有机化学(炔烃 卤代烃)
- 格式:doc
- 大小:852.50 KB
- 文档页数:9
炔烃的结构通式炔烃是一类具有碳碳三键的有机化合物。
根据碳原子数的不同,炔烃可以分为乙炔、丙炔、丁炔等。
下面将分别对这些炔烃的结构通式进行介绍。
1. 乙炔(C2H2):乙炔是最简单的炔烃,由两个碳原子和两个氢原子组成。
其结构通式为CH≡CH。
乙炔是一种无色、有刺激性气味的气体,在室温下可以燃烧。
乙炔常被用作燃料和原料,广泛应用于金属切割和焊接等领域。
2. 丙炔(C3H4):丙炔由三个碳原子和四个氢原子组成。
其结构通式为HC≡CCH3。
丙炔是一种无色液体,在室温下能够燃烧。
丙炔常被用作溶剂和化学合成的原料。
3. 丁炔(C4H6):丁炔由四个碳原子和六个氢原子组成。
其结构通式为HC≡CCH2CH3。
丁炔是一种无色液体,在室温下能够燃烧。
丁炔常被用于化学合成和有机合成的反应中。
炔烃具有碳碳三键的特点,使其在化学反应中具有独特的反应性。
炔烃可以发生加成反应、氧化反应、卤化反应等。
其中,加成反应是炔烃最常见的反应类型之一,其反应产物是由两个反应物的分子结合而成的。
例如,乙炔可以和氢气发生加成反应,生成乙烯(C2H4)。
这种反应是一个重要的工业反应,用于合成乙烯。
除了加成反应,炔烃还可以发生氧化反应。
氧化反应是指炔烃与氧气发生反应,生成二氧化碳和水。
例如,乙炔可以在适当的条件下与氧气反应,生成二氧化碳和水。
这种反应是乙炔燃烧的过程,释放出大量的热能。
炔烃还可以发生卤化反应。
卤化反应是指炔烃与卤素发生反应,生成相应的卤代烃。
例如,乙炔可以和氯气发生反应,生成氯代乙烯(C2H2Cl2)。
这种反应常用于合成有机化合物和制备化学试剂。
炔烃是一类具有碳碳三键的有机化合物。
乙炔、丙炔和丁炔是常见的炔烃。
炔烃具有独特的反应性,可以发生加成反应、氧化反应和卤化反应。
炔烃在工业生产和化学合成中有着广泛的应用。
有机化学方程式总结一、烃1.甲烷烷烃通式:(1)氧化反应甲烷的燃烧:。
甲烷不可使酸性高锰酸钾溶液及溴水褪色。
(2)取代反应一氯甲烷:CH4+Cl2。
二氯甲烷:CH3Cl+Cl2。
三氯甲烷:CH2Cl2+Cl2。
四氯化碳:CHCl3+Cl2。
2.乙烯乙烯的制取:。
烯烃通式:(1)氧化反应乙烯的燃烧:乙烯可以使酸性高锰酸钾溶液褪色,发生氧化反应。
(2)加成反应(3)聚合反应乙烯加聚,生成聚乙烯:。
3.乙炔乙炔的制取:。
炔烃的通式:。
(1)氧化反应乙炔的燃烧:。
乙炔可以使酸性高锰酸钾溶液褪色,发生氧化反应。
(2)加成反应图1 乙烯的制取图2 乙炔的制取与溴水加成:HC CH+Br 2CHBr=CHBr+Br 2与氢气加成:与氯化氢加成:(3)聚合反应氯乙烯加聚,得到聚氯乙烯: 。
乙炔加聚,得到聚乙炔: 。
4.苯苯的同系物通式:(1)氧化反应苯的燃烧: 。
苯不能使溴水和酸性高锰酸钾溶液褪色。
(2)取代反应①苯与溴反应②硝化反应(3)加成反应5.甲苯(1)氧化反应甲苯的燃烧: 。
甲苯不能使溴水褪色,但可以使酸性高锰酸钾溶液褪色。
(2)取代反应(与HNO 3)甲苯硝化反应生成2,4,6-三硝基甲苯,简称 ,又叫 ,是一种 色晶体,不溶于水。
它是一种 ,广泛用于 。
