
在安装太阳能电池组件时,需要考虑以下几个因素:•光照条件:太阳能电池的效率受到光照条件的影响。
一般来说,太阳光越强,太阳能电池的输出功率越高。
因此,在安装太阳能电池组件时,需要选择光照条件较好的地方。
•温度:太阳能电池的效率也会受到温度的影响。
一般来说,太阳能电池在较高的温度下性能会下降。
因此,在安装太阳能电池组件时,需要考虑温度的影响,并采取相应的措施,如安装遮阳板等。
•朝向和倾斜角度:太阳能电池组件的朝向和倾斜角度也会影响其输出功率。
一般来说,太阳能电池组件的朝向应该朝向太阳,倾斜角度应该根据当地的纬度和季节进行调整。
2.2 太阳能电池系统的储能设备太阳能电池的输出功率受到光照条件的影响,因此,在夜间或光照不足的情况下,太阳能电池的输出功率会下降。
太阳能电池的分类与特点太阳能电池是一种将太阳能转化为电能的装置,它由不同材料制成。
根据材料的不同,太阳能电池可以分为单晶硅太阳能电池、多晶硅太阳能电池、非晶硅太阳能电池、染料敏化太阳能电池、聚合物太阳能电池等多种类型。
每种类型的太阳能电池都有其独特的特点和适用范围,下面将逐一介绍这些分类和特点。
1. 单晶硅太阳能电池:单晶硅太阳能电池是最常见的太阳能电池之一,它采用高纯度的单晶硅材料制成。
其特点包括高效率、长寿命和稳定性强。
单晶硅太阳能电池的高效率意味着单个电池的发电能力较强,因此在有限的面积内可以获得更多的电能。
此外,单晶硅太阳能电池通常具有较长的寿命,可在正常使用条件下运行20年以上。
然而,由于制造工艺较为复杂,单晶硅太阳能电池的成本较高,因此价格也相对较贵。
2. 多晶硅太阳能电池:多晶硅太阳能电池是另一种常见的太阳能电池类型,它由多晶硅材料制成。
与单晶硅太阳能电池相比,多晶硅太阳能电池的制造工艺更简单,成本也较低。
然而,多晶硅太阳能电池的效率较低,发电能力相对较弱,但仍然可以满足家庭和商业用途的基本需求。
此外,多晶硅太阳能电池的寿命较长,可持续发电15年以上。
3. 非晶硅太阳能电池:非晶硅太阳能电池是一种采用非晶硅材料制成的薄膜太阳能电池。
与单晶硅和多晶硅太阳能电池相比,非晶硅太阳能电池的制造工艺更简单,可以在较大面积的基板上快速制造。
非晶硅太阳能电池还具有较高的灵活性,可以适应不同形状的物体,因此广泛应用于卷曲表面和柔性电子设备。
然而,与其他太阳能电池相比,非晶硅太阳能电池的效率较低,需要更大的面积才能获得相同的发电能力。
4. 染料敏化太阳能电池:染料敏化太阳能电池是一种基于染料分子的太阳能电池。
它利用染料分子吸收光子,激发电子跃迁并产生电流。
相比于硅基太阳能电池,染料敏化太阳能电池具有灵活性好、制造工艺简单、成本低廉和透明度高等优势。
然而,染料敏化太阳能电池的稳定性较差,寿命较短,通常需在几年内更换。
太阳能电池原理
太阳能电池的原理:
1、光电效应:
太阳能电池(Solar cell)利用光电效应来将太阳辐射能量转换成电能,转换的原理是在太阳能电池上覆盖的一层半导体材料(有时也叫“太阳
能转换器”)内部,当光线照射这层半导体薄膜(光伏片)时,可将太
阳能辐射能量转换为电能,也就是所谓的光电效应。
2、半导体:
太阳能电池的核心是半导体,它可以将太阳光照射进来的能量转换成
电能,有了半导体的作用,太阳能的能量就可以被有效的利用。
3、电路:
太阳能电池中还有电路来组成整个电力系统,它们可以帮助太阳能电
池将转换到的电能输出,同时还可以控制电力的输出,以保证它们输
出的电力质量优良。
4、电池安全装置:
当太阳能电池中出现故障时,电池安全装置可以相应处理,关闭太阳
能电池的输出,保证防止发生危险的情况。
5、组件:
太阳能电池还需要组件,这些组件可以帮助太阳能电池的工作,这些组件可以提供电能的安全防护,也可以帮助太阳能电池的智能控制,以满足高效利用太阳能的功能要求。
太阳能电池将太阳辐射能量转换成电能,整个过程要求半导体具备良好的电子性质,能够快速把光子转化为电子,具有良好的空间分布,必须使用一层半导体材料,来覆盖在太阳能电池上,把外界受到的太阳能辐射能量转换成可以利用的电能,还要有电路来输出转换到的电能,负责控制这种电能,保证电能的稳定质量,以及太阳能电池的安全装置,由此可见,太阳能电池的原理可谓是非常复杂的。
