CNN0717
- 格式:pdf
- 大小:156.97 KB
- 文档页数:6
1 College Diet大学食谱With all their classes, tuition bills and homework, many college students don't make eating right a priority. 大学生们上课、交学费、做功课,却不把正确饮食当回事。
When I have a lot of tests, or I have to do a lot of studying, I have to get something fast.For lunch, it's really whatever I can grab. I usually snack. 我的确是抓到什么吃什么。
经常吃零食。
Fast foods like French fries, chicken tenders and hamburgers, are college dining halls most popular items, according to recent surveys. Carol Kelley, a nutritionist at Emory University, gave us a lesson in college diets, 101. 据最新调查发现,象法国炸薯条、嫩鸡肉和汉堡包那样的快餐是大学食堂最受常见的食品。
爱莫利大学的营养学家卡罗尔·凯利给我们上一堂大学饮食的初级课。
Students will choose foods that are quick and easy to eat, on the run, and sometimes that comes at the expense of having more balance with their diet.卡罗尔·凯利学生,总会选些快而简单的食品来吃,边走边吃,但有时候,这是以饮食失衡为代价的。
美国有线电视新闻网(CNN)节目编排策略分析闻名全球的美国有线电视新闻网CNN(Cable News Network),其电视网络覆盖212个国家和地区,全球42个分部。
它不仅开创了世界上第一个全天候24小时滚动播送新闻的频道,而且它的运作方式和编排特色对中国新闻频道的建立也提供了有益的经验。
一、CNN概述1980年6月,记者出身的特德·特纳买下亚特兰大一家濒临倒闭的小电视台,创办了CNN,向美洲国家24小时不间断播放电视新闻。
1982年,CNN创办了简明新闻频道(Headline News),经常抢到突发事件的独家新闻,并进行及时、详尽的现场报道。
在刚成立的几年内,由于美国市场已被大电视网垄断,CNN连续亏损。
直到1986年,CNN在报道美国航天飞机挑战者号中脱颖而出,在竞争中站住了阵脚。
此后,在里根遇刺、美军入侵巴拿马、拆除柏林墙、苏联解体、波黑战争等重大新闻事件上,CNN率先做的现场报道都抢尽了风头。
真正值得大书特书的是1991年的海湾战争。
当时,伊拉克把巴格达所有外国记者都驱逐出境,唯独留下CNN的记者报道海湾战争。
战争期间,CNN迅速、及时、详尽地报道了多国部队在伊拉克的“沙漠风暴”行动,成为各国首脑和舆论界了解实际战况的主要渠道,甚至有人称:“海湾战争有3个参战者——布什、萨达姆和CNN。
” 1985年,CNNI国际频道开始面向欧洲24小时播出,迈出了CNN国际化的重要一步。
值得注意的是,这年成为CNN第一个盈利年。
而CNN的国际化步伐,采取的是国际化与本地化两条腿走路的方针。
比如,1987年它建立了北京记者站,随后又设立了马尼拉、汉城、曼谷、香港等记者站,并于1995年在香港设立了亚洲地区制作中心,在CNNI亚洲版当中,关于亚洲的报道日益增加。
本地新闻的增加,吸引了大量的本地观众。
而1988年开办了西班牙语节目,1997年开办了24小时西班牙语频道,也体现了CNN通过吸引特定人群而扩大国际市场和影响的策略。
卷积神经网络(Convolutional Neural Network,CNN)和循环神经网络(Recurrent Neural Network,RNN)是两种广泛应用于深度学习领域的神经网络模型。
它们分别擅长处理图像和语音等序列数据,但在某些任务中单独使用时可能会存在一些局限性。
因此,研究者们开始探索将CNN和RNN结合起来,以期望能够充分发挥它们各自的优势,实现更好的性能表现。
首先,我们来介绍一下CNN和RNN的基本原理和特点。
CNN主要用于处理图像数据,它通过卷积和池化操作提取输入数据的特征,并且具有平移不变性。
这意味着即使输入数据发生了平移,CNN依然能够识别出相同的特征。
RNN则适用于处理序列数据,它具有记忆能力,能够捕捉数据中的时间相关性。
这使得RNN在自然语言处理和语音识别等任务中表现出色。
然而,单独使用CNN或RNN也存在一些问题。
比如,CNN在处理长距离依赖关系的序列数据时表现不佳,而RNN在处理图像等空间结构数据时也存在局限性。
因此,将CNN和RNN结合起来成为了一个值得研究的课题。
一种常见的CNN和RNN的结合方法是将CNN用作特征提取器,然后将提取出的特征序列输入到RNN中进行处理。
这种方法被广泛应用于图像描述生成和视频分类等任务中。
通过这种结合方法,CNN可以有效地提取出输入数据中的空间特征,而RNN则能够捕捉这些特征之间的时间相关性,从而实现更好的性能表现。
除了将CNN作为特征提取器外,还有一些其他的CNN和RNN结合方法。
例如,一些研究者提出了将CNN和RNN进行融合的模型,使得两者能够在同一网络中进行端到端的训练。
这种方法能够充分发挥CNN和RNN各自的优势,并且在一些任务中取得了很好的效果。
另外,还有一些研究者提出了一些改进的CNN和RNN结合方法,以进一步提高模型的性能。
例如,一些研究者提出了一种叫做门控卷积网络(Gated Convolutional Network,GCN)的结合方法,它结合了CNN的卷积操作和门控机制,能够有效地处理长距离依赖关系的序列数据。
卷积神经网络在3D图像分析中的应用教程1. 介绍卷积神经网络(CNN)是一种在图像识别和分析领域十分有效的深度学习模型。
它在二维图像处理中得到了广泛的应用,但在三维图像分析中的应用也日益增多。
本文将介绍卷积神经网络在3D图像分析中的应用,帮助读者了解该领域的基本知识和技术。
2. 3D图像数据在3D图像分析中,我们通常处理的是由多张二维图像叠加而成的三维图像数据。
这种数据通常来自于医学影像学、地质勘探、工程设计等领域。
与二维图像相比,3D图像数据更为复杂,因此需要更加复杂的模型来进行分析和处理。
3. 卷积神经网络卷积神经网络是一种深度学习模型,它模拟了人类视觉系统的工作原理,能够有效地处理图像数据。
CNN通过多层卷积和池化操作来提取图像的特征,然后通过全连接层进行分类或回归。
在3D图像分析中,我们可以借助CNN来提取三维图像数据的特征,并进行分类、分割或其他任务。
4. 3D卷积操作与二维卷积不同,3D卷积操作需要考虑图像数据的深度维度。
在CNN中,我们可以使用3D卷积核来提取三维图像数据的特征。
3D卷积操作能够有效地捕捉到图像数据中的空间信息,从而提高模型的性能。
5. 3D池化操作类似于卷积操作,3D池化操作也需要考虑图像数据的深度维度。
通过3D池化操作,我们可以降低图像数据的维度,并保留重要的特征信息。
这有助于减少模型的计算量,并提高模型的泛化能力。
6. 3D图像分析任务在3D图像分析中,我们通常会面临分类、分割、检测等任务。
通过构建适当的CNN模型,我们可以有效地解决这些任务。
例如,医学影像学领域中的肿瘤检测、器官分割等任务都可以借助CNN来实现。
7. 数据预处理在进行3D图像分析之前,我们通常需要对数据进行预处理。
这包括数据增强、标准化、降噪等操作。
通过合理的数据预处理,我们可以提高模型的性能和泛化能力。
8. 模型训练与优化与二维图像处理类似,我们可以使用反向传播算法来训练3D CNN模型。