注意:甲苯在光照条件下发生侧链的取代,而在催化剂条件下发生苯环上的取代。
注意:制取乙烯、乙炔均用排水法收集;乙烯、乙炔的加成反应(3)加成反应二、烃的衍生物6.溴乙烷纯净的溴乙烷是 ,沸点 ,密度比水 。
(1)取代反应溴乙烷的水解: 。
(2)消去反应:。
7.乙醇(1)取代反应:①与钠反应 。
②与HBr 反应 。
(2)氧化反应①催化剂催化氧化:②燃烧(3)消去反应C 2H 5OHC 2H 5-OH + OH-C 2H 58.苯酚苯酚是 ,露置在空气中会因 。
苯酚具有 气味,水中溶解度 ,易溶于 。
苯酚有 ,是一种重要的化工原料。
如果苯酚沾到皮肤上,应该用 处理。
有机化学基础知识点整理官能团的常见命名与结构式表示有机化学基础知识点整理官能团的常见命名与结构式表示在有机化学中,官能团是指分子中具有特定化学性质的“功能部分”。
正确命名和准确表示官能团对于理解和学习有机化学至关重要。
本文将对一些常见的官能团及其命名与结构式表示进行整理和介绍。
I. 烃类官能团烃类是由碳和氢组成的化合物,没有官能团。
常见的烃类有烷烃、烯烃和炔烃。
它们的命名和结构式表示如下:1. 烷烃:以"-ane"为后缀命名,结构式使用线段表示,每个碳原子用顶点表示。
- 甲烷:methane (CH4)- 乙烷:ethane (C2H6)- 丙烷:propane (C3H8)2. 烯烃:以"-ene"为后缀命名,结构式使用线段及双键表示。
- 乙烯:ethylene (C2H4)- 丙烯:propene (C3H6)- 戊烯:butene (C4H8)3. 炔烃:以"-yne"为后缀命名,结构式使用线段及三键表示。
- 乙炔:ethyne (C2H2)- 丙炔:propyne (C3H4)- 戊炔:butyne (C4H6)II. 卤代烃官能团卤代烃是烃类分子中的氢被卤素(氟、氯、溴、碘)取代而成的化合物。
常见的卤代烃有氯代烷、溴代烷和碘代烷。
它们的命名和结构式表示如下:1. 氯代烷:以"-chloride"为后缀命名或使用"chloro-"作为前缀,结构式在相应的碳原子上用Cl表示。
- 氯甲烷:chloromethane(CH3Cl)- 1,2-二氯乙烷:1,2-dichloroethane(CH2Cl-CH2Cl)2. 溴代烷:以"-bromide"为后缀命名或使用"bromo-"作为前缀,结构式在相应的碳原子上用Br表示。
- 溴乙烷:bromoethane(CH3CH2Br)- 2,3,4-三溴戊烷:2,3,4-tribromopentane(CH3CHBr-CHBr-CH3)3. 碘代烷:以"-iodide"为后缀命名或使用"iodo-"作为前缀,结构式在相应的碳原子上用I表示。
目录前言 (2)烃 (2)烷烃 (2)烷基 (3)环烃 (4)环烷基 (5)芳香烃 (6)苯环 (7)芳基 (7)烯烃 (8)烯基 (9)单烯烃CnH2n (9)二烯烃CnH(2n-2) (10)环烯烃 (11)胺 (12)烃基 (12)胺 (13)酚 (14)苯环 (14)多环芳烃 (15)酚 (16)醇 (17)饱和醇 (18)醛 (19)羧suō酸 (20)羧基 (20)氨基酸 (21)羰tāng基 (23)酮 (23)吡啶 (23)前言环保是一门要上知天文,下知地理的专业。