什么是太阳能电池?太阳能电池是一种利用太阳光直接发电的光电半导体薄片,其将高纯度的半导体材料加入一些不纯物使其呈现不同的性质,如加入硼可形成P型半导体,加入磷可形成N型半导体,PN两型半导体相结合后,当太阳光入射时,产生光子与电洞,当电流通过时.则产生电式太阳能电池为主流,而以光化学原理工作的太阳能电池则还处于萌芽阶段.太阳光照在半导体P-N结上,形成新的空穴—电子对.在P-N结电场的作用下,空穴由 N区流向P区,电子由P区流向N区,接通电路后就形成电流。
太阳能光伏电池(简称光伏电池)目前大量使用的是以硅为基底的硅太阳能电池,可分为单晶硅、多晶硅、非晶硅太阳能电池。
在能量转换和使用寿命等综合性能方面,单晶硅和多晶硅电池优于非晶硅电池。
多晶硅比但晶硅转换效率低但价格更便宜。
本公司光伏组件,采用高效率单晶硅或多晶硅光伏电池、高透光率钢化玻璃、Tedlar、抗腐蚀铝合金边框等材料,使用先进的真空层压工艺及脉冲焊接工艺制造。
即使在最严酷的环境中也能长时间的使用寿命。
组件的安装架设十分方便。
组件的北面安装有一个防水接线盒,通过它可以十分方便地与外电路连接。
对每一块太阳能电池组件,都保证20年以上的使用寿命。
太阳能电池组件是将太阳能电池直接转变为直流电能的阳光发电装置。
根据用户对功率和电压的不同要求,制成太阳电池组件单个使用,也可以数个太阳能电池组件经过串联(以满足电压要求)和并联(以满足电流要求),形成供电方阵提供更大的电功率。
太阳能电池组件具有高面积比功率,长寿命和高可靠性的特点,在20年使用期限内,输出功率下降不超过20%。
色温究竟指什么?我们知道,通常人眼所见到的光线,是由三原色(红绿蓝)组成的7种色光的光谱所组成。
色温就是专门用来量度光线的颜色成分的。
用以计算光线颜色成分的方法,是19世纪末由英国屋里学家洛德·凯尔文所创立的,他制定出了一整套色温计算法,而其具体界定的标准是基于以一黑体辐射器所发出的波长。
太阳能电池的工作原理实验太阳能电池,也被称为光伏电池,是一种能够将太阳能直接转化为电能的装置。
它是研究太阳能利用的重要手段之一,具有环保、可再生等特点。
本文将介绍太阳能电池的工作原理,并配合实验来帮助读者更好地理解。
一、太阳能电池的工作原理太阳能电池的工作原理基于光电效应,即将光能转化为电能的现象。
光电效应的基本原理是,当光线照射到半导体材料上时,光子能量会激发半导体中的电子,使其跃迁到导带中,从而产生电流。
太阳能电池通常由两种半导体材料构成:P型半导体和N型半导体,它们之间形成PN结。
P型半导体的主要成分是硼,它掺杂了一些三价元素,使得半导体带上带正电荷的空穴。
N型半导体的主要成分是磷,它掺杂了一些五价元素,使导带中带负电荷的自由电子增多。
当P型半导体和N型半导体接触时,形成的PN结上P型半导体的空穴与N型半导体的自由电子会发生重新组合,形成电子场。
二、太阳能电池实验操作步骤为了更好地理解太阳能电池的工作原理,我们可以进行一个简单的实验。
以下是实验的操作步骤:1. 准备材料:太阳能电池板、导线、电流计、蓄电池、荧光灯等。
2. 搭建电路:用导线连接太阳能电池板的正负极与电流计的正负极,再将电流计的负极连接到蓄电池的负极上。
3. 照射光线:将太阳能电池板放置在充足的阳光照射下,或者使用荧光灯照射太阳能电池板。
4. 观察测量:观察电流计示数,记录下光照条件和电流的数值。
5. 实验数据分析:对实验数据进行分析,了解太阳能电池的输出特性及影响因素。
三、太阳能电池实验结果及分析通过以上实验操作,我们可以观察到太阳能电池在光照条件下产生了电流,并根据测量结果进行数据分析。
实验结果可以呈现出以下几个特点:1. 光照强度与电流大小成正比:较高的光照条件下,太阳能电池产生的电流较大;反之,光照较弱时电流较小。
2. 光谱的影响:不同波长的光照对太阳能电池的产生电流的影响不同。