cnn newsCNN NewsIntroduction:CNN News is a renowned international news organization that provides up-to-date and reliable news coverage. Established in 1980, CNN has grown to become one of the most trusted sources of news worldwide. With its extensive network of journalists and correspondents, CNN ensures that people are informed about the latest happenings across the globe. This article will delve into the history, impact, and future of CNN News.History of CNN:CNN, also known as the Cable News Network, was founded by media mogul Ted Turner. It was the first television channel to provide 24-hour news coverage. Prior to CNN, news channels aired programs based on specific time slots, leaving a void in news reporting during off-peak hours. With the launch of CNN, news became accessible around the clock, revolutionizing the way people stayed informed.The Impact of CNN:1. Breaking News: CNN introduced the concept of breaking news, which refers to the coverage of events as they happen. This real-time reporting, often accompanied by live footage, has helped CNN become a go-to source for immediate information during crises, natural disasters, and major events.2. Global Reach: CNN has a vast network of reporters and correspondents stationed in different parts of the world, allowing for comprehensive global news coverage. This international perspective has helped CNN build a diverse and informed audience.3. Investigative Journalism: CNN is known for its high-quality investigative journalism. It has consistently exposed corruption, fraud, and human rights violations worldwide. Through in-depth investigations, CNN contributes to holding those in power accountable for their actions.4. Political Coverage: CNN has played a significant role in shaping political discourse, both in the United States and around the world. It covers elections, political debates, andpolicy discussions, providing viewers with insights into the political landscape.5. Technological Innovations: CNN has always been at the forefront of technological advancements. From the evolution of mobile news apps to the integration of virtual reality in reporting, CNN continues to embrace new technologies to enhance the news viewing experience.The Future of CNN:As the media landscape evolves, CNN faces various challenges and opportunities. Here are some aspects that may shape the future of CNN News:1. Competition: With the rise of online news outlets and social media platforms, traditional media organizations like CNN face stiff competition in attracting and retaining viewers. Adapting to this changing landscape by expanding digital platforms and integrating with social media will be crucial for CNN's future success.2. Artificial Intelligence: CNN has already started experimenting with the integration of artificial intelligence (AI)in news reporting. AI-powered algorithms can help analyze large volumes of data, personalize news feeds, and even assist in fact-checking. By embracing AI, CNN can enhance its operations and offer a more tailored news experience to its viewers.3. Focus on Digital Presence: CNN has recognized the importance of a strong digital presence. Through its website, mobile apps, and social media accounts, CNN aims to engage with its audience beyond traditional television broadcasting. Leveraging digital platforms to deliver news content, interactive features, and live streaming will be vital for CNN's future growth.4. Diversification of Content: To cater to the