尤其是从事废水相关的,很多专业都可以跟你抢饭碗,例如,给排水、化工、生物等。
在某些专业上比学环境工程的更加专业。
更新本文的主要目的是为了我近期在准备一篇“臭氧氧化”的文章。
学习这篇有机化学知识,更又利于你理解这篇文章。
烃只由碳、氢两种元素组成的碳氢化合物,称为烃。
其中包含烷烃、烯烃、炔烃、环烃及芳香烃,是许多其它有机化合物的基体。
烷烃分子中的碳原子都以(C-C)单键相连,其余的价键都与氢结合(C-H)而成的化合物。
通式为CnH2n+2,是最简单的一种有机化合物。
根据烃分子骨架的不同,烃可分为链烃、环烃、芳香烃。
链烃又可以分为饱和烃(烷烃)和不饱和烃(烯烃、炔烃)。
其中饱和烃就是烷烃,整体构造仅由碳、氢原子以碳碳单键C-C 与碳氢单键C-H组成的有机化合物,饱和意味着分子中的碳原子和其他原子的结合达到了最大限度。
烷基即饱和烃基,是烷烃分子中少掉一个氢原子而成的烃基。
例如,CH3-甲基(参考甲烷)、CH3CH2-乙基(参考乙烷);链烃:这类有机物最早从脂肪中提取,所以也叫做脂肪烃。
是分子中碳原子间通过共价键连接形成链状的碳架,两端张开而不成环的烃,叫做开链烃,简称链烃;环烃亦称闭链烃,结构式为多边形,有环状结构的碳氢化合物的总称。
分子中的碳原子相连,形成环状的烃。
按结构和性质可分为脂环烃和芳烃。
但一般环烃是指脂环烃。
根据环的数目,分为单环、双环、三环等环烃。
炔烃与卤代烃的烷基化反应研究炔烃与卤代烃的烷基化反应是有机化学中一种重要的化学反应,它能够在分子中引入取代基,从而改变分子的性质和功能。
本文将探讨炔烃与卤代烃烷基化反应的机理、应用以及相关的研究进展。
烷基化反应是有机化学中常见的一种反应类型,其基本原理是通过将一个烷基基团引入到分子中的相应位置,以改变分子的化学性质。
而炔烃与卤代烃的烷基化反应是一种特殊的烷基化反应,因其在炔烃分子中引入了取代基,使得炔烃分子具有更多的反应性和多样性应用。
炔烃分子的反应性主要来自于其碳碳三键,而卤代烃则是一类含有卤素原子(如氯、溴、碘等)的化合物。
在烷基化反应中,炔烃与卤代烃通过催化剂的作用发生烷基化反应,通常会在有机溶剂中进行。
催化剂可以是过渡金属催化剂,例如铜、银、钯等,也可以是碱性催化剂,如碱金属盐。
炔烃与卤代烃的烷基化反应机理复杂多样,常见的机理是通过亲电加成的方式进行。
在这种机理下,催化剂首先与卤代烃反应生成过渡态化合物,然后这个过渡态与炔烃发生亲电加成反应,形成烷基化产物。
此外,还可以通过自由基机理实现烷基化反应。
这种反应机理中,催化剂首先与卤代烃反应生成活化的卤代亚烃分子,然后这个活化的卤代亚烃与炔烃自由基发生反应,生成烷基化产物。
炔烃与卤代烃的烷基化反应在有机合成中有广泛的应用。
一方面,它可以用来合成多样性的烷基取代炔烃,从而得到具有不同物理化学性质的化合物。
另一方面,它也可以用于构建复杂有机分子的合成。
例如,在药物合成中,烷基化反应可以用来引入具有生物活性的烷基基团,从而改变药物的性质和活性。
近年来,对炔烃与卤代烃的烷基化反应进行了大量的研究。
研究者们致力于发展高效、高选择性的催化剂和反应条件,以提高反应的产率和效率。