太阳能电池对可见光的响应最强,对紫外光和红外光的响应较弱,因此可见光下太阳能电池的效率最高。
太阳能电池的结构和工作原理太阳能电池是一种能够将太阳辐射能转化为电能的设备,我们日常生活中经常用到的太阳能路灯、太阳能水泵等都是基于太阳能电池的技术实现的。
那么,太阳能电池的结构和工作原理是怎样的呢?本文就来详细介绍。
一、太阳能电池的结构太阳能电池一般由单个或多个光伏电池组成,光伏电池是一种半导体器件,可以将太阳辐射能转化为电能。
在太阳能电池的结构中,主要包括以下几个部分:1. N型半导体层:N型半导体层是指掺有掺杂剂的半导体材料,掺杂剂会增加半导体材料中自由电子的浓度,使其成为带负电荷的材料。
2. P型半导体层:P型半导体层是与N型半导体层相对的一层,掺杂剂会增加半导体材料中空穴的浓度,使其成为带正电荷的材料。
3. 接触金属:接触金属通常被镀在P型半导体层的顶部,起到电极的作用。
4. 透明导电层:透明导电层通常被覆盖在N型半导体层的顶部,可以让太阳辐射能够进入太阳能电池内部,发生光伏现象,并输出电能。
5. 背接触电极:背接触电极通常被安装在N型半导体层的底部,起到电极的作用。
太阳能电池的结构可以用下图来表示:二、太阳能电池的工作原理太阳能电池是一种基于光伏效应的设备,当光子(即太阳辐射能)照射在太阳能电池的透明导电层上时,会激发透明导电层中的自由电子,并使其从N型半导体层向P型半导体层移动。
这个过程中,自由电子会与空穴复合,产生电能并输出到外部电路。
由于太阳能电池的正负极之间存在差电势,所以电能可以在外部电路中自由流动,从而产生电流。
还有一个与光伏效应相关的参数--光电转换效率。
光电转换效率是指太阳能电池将来自太阳的光子转化为电能的效率,它取决于太阳能电池的结构和材料特性。
目前太阳能电池的光电转换效率最高可以达到30%左右,但是由于成本等方面的限制,大部分太阳能电池的光电转换效率不超过20%。
三、太阳能电池的应用由于太阳能电池具有绿色环保、可再生等特点,越来越多的人开始意识到其重要性并将其应用于日常生活中。
一,基础知识(1)太阳能电池的发电原理太阳能电池是利用半导体材料的光电效应,将太阳能转换成电能的装置.●半导体的光电效应所有的物质均有原子组成,原子由原子核和围绕原子核旋转的电子组成.半导体材料在正常状态下,原子核和电子紧密结合(处于非导体状态),但在某种外界因素的刺激下,原子核和电子的结合力降低,电子摆脱原子核的束搏,成为自由电子.光激励核核电子空穴电子●PN 结合型太阳能电池电子对太阳能电池是由P 型半导体和N 型半导体结合而成,N 型半导体中含有较多的空穴,而P 型半导体中含有较多的电子,当P 型和N 型半导体结合时在结合处会形成电势当芯片在受光过程中,带正电的空穴往P 型区移动,带负电子的电子往N 型区移动,在接上连线和负载后,就形成电流..-+-N 型PN结+-++-+-+-N 区------PN 结合+-++-+-+-电势++++++P 区-+-P 型(2)太阳能电池种类硅半导体结晶类非晶类单晶硅电池多晶硅电池非晶硅电池转换效率:17%转换效率:14%转换效率:6-7%空间用民用民用※在现在的太阳能电池产品中,以硅半导体材料为主,其中又以单晶硅和多晶硅为代表.由于 其原材料的广泛性,较高的转换效率和可靠性,被市场广泛接受.非晶硅在民用产品上也有 广泛的应用(如电子手表,计算器等),但是它的稳定性和转换效率劣于结晶类半导体材料. 化合物太阳能电池由于其材料的稀有性和部分材料具有公害,现阶段未被市场广泛采用.※现在太阳能电池的主流产品的材料是半导体硅,是现代电子工业的必不可少的材料,同时 以氧化状态的硅原料是世界上第二大的储藏物质.※京瓷公司早在上世纪的八十年代就认识到多晶硅太阳能电池的光阔前景和美好未来,率先 开启多晶硅太阳能电池的工业化生产大门.现在已经是行业的龙头,同时多晶硅太阳能电 池也结晶类太阳能电池的主流产品(太阳能电池的 70%以上).