changing preferences of viewers, CNN may need to diversify its content offerings. This could include producing more long-form documentaries, podcasts, and interactive multimedia content. By expanding into different formats, CNN can reach a wider audience and remain relevant in the digital age.Conclusion:CNN News has established itself as a leading news organization, renowned for its real-time reporting, globalreach, and investigative journalism. Despite the evolving media landscape, CNN's commitment to delivering accurate and timely news remains unwavering. By embracing new technologies, focusing on its digital presence, and diversifying its content, CNN is poised to continue its legacy as a trusted source of news for years to come.。
CNN⽹络的基本介绍(三)七、全连接层全连接层在整个⽹络卷积神经⽹络中起到“分类器”的作⽤。
如果说卷积层、池化层和激活函数等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的特征表⽰映射到样本的标记空间的作⽤。
⼀段来⾃知乎的通俗理解: 从卷积⽹络谈起,卷积⽹络在形式上有⼀点点像咱们正在召开的“⼈民代表⼤会”。
卷积核的个数相当于候选⼈,图像中不同的特征会激活不同的“候选⼈”(卷积核)。
池化层(仅指最⼤池化)起着类似于“合票”的作⽤,不同特征在对不同的“候选⼈”有着各⾃的喜好。
全连接相当于是“代表普选”。
所有被各个区域选出的代表,对最终结果进⾏“投票”,全连接保证了receiptive field 是整个图像,既图像中各个部分(所谓所有代表),都有对最终结果影响的权利。
在实际使⽤中,全连接层可由卷积操作实现:对前层是全连接的全连接层可以转换为卷积核为1*1的卷积;⽽前层是卷积层的全连接层可以转换为卷积核为前层卷积输出结果的⾼和宽⼀样⼤⼩的全局卷积。
全连接层实现原理 在卷积神经⽹络的最后,往往会出现⼀两层全连接层,全连接⼀般会把卷积输出的⼆维特征图转化成⼀维的⼀个向量,这是怎么来的呢?⽬的何在呢? 最后的两列⼩圆球就是两个全连接层,在最后⼀层卷积结束后,进⾏了最后⼀次池化,输出了20个12*12的图像,然后通过了⼀个全连接层变成了1*100的向量。
这是怎么做到的呢,其实就是有20*100个12*12的不同卷积核卷积出来的,我们也可以这样想,就是每个神经元的输出是12*12*20个输⼊值与对应的权值乘积的和。
对于输⼊的每⼀张图,⽤了⼀个和图像⼀样⼤⼩的核卷积,这样整幅图就变成了⼀个数了,如果厚度是20就是那20个核卷积完了之后相加求和。
这样就能把⼀张图⾼度浓缩成⼀个数了。
⼋、卷积神经⽹络卷积神经⽹络是⼀种层次模型,其输⼊是原始数据,如RGB图像、⾳频等。
卷积神经⽹络通过卷积(convolution)操作、汇合(pooling)操作和⾮线性激活函数的映射等⼀系列操作的层层堆叠,将⾼层语义信息逐层由原始信息中抽取出来,逐层抽象。
CNN,News:Russian,plane,crash,in,Sinai:,A,midair,break-up篇一:文稿`,,`,,`,(),()(-)``,`,`,()``,,,``,,""()(-),,,()?`,(),,20()(-),,,,`(),--`()(-),,10(),,,,`(),`,`()``,,`,,(),`2001,`2019,,$154,700$219,0002019 `,?537,,`,,```,,8,7,,,--?-,,,,,`?;,;,;,()(),?,,,?`,,`,``,`(),,1964,-, 100,,(),,,,,,,,,,,--,(),,`,`--`,-,,,`,`,,`,,--`-,```,,--,,,(),,`-,,--,`,,,,,","()""()(-),,,`40,`,,"""",--()--,,,`"",""`,,(),`,,`篇二:20191014()--14,2019,(),`,`,,`,,`-``()(-),,,(),``()(-),`,`8,,,,(),(-)( ),`,,1990,3,18`400(-),-,()(-),",,,,`,`,,$1$7002019()--,,()(-)14,1066, -1947,-16621964,,(),()(-),700,"",,``,()()`,?,,?`,`,`()`,,`,,`,()``,`, ,,,,`--,,?,,,?,--,`90,,,?`,,,,,,,`,,,,,`,,`,,,?,,,,,,,(),()(-)`""`""" ,`"`,篇三:100篇新闻政治:美国因安全问题关闭在也门的大使馆,,’’’’,’美国政府关闭其驻也门的中东国家,那就是由于安全方面的顾虑。
CNN:改变世界的10个科技发明CNN:改变世界的10个科技发明【旧金山之声()转载】一些创新技术产品如智能手机,或一项小小的新发明,都会使人们的生活更轻松。
近日CNN列出了近年来影响人们生活的10个科技及相关领域的新发明。
在这些发明中,有的已经研制成功,有些仍在研制过程中,尚需几年方可上市。
以下这十个发明,有的可以为发展中国家的城市提供能源,有的可以协助研究和救援团体诊断疾病,有的甚至可以帮助盲人获得一些视力。
这些发明都有一个共同点:其解决问题的方式是全新的。
也许在未来的某一天,这些发明家的名字也会像人们所熟知的发明家贝尔(AlexanderGrahamBell)和爱迪生(ThomasEdison)一样,出现在未来的教科书中。
1、阿格斯II型视网膜假体系统阿格斯II型视网膜假体系统,由总部位于加州的第二视觉公司开发,在2011年获得了CE标志。
2013年2月,阿格斯II型收到美国食品和药物管理局的营销批准。
这种视网膜假体系统能够为盲人获得部份视力。
这套装置包括:通过外科手术在患者的眼睛上安装上一种人工视网膜,天线和一些电子设备,将它们与在外部的眼镜连接起来,眼镜上安装了微型视频处理器,微型相机和电缆。
连接的眼镜、无线发射器和一台单独的微型无线计算机。
首先,眼镜上的摄像机捕捉到外部景象,然后这些经过计算机处理的图像再经由无线发射器传送到植在患者眼球表面的人造视网膜上,并转换为电脉冲信号;接着,人造视网膜上的电极会刺激视网膜的视觉神经,继续将信号沿视神经传送到大脑。
最终的结果是恢复一些视力。
2、阿特拉斯人形机器人阿特拉斯人形机器人是一个令人印象深刻的发明。
它身高6英尺2英吋,重330磅。
可以走路,抬重物,并且能够更换其手中的定制附件,还可以在没有直接的人力监督之下完成任务。
这一机器人将来或许能像人一样在危险环境下进行救援工作。
由波士顿动力公司为美军研制“阿特拉斯”是当今世界的最先进的人形机器人,它由头部、躯干和四肢组成,和人类的行走方式一样,均为双腿直立行走。
深度学习——带你通俗理解卷积神经⽹络(CNN)卷积神经⽹络(CNN)基础知识⽂章⽬录1.前⾔ 如果说深度神经⽹络模型中的“明星”是谁?那么⾮卷积神经⽹络莫属。
下⾯给⼤家简单介绍⼀下CNN的基础知识。
其中CNN基础主要涉及卷积层、池化层、全连接层在卷积神经⽹络扮演的⾓⾊、实现的具体的功能和⼯作原理。
2.卷积层 1.主要作⽤:对输⼊的数据进⾏特征提取。