例如,一些研究者通过合理设计和改进过渡金属配体,成功开发出了一些高效催化剂,可以实现较低的催化剂用量和较高的产率。
此外,他们还尝试使用更环保的反应条件,例如可再生溶剂和可再生催化剂,以减小对环境的影响。
第2节烃卤代烃备考要点素养要求1。
掌握烷烃、烯烃、炔烃和芳香烃的结构与性质。
2.掌握卤代烃的结构与性质。
3。
了解烃类及卤代烃的重要应用以及卤代烃的合成方法.1。
宏观辨识与微观探析:认识烃的多样性,并对烃类物质进行分类;能从不同角度认识烃的组成、结构、性质和变化,形成“结构决定性质”的观念.2.证据推理与模型认知:具有证据意识,能基于证据对烃的组成、结构及其变化提出可能的假设。
能运用有关模型解释化学现象,揭示现象的本质和规律。
考点一脂肪烃的结构和性质必备知识自主预诊知识梳理1。
烷烃、烯烃、炔烃的组成、结构特点和通式2.烷烃、烯烃和炔烃的命名(1)烷烃的命名。
ⅰ。
习惯命名法。
ⅱ。
系统命名法.①最长、最多定主链.当有几个相同长度的不同碳链时,选择含支链最多的一个作为主链。
②编号位要遵循“近”“简”“小”原则。
如:,命名为。
微点拨烷烃系统命名中,不能出现“1—甲基”“2-乙基”,若出现,则属于主链选取错误.(2)烯烃和炔烃的命名。
如:的名称为;的名称为。
3.烯烃的顺反异构(1)定义:由于碳碳双键不能旋转而导致分子中原子或原子团在空间的不同所产生的异构现象。
(2)存在条件:每个双键碳原子都连接了两个不同的原子或原子团。
如顺—2-丁烯:,反-2-丁烯:。
4。
脂肪烃的物理性质5。
脂肪烃代表物的化学性质(1)烷烃的取代反应。
①取代反应:有机化合物分子中某些原子或原子团被其他所替代的反应.②烷烃的卤代反应。
a.反应条件:烷烃与卤素单质在下反应。
b.产物成分:多种卤代烃的混合物(非纯净物)及HX。
c。
定量关系:~Cl2~HCl,即每取代1 mol氢原子,消耗卤素单质并生成1 mol HCl。
(2)烯烃、炔烃的加成反应。
①加成反应:有机化合物分子中的与其他原子或原子团直接结合生成新的化合物的反应。
②烯烃、炔烃的加成反应(写出有关反应的化学方程式)。
(3)加聚反应.①丙烯加聚反应的化学方程式:n CH2CH-CH3。
②乙炔加聚反应的化学方程式:n CH≡CH CH CH。
有机化学中的卤代烃的合成方法卤代烃是有机化学中一类重要的化合物,广泛应用于医药、农药、合成材料等领域。
本文将介绍有机化学中常见的卤代烃合成方法,涵盖了卤代烃的制备、反应以及一些实际应用。
一、卤代烃的制备方法1. 直接卤代反应直接卤代反应是最常见的卤代烃合成方法之一。
该方法通常是通过底物与卤素(如氯、溴、碘)在适当的条件下反应得到卤代烃。
例如,将烷烃与氯气在紫外光或阳光下反应,就可以得到相应的氯代烃。
2. 化学卤代反应化学卤代反应是指利用化学试剂将底物中的氢原子替换为卤素。
其中,氯代烃的制备常用的化学试剂包括三氯化磷(PCl3)、四氯化碳(CCl4)等;溴代烃的制备则常使用硫酸或氢溴酸与底物反应;碘代烃的制备通常采用氢碘酸等试剂。
3. 卤化物的还原卤化物的还原是另一种常见的卤代烃合成方法。
这种方法通常是将卤化物与还原剂反应,使卤素原子脱离底物,生成相应的卤代烃。
例如,可以利用锌和醋酸酐还原氯化烷烃,制备相应的氯代烃。