(3)多晶硅太阳能电池的制造方法破锭(150mm *155mm )N 极烧结 电极 印刷 ( 正 反压芯片串,并联,形成设计需要 的 电 流( 一片芯 片 的 电 封 装 工 艺组配叠片层压玻璃(防冲 EVA(缓冲) 芯片(发电) EVA(缓冲) 背垫(防湿)模拟光源,输出测试边框安装(4)太阳能电池关连的名称和含义●转换效率太阳能电池的转换效率是指电池将接收到的光能转换成电能的比率输出功率 转换效率 = 100%太阳能电池板被照射的太阳能※标准测试状态 由于太阳能电池的输出受太阳能的辐射强度,温度等自然条件的影响,为了表述太 阳能电池的输出和评价其性能,设定在太阳能电池板的表面温度为 25 度,太阳能辐 射强度为 1000 w/㎡、分光分布 AM1.5 的模拟光源条件下的测试为标准测试状态.大气层AM1 θ=90 度AM1.5(标准测定状态) 地面θ=41.8 度0 度 25 度 50 度 75 度分光分布小知识晶硅类理论转换效率极限为 29%,而现在的太阳能电池的转换效率为 17%~19%,因此,太 阳能电池的技术上还有很大的发展空间.●太阳能电池输出特性【太阳能电池电流---电压特性(I-V 曲线)】短路电流 I sc最佳输出动作电流 电流Ipm最大输出动作电压 V pm最佳动作点 最大输出最大输出(PM):最大输出电压(Vpm) 最大输出电流( Ipm ) 开路电压(Voc ):开路状态的太阳能电池端子间的电压 短路电流(Isc ):太阳能电池端子间的短路电流 最大输出电压(V pm):最大输出状态时的动作电压 最大输出电流(Ipm ):最大输出状态时的动作电流电压开路电压 Voc【日照强度变化和 I-V 曲线】【温度变化和 I-V 曲线】1000W/㎡ 800W/㎡ 600W/㎡电流电流400W/㎡电压电压【日照强度—最大输出特性 】【温度-最大输出特性】120最 100 大80输 60 出 40 %20200 400 600 800 1000 1200日照强度(W/㎡)120最100大 80 输 60出 %20-25255075100温度(度)●太阳能电池的短路电流和日照强度成正比●太阳能电池对环境的贡献①对防止地球温暖化,减轻对地球环境的贡献●太阳能电池的输出随着池片的表面温度上升而下降,●输出随着季节的温度变化而变化●在同一日照强度下,冬天的输出比夏天高从太阳能发电系统排放的二氧化碳,即使是考虑其生产过程的排放量,也绝对少于传统的燃料发电设备,是防止地球温暖化的环保设备.同时在发电时,不排放氧化硫,氧化氮等污染物,减轻了对环境的压力.例:3kW 太阳能发电系统对环境污染物的削减量Co2NOxSOx石油替代量:729L/年减排放CO2能力:540kg-C/ 年森林面积换算:5544 ㎡②对能源和节能的贡献太阳能电池2。
太阳能电池的分类太阳能电池的分类介绍太阳能电池依据所用材料的不同,太阳能电池可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池、有机太阳能电池、塑料太阳能电池,其中硅太阳能电池是进展最成熟的,在应用中居主导地位。
1、硅太阳能电池硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。
单晶硅太阳能电池转换效率最高,技术也最为成熟。
在试验室里最高的转换效率为24.7%,规模生产时的效率为15%(截止2023,为18%)。
在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其成本很困难,为了节约硅材料,进展了多晶硅薄膜和非晶硅薄膜作为单晶硅太阳能电池的替代产品。
多晶硅薄膜太阳能电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池,其试验室最高转换效率为18%,工业规模生产的转换效率为10%(截止2023,为17%)。
因此,多晶硅薄膜电池不久将会在太阳能电池市场上占据主导地位。
非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。