2.⼯具:卷积核——完成对数据提取的功能。
3.卷积核是怎么处理数据数据的呢?我们知道卷积核其实是⼀个指定窗⼝⼤⼩的扫描器,通过⼀次⼜⼀次地扫描输⼊的数据,来提取数据中的特征。
那么在通过卷积核处理后,就可以识别出图像中的重要特征了。
4.下⾯讲解卷积核的定义:⼀、 假定有⼀张32* 32*3的输⼊图像,其中32 * 32是图像的⾼度和宽度,3是指图像具有R,G,B三个⾊彩通道。
⼆、我们定义⼀个5 * 5 * 3的卷积核 ,其中3是指卷积核的深度,对应之前输⼊图像的三个彩⾊通道。
(⽬的:当卷积核窗⼝在输⼊图像上滑动时,能够⼀次在三个彩⾊通道上同时进⾏卷积操作)三、 常⽤的卷积核5 *5和3 *3我们知道了卷积核后,那么怎么进⾏卷积操作呢? 现在我们定义步长为对卷积核的窗⼝进⾏滑动 下图为⼀个步长为2的卷积核经过⼀次滑动窗⼝位置变化情况 仔细观察不难发现,在上⾯的输⼊图像的最外界多了⼀圈全为0的像素,这其实就是⼀种⽤于提升卷积效果的边界像素扩充的⽅法共有两种⽅式进⾏填充Same和Valid1.Same在输⼊图像的最外界加上指定层数的值全为0的像素边界:为了让输⼊图像的全部像素能被滑动窗⼝捕捉。
2.Valid直接对输⼊图像进⾏卷积,不对输⼊图像进⾏任何的前期处理和图像填充。
缺点就是会导致部分像素点不嫩被滑动窗⼝捕捉。
通过对卷积过程的计算,可以得出卷积通⽤公式⽤于计算输⼊图像经过⼀轮卷积操作后的输出图像的宽度和⾼度的参数 其中W,H分别代表图像的宽度和⾼度的值;下标input代表输⼊图像的相关参数;下标output表⽰输出图像的相关参数,filter代表卷积核的相关参数,S代表卷积的步长,P(padding)代表在图像边缘增加的边界像素层数。
基于CNN的图像分类与识别算法研究随着计算机视觉技术的不断发展,在各个领域中,图像分类与识别也变得越来越重要。
基于卷积神经网络(Convolutional Neural Network, CNN)的图像分类与识别算法近年来发展迅速,逐渐成为研究热点。
一、CNN的原理与特点CNN是一种前馈神经网络,主要用于处理具有类似网格结构的图像数据。
它拥有特殊的卷积层、池化层等结构,可对图像进行特征提取和降维等处理,使得模型可以自动学习数据的特征,进而准确地进行分类和识别。
与传统的神经网络相比,CNN有两个特点,一是共享权值;二是局部连接。
所谓共享权值,即在卷积层的每个卷积核中,该卷积核的权值是共享的,以减少需要训练的参数数量。
而局部连接则是指在卷积层的每个卷积核中,只连接一小块区域的像素,避免全连接带来的过拟合问题。
二、基于CNN的图像分类与识别算法的流程基于CNN的图像分类与识别算法的流程一般包括以下几个步骤:1.数据预处理:将原始数据按照一定规则进行预处理,例如缩放、旋转、裁剪、增强等。
这些操作可以增加数据量、保证数据质量,提高模型的泛化能力。
2.网络构建:建立基于CNN的神经网络模型。
模型的构建包括卷积层、池化层、全连接层、激活函数等,每一层都有自己的参数和具体实现方式,需要仔细地调参。
3.训练模型:使用大量有标记的图像数据进行训练。
训练的过程中,需要使用反向传播算法不断优化模型参数,使得整个模型可以更加准确地分类和识别图像。
4.验证模型:使用独立的数据集对模型进行验证,以保证模型可以泛化到未知数据中。
验证的方式一般是通过准确率等评估指标来衡量。
5.应用模型:将已经训练好的模型应用到实际场景中,例如图像分类、目标检测、人脸识别等。
三、CNN在图像分类与识别中的应用基于CNN的图像分类与识别算法已经在很多领域中得到应用,例如:1.自动驾驶:自动驾驶需要实时地对路面图像进行分类和识别,以判断行驶路径和是否存在障碍物等。
CNN推荐的10项上海街头小吃(英文版)CNN推荐的10项上海街头小吃A budget Shanghai snack for hairy crab fans.1. Xie ke huang (crab shell pie, 蟹壳黄)Why we love it: Although those hairy crustaceans from Yangcheng lake aren’t available year-round, xie ke huang, aka the poor Shanghainese man’s hairy crab, can be found around the town in any season.Baked in a clay oven until golden brown, these little oval pies are stuffed with sweet or savory fillings. The name is inspired by its appearance -- freshly baked xie ke huang look like crispy golden crab shells.Where to get it: We've been coming back for Wuyuan Bingjia’s savory xie ke huang for years, despite the grouchy service.Try the cong you-flavored ones (spring onion and lard, RMB 1) for the most authentic Shanghainese taste.Wuyuan Bingjia (吴苑饼家), 255 Yanping lu, near Kangding Lu 延平路255号, 近康定路,+86 21 6256 5556, 6 a.m.-11 p.m.These yummy buns are well worth the blisters on your tongue.2.Sheng jian (fried bun, 生煎)Why we love it: It’s hard to resist succulent pork buns, especially when they are fried and garnished withfresh spring onion and toasted sesame.They taste best just out of the pan -- totally worth the blisters on your tongue.Where to get it: Xiao Yang Sheng Jian is the best-known fried bun restaurant in town, but our favorite place is a little joint named Bu Cuo Sheng Jian Wang on the corner of Fujian Zhong Lu and Guangdong Lu. For RMB 6, you can get four sinfully delicious buns.Bu Cuo Sheng Jian Wang (不错生煎王), 90 Fujian Zhong Lu, near Guangdong Lu 福建中路90号, 近广东路, +86 21 6373 1944, 7 a.m.