二、卤代烃的反应方法1. 消除反应消除反应是卤代烃常见的反应类型之一。
卤代烃与碱或碱性试剂反应,其中碱可以是氢氧化钠、氢氧化钾等。
这种反应可以使卤代烃中的卤素原子脱离,生成相应的烯烃或炔烃。
消除反应在有机合成中有着广泛的应用,常用于合成具有特定结构和性质的有机化合物。
2. 反应取代反应取代是卤代烃与其他试剂发生取代反应的过程。
这种反应可以在不同的条件下进行,例如常温下使用亲核试剂进行取代反应,或者在高温下使用金属试剂、有机金属试剂等。
3. 卤代烃的还原反应卤代烃通常是在还原剂的作用下发生还原反应。
例如,利用金属锂或铝与氯代烃反应,可以得到相应的烷烃。
还原反应在有机合成中也是常见的一类反应,常用于合成饱和烃、环烷化合物等。
三、卤代烃的应用1. 医药领域卤代烃在医药领域有着广泛的应用。
例如,一些抗生素药物中常含有氯代烃、溴代烃等卤代烃结构,这些化合物可以起到抑制细菌生长的作用。
此外,卤代烃还可用于合成具有药物活性的化合物,如抗癌药物和抗病毒药物等。
第六章卤代烃卤代烃是一种简单的烃的衍生物,它是烃分子中的一个或多个氢原子被卤原子(F, CL, Br,I)取代而生成的化合物。
一般可以用R-X表示,X代表卤原子。
由于卤代烃的化学性质主要有卤原子决定,因而X是卤代烃的官能团。
根据卤代烃分子中烃基的不同,可以将卤代烃分为卤代烷烃、卤代烯烃、卤代炔烃和卤代芳烃等。
第一节卤代烷烃一.卤代烷烃的分类和命名(一)卤代烷烃的分类1.根据卤代烷烃分子中所含卤原子的种类,卤代烷烃分为:氟代烷:如CH3-F氯代烷:如:CH3-CL溴代烷:如:CH3-Br碘代烷:如:CH3-I2.根据卤代烷烃分子中所好卤原子的数目的多少,卤代烷烃分为:一卤代烷:如:CH3CL, CH3-CH2-Br二卤代烷:如:CH2CL2,多卤代烷:CHCL33. 根据卤代烷烃分子中与卤原子直接相连的碳原子的类型的不同,卤代烷烃可以分为: 伯卤代烷(一级卤代烷) R-CH 2-Br 仲卤代烷(二级卤代烷)CHXR 1R 2叔卤代烷(三级卤代烷)CXR 1R 2R 3(二) 卤代烷烃的命名 1. 普通命名使用范围:结构比较简单的卤代烷常采用普通命名法 命名:原则:根据卤原子的种类和与卤原子直接相连的烷基 命名为“某烷”,或按照烷烃的取代物命名为“卤某烷”。
如:CH 3CL CH 3CH 2Br CH 3CH 2CH 2CH 2I CH CH 3H 3CCH 2CLCHBrH 3CCH 2CH 3CCH 3H 3CCH 3CL甲基氯(氯甲烷)乙基溴(溴乙烷)正丁基碘(正碘丁烷)异丁基氯(异氯丁烷)仲丁基溴(仲溴丁烷)叔丁基氯(叔氯丁烷)2. 系统命名法范围:复杂的卤代烷烃一般采用系统命名法。
原则:将卤原子作为取代基,按照烷烃的命名原则来进行命名。
方法: 1)选择连有卤原子的最长碳链为主链,并根据主链所含碳原子的数目命名为“某烷”作为母体; 2) 将支链和卤原子均作为取代基;3)对于主链不带支链的卤代烷烃,主链编号从距离卤原子最近的一端开始; 4)对于主链带支链的卤代烷烃,主链的编号应遵循“最低系列规则”; 5)把取代基和卤原子的名称按“次序规则”依次写在“某烷”之前(次序按先后顺序写),即得该卤代烷烃的名称。
炔烃的知识点总结(一)引言概述:炔烃是一类重要的有机化合物,具有广泛的应用领域。