但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。
假如能进一步解决稳定性问题及提高转换率问题,那么,非晶硅太阳能电池无疑是太阳能电池的主要进展产品之一。
2、多晶体薄膜太阳能电池多晶体薄膜电池硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严峻的污染,因此,并不是晶体硅太阳能电池最抱负的替代产品。
3、纳米晶太阳能电池纳米晶体化学能太阳能电池是新近进展的,优点在于它廉价的成本和简洁的工艺及稳定的性能。
其光电效率稳定在10%以上,制作成本仅为硅太阳电池的1/5~1/10.寿命能达到20年以上。
此类电池的讨论和开发刚刚起步,不久的将来会逐步走上市场。
4、有机薄膜太阳能电池有机薄膜太阳能电池,就是由有机材料构成核心部分的太阳能电池。
太阳能电池
太阳能电池又称为“太阳能芯片”或光电池[1],是一种利用太阳光直接发电的光电半导体薄片。
它只要被光照到,瞬间就可输出电压及电流。
在物理学上称为太阳能光伏(PV),简称光伏。
太阳能电池发电是根据特定材料的光电性质制成的。
黑体(如太阳)辐射出不同波长(对应于不同频率)的电磁波,如红、紫外线,可见光等等。
当这些射线照射在不同导体或半导体上,光子与导体或半导体中的自由电子作用产生电流。
射线的波长越短,频率越高,所具有的能量就越高,例如紫外线所具有的能量要远远高于红外线。
但是并非所有波长的射线的能量都能转化为电能,值得注意的是光电效应与射线的强度大小无关,只有频率达到或超越可产生光电效应的阈值时,电流才能产生。
能够使半导体产生光电效应的光的最大波长同该半导体的禁带宽度相关,譬如晶体硅的禁带宽度在室温下约为1.155eV,因此必须波长小于1100nm的光线才可以使晶体硅产生光电效应。
太阳电池发电是一种可再生的环保发电方式,发电过程中不会产生二氧化碳等温室气体,不会对环境造成污染。
按照制作材料分为硅基半导体电池、CdTe薄膜电池、CIGS薄膜电池、染料敏化薄膜电池、有机材料电池等。
其中硅电池又分为单晶电池、多晶电池和无定形硅薄膜电池等。
对于太阳电池来说最重要的参数是转换效率,目前在实验室所研发的硅基太阳能电池中,单晶硅电池效率为25.0%,多晶硅电池效率为20.4%,CIGS薄膜电池效率达19.6%,CdTe薄膜电池效率达16.7 %,非晶硅(无定形硅)薄膜电池的效率为10.1% [2]。
太阳能电池的结构图
太阳电池是一种可以将能量转换的光电元件,其基本构造是运用P型与N型半导体接合而成的。
半导体最基本的材料是“硅”,它是不导电的,但如果在半导体中掺入不同的杂质,就可以做成P型与N型半导体,再利用P型半导体有个空穴(P型半导体少了一个带负电荷的电子,可视为多了一个正电荷),与N型半导体多了一个自由电子的电位差来产生电流,所以当太阳光照射时,光能将硅原子中的电子激发出来,而产生电子和空穴的对流,这些电子和空穴均会受到内建电位的影响,分别被N型及P型半导体吸引,而聚集在两端。
此时外部如果用电极连接起来,形成一个回路,这就是太阳电池发电的原理。
简单的说,太阳光电的发电原理,是利用太阳电池吸收0.4μm~1.1μm波长(针对硅晶)的太阳光,将光能直接转变成电能输出的一种发电方式。
由于太阳电池产生的电是直流电,因此若需提供电力给家电用品或各式电器则需加装直/交流转换器,换成交流电,才能供电至家庭用电或工业用电。
太阳能电池的充电发展
太阳能电池应用在消费性商品上,大多有充电的问题,过去一般的充电对象采用镍氢或镍镉干电池,但是镍氢干电池无法抗高温,镍镉干电池有环保污染的问题。
近
年来超级电容发展快速,容量超大,面积反缩小,加上价格低廉,因此有部份太阳能产品开始改采超级电容为充电对象,因而改善了太阳能充电的许多问题:
1.充电较快速,
2.寿命长5倍以上,
3.充电温度范围较广,
4.减少太阳能电池用量(可低压充电)。
太阳电池材料种类
第二代薄膜太阳能电池以薄膜制程来制造电池。