-8 p.m.Kick-start your day with a filling rice ball.3. Ci fan (rice ball, 粢饭)Why we love it: Ci fan is one of the most popular breakfast foods in Shanghai. These glutinous rice balls have everything you ever needed for an energetic start to your day.Typical stuffing includes a you tiao (fried dough stick), pickled vegetables, pork floss, white sugar and sometimes eggs and ham. Tastes best when hot.Where to get it: Hit the corner of Nanyang Lu and Xikang Lu for the most authentic Shanghainese ci fan.With a secret homemade meat sauce and delicious fried egg stuffing, this 20-year-old ci fan stand is hands-down the best in Shanghai.100 Nanyang Lu, near Xikang Lu 南阳路100号, 近西康路, no telephone, around 7-10a.m.Shanghainese deep-fried pork chop usually come with a couple of rice cakes.4. Pai gu nian gao (pork chop with rice cakes, 排骨年糕)Why we love it: The best part of this Shanghainese dish is neither the deep-fried pork chop nor the sweet-soy sauce glaze, it’s the nian gao.Made of glutinous rice flour, nian gao has a compact texture that seals the subtle, fragrant taste of sticky rice from any heavy sauce.Where to get it: Proudly naming itself after the dish, Xiandelai’s pork chops and rice cakes are a must-try. Remember to sweet-talk the ayi behind the counter to giving you a freshly fried serving because it tastes like heaven while piping hot.Xiandelai Pai Gu Nian Gao (鲜得来排骨年糕), 9 Yandang Lu, near Xing’an Lu 雁荡路9号,近兴安路, +86 21 6386 8377, 7 a.m.-9 p.m.Nothing tastes more Shanghai than these porkydumplings.5.Xiaolongbao(soup dumpling, 小笼包)Why we love it: RMB 4 usually gets you eight of these velvety and delicate Shanghai classics. The cure for any hunger pang, these are seriously good.Where to get it: Everywhere. That is the greatest thing about xiaolongbao -- they can be ordered at five-star restaurants, malls, food courts and street stalls. Our favorite, though, are from the stall on thecorner of Yunnan Nan Lu and Jinling Dong Lu.Corner of Yunnan Nan Lu and Jinling Dong Lu 云南南路金陵东路路口Find these tasty soupy wontons on Jingling Dong Lu, if you're lucky.6. Chai Pan wonton (柴爿馄饨)Why we love it: Nothing beats a bowl of warm wonton soup at 3a.m. on a freezing winter night.We know the soup is laden with MSG, and the cart and cookers haven’t b een cleaned for at least a decade, but one bite of the translucent wrapper and its tasty pork stuffing, and you’ll know it's worth it.Where to get it: Chaipan Wonton stands used to be seen on every street corner after 8 p.m., but only a few remain. Take a stroll down Jinling Dong Lu after a night on the Bund; you should be able to cap your Mo?t and foie gras with RMB 5 worth of joy in a bowl.Jinling Dong Lu, between Sichuan Zhong Lu and Jiangxi Lu 金陵东路,在四川中路和江西路之间, around 11 p.m.-laterOne of the easiest Shanghai street foods to grab and go.7.Cong You Bing (green onion pancake, 葱油饼)Why we love it: The best green onion pancakes are cooked up by little old grannies (and grandpas) who get up at 6 a.m. to cook, knead and slap these petite bing in the city’s many longtangs.Where to get it: Our favorite cong you bing stalllies behind a big black gate on Xiangyang Nan Lu, run by a local granny.Follow your nose and the huge line to find the most authentic Shanghai scallion pancake (RMB 1.5 for one). Spoil yourself by asking for an extra egg on top of your bing (RMB 3 for an egg pancake).Ah Po Cong You Bing (阿婆葱油饼), Lane 578 Xiangyang Nan Lu, near Zhaojiabang Lu, 襄阳南路578弄口, 近肇嘉浜路, no telephone, Monday-Friday: 2:30 p.m.-later Have a Shanghainese "donut".8. Tang gao (deep-fried donut, 糖糕)Why we love it: Shanghai’s answer to donuts, these deep-fried Krispy Kreme look-alikes are made from glutinous rice flour and coated with white sugar.Theylook seriously greasy, but taste seriously good.Where to get it: You can find tang gao at almost every breakfast stand in the city. Grab a freshly made one (RMB 1.5) to go with a cup of non-sweetened soy milk.The breakfast stand on Zhejiang Zhong Lu, near Fuzhou Lu 浙江中路靠近福州路上的早饭摊, no telephone, around 7 a.m.