本文将从分子结构、物理化学性质、制备方法、性质变化以及应用方面,总结炔烃的相关知识点。
1. 分子结构- 炔烃是由碳和氢组成的碳氢化合物,分子中含有碳碳三键。
- 分子结构中的双键或多键使得炔烃具有较高的反应活性。
2. 物理化学性质- 炔烃具有较低的沸点和熔点,易挥发。
- 炔烃的密度较小,难溶于水而易溶于有机溶剂。
- 炔烃在空气中易燃烧,燃烧产生的产物主要为二氧化碳和水。
3. 制备方法- 炔烃的主要制备方法有解醇法、卤代烷炔化法、炔烃与卤代烃的消旋反应等。
- 解醇法将醇脱水制得炔烃,具有较高的产率和选择性。
- 卤代烷炔化法通过卤代烷与碱金属乙炔基的反应制得炔烃。
4. 性质变化- 炔烃可以发生加成反应、取代反应和氧化反应等。
- 加成反应中,炔烃的碳碳三键断裂,与其他物质发生化学反应。
- 取代反应中,炔烃中的氢被其他基团取代。
- 氧化反应可以将炔烃氧化成相应的醛、酮或酸。
5. 应用方面- 炔烃是合成有机化合物的重要原料,可以通过反应转化为各种有机化合物。
- 炔烃在聚合反应中起到重要的作用,可用于制备合成橡胶和塑料等材料。
- 炔烃还广泛应用于炔烃类燃料、炔烃类溶剂和炔烃类药物等领域。
总结:炔烃是一类具有碳碳三键的有机化合物,具有较高的反应活性。
炔烃的制备方法包括解醇法和卤代烷炔化法等。
炔烃可以发生加成反应、取代反应和氧化反应等,被广泛应用于有机化合物的合成、聚合反应以及燃料、溶剂和药物等领域。
§5 卤代烃一、烃的衍生物1、定义:从结构上说,可以看做是由烃衍变而来的有机化合物,叫做烃的衍生物。
烃的衍生物都含有某种官能团。
烃的衍生物是按以下方式分类的:2、官能团官能团是指化合物中决定其化学性质的原子或原子团,常见的官能团有卤原子(—X)、羟基(—OH)、醛基(—CHO)、羧基(—COOH)、硝基(—NO2)、氨基(—NH2)、磺酸基(—SO3H)等,另外碳碳双键、碳碳三键也分别是烯烃和炔烃的官能团。
二、溴乙烷1、结构和物理性质分子式:C2H5Br 结构式:结构简式:纯净的溴乙烷是无色液体,沸点为38.4℃,密度比水大。
2、化学性质由于官能团(—Br)的作用,溴乙烷的化学性质比乙烷活泼,能发生许多化学反应。
(1)水解反应C2H5—Br +H—OH→C2H5—OH + HBr也可写成:C2H5Br + NaOH →C2H5OH + NaBr卤代烃水解的条件:NaOH的水溶液。
(2)消去反应CH3—CH2Br + NaOH → CH2=CH2↑+ NaBr + H2O卤代烃消去的条件:NaOH的醇溶液共热。
消去反应:有机化合物在一定条件下,从一个分子中脱去一个小分子(如H2O、HBr等)而生成不饱和(含双键或三键)化合物的反应。
【问】卤代烃是否都能发生消去反应?三、卤代烃1、物理性质:烃分子里的氢原子被卤素原子取代后所生成的化合物,叫做卤代烃。
卤代烃的种类很多,根据分子里所含卤原子的多少,有一卤代烃和多卤代烃;根据被取代的烃的种类,有脂肪卤代烃和芳香卤代烃;根据卤原子的种类,有氟代烃、氯代烃、溴代烃和碘代烃等。
如溴乙烷C2H5Br、氯乙烯CH2=CHCl、溴苯C6H5Br等都属于卤代烃。
卤代烃不溶于水,溶于有机溶剂,沸点和密度都大于相应的烃。