种类可分为碲化镉(Cadmium Telluride CdTe)、铜铟硒化物(Copper Indium Selenide CIS)、铜铟镓硒化物(Copper Indium Gallium Selenide CIGS)、砷化镓(Gallium arsenide GaAs)
第三代电池与前代电池最大的不同是制程中导入有机物和纳米科技。
种类有光化学太阳能电池、染料光敏化太阳能电池、高分子太阳能电池、纳米结晶太阳能电池。
第四代则是针对电池吸收光的薄膜做出多层结构。
某种电池制造技术。
并非仅能制造一种类型的电池,例如在多晶硅制程,既可制造出硅晶版类型,也可以制造薄膜类型。
单晶硅太阳能电池
以单晶硅为原料,当前采用较多的生产工艺是在P型硅片上晶硅磷扩散制作PN结,用高纯的硅原料(纯度要求不低于99.9999%)通过直拉法或者是区熔法制造单晶硅棒,同时掺杂少量硼元素,再切成薄片,经过清洗制绒、磷扩散、刻蚀去边结、PECVD法镀减反射膜、丝网印刷制作电极等工序制作成太阳能电池。
少量高效单晶硅电池采用N型硅片上进行硼扩散制作PN结。
3.修角:该工艺只适用于单晶,目的是将圆柱形的单晶硅棒磨为近长方体形,
使切出的硅片接近方形。
4.切片:用多线锯(金刚石线)将单晶硅棒或多晶硅锭切为200-300μm厚的
薄片,目前工业上已大规模使用200μm左右的硅片进行生产。
5.清洗制绒:首先用碱液(一般为80摄氏度以上的NaOH溶液)腐蚀机械加工
中造成硅片的损伤,然后分别用碱液(单晶硅片)或酸液(多晶硅片)制备出用于减反射的绒面,最后用甩干机甩干。
6.扩散制结:目前工业上用的硅片主要为p型片,因此需要通过扩散磷(P)来形
成PN结,扩散一般通过扩散炉进行,工艺温度高于900摄氏度,但目前已经在开发低温的扩散工艺。
如果是使用n型片制备太阳电池,则需要扩散硼
(B)。
7.二次清洗:因为在扩散工艺中会形成非活性的磷硅玻璃,因此需要通过氢氟
酸(HF)腐蚀掉。
8.制备减反射膜:工业中采用等离子体增强化学气相沉积(PECVD),制备氮化
硅SiN x减反射膜。
9.印刷电极:通过丝网印刷(Screen printing)制备前后电极,前电极一般用银
浆,后电极用银铝浆,而背面场则用铝浆印刷而成。
10.烧结:通过烧结炉的高温烧结,使前电极烧穿前表面的氮化硅减反射膜,n
型层形成良好的欧姆接触,而背面的铝扩散入硅中,在背表面形成p+的重掺区,从而形成背表面场。
目前市场上大量产的单晶与多晶硅的太阳电池平均效率约在15%上下,也就是说,这样的太阳电池只能将入射太阳光能转换成15%可用电能,其余的85%都浪费成无用的热能。
所以严格地说,现今太阳电池,也是某种型式的“浪费能源”。
当然理论上,只要能有效的抑制太阳电池内载子和声子的能量交换,换言之,有效的抑制载子能带内或能带间的能量释放,就能有效的避免太阳电池内无用的热能的产生,大幅地提高太阳电池的效率,甚至达到超高效率的运作。
而这样简易的理论构想,在实际的技术上,却可以用不同的方法来执行这样的原则。
超高效率的太阳电池(第三代太阳电池[3])的技术发展,除了运用新颖的元件结构设计,来尝试突破其物理限制外,也有可能因为新材料的引进,而达成大幅增加转换效率的目的。
薄膜太阳电池
在薄膜电池技术中,近年来BIPV(Building Integrated Photo Voltaic)即建筑物集成太阳能电池技术特别引人注目。
此技术把薄膜电池应用到建筑物的围护结构如屋顶、天窗、外观、门窗等部分的建筑材料之中;对于使用帷幕墙特别是玻璃幕墙的建筑物,BIPV更可结合在帷幕墙的材料之中。
故其相对于非集成系统的优点,在于初投资可被因节省建材和劳工而抵消。
被认为是太阳能电池工业中增长最大的技术之一。
调查表明,CIGS可弯曲模块是BIPV封装工业增长的最大推动力。
[4]
染料敏化太阳电池
染料敏化太阳能电池(Dye-sensitized solar cell,DSSC)是最近被开发出来的一种崭新的太阳电池。
DSsC也被称为格雷策尔电池,因为是在1991年由格雷策尔等。