-10 a.m.A relatively new face in Shanghai's street food scene, duck blood soup has attracted some die-hard followers.9. Yaxue fensi tang (duck blood and glass noodle soup, 鸭血粉丝汤)Why we love it: Brought to Shanghai by a fewduck-loving Nanjing natives more than a decade ago, yaxue fensi tang is what many Shanghainese consider the go-to choice for a quick but hearty lunch.It’s got everything: duck soup, duck blood and entrails, green vegetables and glass noodles. What more could you ask for?Where to get it: There are numerous chains around town, but our favorite is Zhouli, thanks to their generous portions and friendly prices (RMB 12).Zhouli Laoya Fensi (妯娌老鸭粉丝), on Qipu Lu, near Zhejiang Bei Lu 七浦路, 近浙江北路, no telephone, 7:30 a.m.-7:30 p.m.Deep-fried and salted, these rice cakes are an old-school Shanghai breakfast.10. Ci fan gao (deep-fried rice cake, 粢饭糕)Why we love it: Sometimes, simple is best. This salted glutinous rice cake doesn’t have fancy stuffing or pretty garnish, but one single sheet will instantly hit the spot.Where to get it: The ci fan gao stand on Zhejiang Zhong Lu has never disappointed any hungry soul. Deep-fried until golden brown, these cakes are crispy on the outside and soft and tender inside.125 Zhejiang Zhong Lu, near Fuzhou Lu 浙江中路125号, 近福州路, no telephone, around 7 a.m.-10 a.m.阅读原文。
卷积神经网络在时间序列分类中的应用探索卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,最初被广泛应用于图像识别领域。
然而,随着研究者们对CNN的深入研究和探索,人们逐渐发现CNN在时间序列分类中也具有出色的表现。
本文将探讨卷积神经网络在时间序列分类中的应用,并深入研究其原理和优势。
首先,我们需要了解什么是时间序列分类。
时间序列是一系列按照时间顺序排列的数据点组成的数据集合。
例如股票价格、气象数据、心电图等都可以被看作是时间序列数据。
而时间序列分类则是对这些按照时间顺序排列的数据点进行分类或预测。
在传统的机器学习方法中,常常使用手工设计的特征提取器来处理时间序列数据,并将提取到的特征作为输入传递给分类器进行训练和预测。
然而,在实际应用中,手工设计特征需要领域专家具备丰富经验,并且往往难以捕捉到复杂、抽象和非线性关系等高级特征。
卷积神经网络通过自动学习特征的方式,克服了传统方法中手工设计特征的局限性。
CNN的核心思想是通过卷积层和池化层来提取输入数据中的局部特征,并通过全连接层来进行分类。
卷积层通过卷积操作可以自动提取输入数据中的空间和时间局部特征,而池化层则可以对提取到的特征进行降维和抽象,从而减少模型参数和计算量。
在时间序列分类中,CNN同样可以利用卷积操作来自动学习输入数据中的局部时间模式。
例如,在股票价格预测任务中,CNN可以通过学习股票价格序列中不同时间窗口内的模式来进行预测。
在气象数据分类任务中,CNN可以学习到不同时间窗口内温度、湿度等变量之间的关系,并对不同气象事件进行分类。
与传统方法相比,CNN在时间序列分类任务上具有几个显著优势。
首先是参数共享机制。
由于卷积核在整个输入上共享权重,在一定程度上减少了模型参数量,并且能够捕捉到输入数据中相似模式之间的关联性。
其次是平移不变性。
由于卷积操作具有平移不变性,在处理时间序列时能够忽略输入数据的具体位置,从而提高模型的泛化能力。
新目标检测目标检测是计算机视觉领域中的一个重要任务,旨在从图像或视频中准确地识别和定位出感兴趣的目标物体。
目标检测的应用广泛,涉及到许多领域,例如智能交通、安防监控、无人驾驶等。
传统的目标检测方法主要基于手工设计的特征和分类器,如Haar特征和SVM分类器。
然而,这种方法在复杂场景下效果较差,难以处理遮挡、变形、光照变化等问题。
近年来,随着深度学习的兴起,基于深度学习的目标检测方法取得了革命性的突破。
基于深度学习的目标检测方法主要包括两个阶段:候选框生成和候选框分类。
候选框生成阶段通过滑动窗口、区域建议或特征金字塔等方法生成大量的候选框。
候选框分类阶段利用卷积神经网络(CNN)对每个候选框进行分类和定位。
经典的基于深度学习的目标检测方法有R-CNN、Fast R-CNN、Faster R-CNN和YOLO等。
R-CNN将目标检测任务转化为候选框分类任务,先生成候选框,再对每个候选框进行特征提取和分类。
Fast R-CNN在R-CNN的基础上进行了一系列改进,如候选框和特征共享、ROI池化等,提高了检测速度和准确性。
Faster R-CNN引入了候选框生成网络(Region Proposal Network,RPN),实现了端到端的目标检测,进一步提高了检测速度。
YOLO(You Only Look Once)是一种实时目标检测方法,通过将目标检测任务转化为回归问题,直接在整张图像上预测目标的位置和类别,速度更快,但准确性稍低。
除了上述方法,近年来还涌现出许多其他的目标检测方法。
例如,SSD(Single Shot MultiBox Detector)通过在不同层次的特征图上预测目标的位置和类别,实现了多尺度检测。
RetinaNet采用了Focal Loss来解决目标检测中正负样本不平衡的问题,提高了对小目标的检测性能。
以Transformer为基础的目标检测方法,如DETR(Detection Transformer)和Sparse R-CNN,通过引入自注意力机制实现了端到端的目标检测。
基于卷积神经网络的无线通信中的信道估计技术研究无线通信是当今社会中不可或缺的重要技术之一,其发展与应用不断推动着现代通信技术的进步。
而在无线通信中,信道估计技术一直是一个核心问题,因为正确准确地估计信道状态对于接收端正确解码信号至关重要。
随着深度学习技术的不断发展,基于卷积神经网络的信道估计技术成为了研究的热点之一。
卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,其在图像处理、自然语言处理等领域取得了令人瞩目的成绩。
在无线通信中,CNN被广泛应用于信道估计、波束赋形、物体检测等方面。
本文将重点介绍基于CNN的无线通信中的信道估计技术研究。
首先,我们需要了解什么是信道估计。
信道估计是指接收端通过已知的发射信号和接收到的信号,对信道的参数进行估计,以便恢复发送信号。
在传统的通信系统中,信道估计通常通过导频序列或者训练序列来实现。
然而,这些方法需要消耗额外的信道资源,并且在频谱利用率和时间效率上存在一定缺陷。
针对传统方法的不足,研究者们开始探索基于深度学习的信道估计技术。
CNN作为一种强大的特征提取器,在信道估计中展现出了巨大的潜力。
通过训练深度卷积神经网络,可以学习到更加有效的信道特征,从而实现更加准确的信道估计。
接下来,我们将具体分析基于CNN的信道估计技术在无线通信中的应用。
首先,我们需要收集大量的信道数据,并对数据进行预处理。
然后,设计合适的网络结构,包括卷积层、池化层等。
接着,进行网络的训练和测试,并对结果进行评估。
最后,优化网络参数,提高信道估计的准确性和泛化能力。
在实际应用中,基于CNN的信道估计技术已经取得了一定的成果。
例如,在5G通信系统中,CNN被广泛应用于信道估计、波束赋形等关键环节。
与传统方法相比,基于CNN的信道估计技术具有更高的准确性和鲁棒性,能够更好地适应复杂多变的通信环境。
当然,基于CNN的信道估计技术仍然面临着一些挑战。
CNN创始人的精彩人生:特德·特纳特纳是位拥有数十亿家财的72岁富翁、美国有线新闻电视公司(CNN)的创始人、从前的出色水手、面容酷似白瑞德而且还是一个打破捐资记录的慈善家。
The walls of T ed Turner's international headquarters,14 floors above downtown Atlanta,are lined with Oscar statuettes.If you try to pick one up,for example,the actual best-production award for Casablanca,you will discover that they are all firmly bolted to their glass display shelves,and Turner's aides will break their frowns to laugh at you.CNN的创始人--特德·特纳在特德·特纳的位于亚特兰大闹市区14层楼上的国际总部,沿墙陈列着一排排奥斯卡金像。
假如你想拿起一个,比如《卡萨布兰卡》的最佳影片金像真品,你会发现它们都被用螺钉固定在玻璃陈列架上。
这时,特纳的助手会松开皱着的眉头,冲你一笑。
Turner is the 72-year-old multibillionaire founder of CNN,former champion sailor,Rhett Butler lookalike and record-breaking philanthropist.Turner has just emerged from the worst two years of his life -- years that he has said left him feeling"suicidal".In spring 2000,he was suddenly sidelined from the broadcasting company he had built from scratch.Then his wife of eight years,the actress Jane Fonda,came home one night and informed him that she was now a born-again Christian;they divorced last year.Two of his grandchildren developed a rare genetic disorder,and one died.Turner's friends said he was inconsolable.Then,just when he felt it could get no worse,he brought the wrath of America upon himself by a speech in Rhode Island saying thatthe September 11 hijackers had been"brave".特纳是位拥有数十亿家财的72岁富翁、美国有线新闻电视公司(CNN)的创始人、从前的出色水手、面容酷似白瑞德而且还是一个打破捐资记录的慈善家。
CNN新闻讲解:海地地震灾民现状悲惨(2010-07-17)第一部分:听力文本Milong Esting has been stuck in a makeshift camp for the last six months.From the moment I came here,she says,I don't know anything.They keep saying we're going to get this,we're going to get that,but I haven't seen anything.Her son Wably broke his legs in the earthquake.He was in a body cast for months.He can walk now,but that's about the only good thing that has happened to Milong's family since the quake.When the earthquake happened,did you think that six months,you would,later,you would still be living in a structure like this?No,we didn't think that,says Milong's neighbor Marie Solis,but we don't have anywhere else to go.All of this makes you crazy.Some55,000people now occupy Milong's camp.They live crammed together under plastic tarps.Four people live inside Milong's structure.She has a bed,a single bed,but,which is frankly more than most people have.In this side over here,there's room for some clothing,some toiletries over here.There's cooking supplies,pots and pans,a few plates,and then a small little charcoal stove, which she uses to cook food for her family.The structure is made out of plastic.There're heavy sheets which are stretched across wooden support.So,it's actually pretty sturdy.What you don't see on the,on video is just how incredibly hot it is in here.You're in here for literally a few seconds,you just are drenched in sweat.So, most people can't spend much time during the day inside these structures.There are more than1,300makeshift camps throughout Port-au-Prince housing more than a million and a half people.You see,with all these tents,they're right on top of each other.I think one match on a breezy day could pretty much run this whole place down.Sean Penn and his organization,JPHRO,is in charge of this camp.They provide water and food, doctors and medicine.They have even built a school.Penn would like to get these people back into their old neighborhoods,but many of the neighborhoods are still buried in rubble.So,in terms of getting people out of a camp like this,I mean,there's multiple problems.There's the problem of the rubble that is still in all these neighborhoods,and getting that trucked out,sopeople can go back.There's the problem of figuring out who owns the land that,that people might move on to.And then there's actually rebuilding structures.A lot of these areas have no grid.They have got no water,all of those things that you would need in a camp,clinics,lighting,those,you know,most of these neighborhoods are living in the pitch dark in rubble twice as high as our heads.Much of the money donated and spent so far has gone to meet immediate humanitarian needs of the population.Many lives were saved,and there's been no outbreak of disease and no major civil unrest.But the rebuilding has been plagued by lack of organization and leadership.There's still no master plan for removing the rubble,which prevents many from returning home,and only a small percentage of the billions in reconstruction money pledged by governments around the world has actually been sent.There are a lot of NGOs who we're told are not coordinating with each other.President Clinton himself has said that they're not coordinating with his commission.Why is that?I think that's as,I think that's as basic as people want to be the first,or they don't want to see it done at all.I think that they want to be the lead,but they don't have the courage in most cases to take it.There are,there are some NGOs that are working very directly and doing it,but it,it's like dropping grains of salt on the beach.Penn's group has just begun using heavy equipment to clear a neighborhood,so some of the people in this camp can return to their old homes.He’d also like to see other funding used for new communities to be built outside Port-au-Prince.Critically important,you're saying,is removing the rubble here with heavy equipment,but also getting people places that they can live outside of Port-au-Prince?Yes,yes,both,because there's,there's whatever it is,1.8million.There are camps that are on hillsides like this that still have no lighting,have no drainage mitigations,where their whole neighborhood is in rubble.And so to people in the States who say,well,look,I,I gave money six months ago,and,look,it's all still the same,and I shouldn't give any more money?Well,I say,I say,no,that's not true,because if you gave money because you care,and you have anything to scrap up,if you don't trust an NGO,find a family to adopt.Get in touch with our NGO. You don't have to give us the money.I will find you a family to adopt.I will give you their number.You can talk to them and find out what it is.But don't stop,don't stop giving.We,we need it.Anderson Cooper,CNN,Port-au-Prince.提示:文本转自普特听力论坛第二部分:参考翻译Milong Esting六个月来一直住在一个拥挤的临时营地中。