一氯甲烷是气体,二氯甲烷、三氯甲烷和四氯化碳是液体,它们都不溶于水。
三氯甲烷和四氯化碳都是工业上重要的溶剂,四氯化碳还是一种效率较高的灭火剂。
溴苯C6H5Br为无色液体,比水重,不溶于水。
有机化学基本技能化合物的合成与表征有机化学是研究有机物的合成、结构、性质和反应等方面的学科。
在有机化学中,合成和表征是基本且重要的技能。
通过合成化合物,化学家可以探索新的化学反应途径,并将其应用于药物、塑料、材料科学等领域。
本文将介绍有机化学中常用的合成方法和化合物的表征技术。
一、合成方法1.1 炔烃的合成炔烃是一类重要的有机化合物,常用于有机合成和有机反应中。
炔烃的合成方法有多种,常见的包括:(1)卡宾反应:通过酸碱反应或烯烃的加成反应合成炔烃。
例如,利用活泼的亲电试剂如酮、醛或卤代烃与碱性条件下的碱金属或碱土金属生成的卡宾结合,可合成炔烃。
(2)炔基化反应:通过卤代烃与碱金属或溴化氢发生反应,生成炔烃。
1.2 脂肪醇的合成脂肪醇是一类重要的有机化合物,广泛应用于食品工业、医药工业和化妆品工业等领域。
脂肪醇的合成方法有多种,常见的包括:(1)加氢还原反应:通过氢气在催化剂的存在下对脂肪酸或酮进行加氢还原反应,生成脂肪醇。
(2)醇化反应:通过醛或酮与醇进行醇化反应,生成脂肪醇。
二、表征技术2.1 红外光谱法红外光谱法是一种常用的有机化合物表征技术,基于化合物分子与红外光的相互作用。
通过检测有机化合物在红外光谱中的吸收峰,可以确定有机化合物的结构和官能团的存在。
2.2 质谱法质谱法是一种用于有机化合物分析和表征的重要技术,通过分析化合物分子中的离子化产物来确定其分子结构和分子量。
常用的质谱技术有质谱仪和质谱图谱分析。
2.3 核磁共振法核磁共振法是通过核磁共振现象探测有机化合物的结构和官能团的存在。
通过核磁共振仪器的操作和分析,可以获得核磁共振谱图,进而确定有机化合物的结构。
三、实验操作注意事项在进行有机化合物的合成和表征实验时,需要注意以下几点:3.1 安全操作有机合成和表征涉及到有机溶剂和试剂的使用,因此需要严格遵守实验室的安全操作规程,佩戴适当的防护设备,并注意化学品的储存和处置。
3.2 实验条件在合成有机化合物时,需要注意适当的反应条件,如温度、反应时间和反应物的比例等。
大学化学易考知识点有机化合物的命名规则有机化合物的命名规则是大学化学中的一个重要考点,掌握了命名规则,才能准确地表示和区分不同的有机化合物。
本文将详细介绍有机化合物的命名规则,帮助读者理解并掌握这一知识点。
I. 烷烃的命名规则烷烃是由碳和氢组成的最简单的有机化合物,其命名规则如下:1. 直链烷烃的命名:以烷烃分子中碳原子的数目为基础,加上后缀-ane。
例如,甲烷、乙烷、丙烷、丁烷等。
2. 支链烷烃的命名:首先确定主链,即碳原子数最多的连续链,然后给主链编号,以使支链的碳原子编号尽量小。
根据支链的数目,分别加上前缀和后缀。
例如,2-甲基丁烷、3,3-二甲基戊烷等。
3. 碳原子在主链上的位置:使用最小位置数法,即将连续编号的碳原子的编号写在化合物名字的前面,用连字符-连接。
例如,2-氯丁烷。
II. 烯烃的命名规则烯烃是含有碳-碳双键的有机化合物,其命名规则如下:1. 直链烯烃的命名:以烯烃分子中碳原子的数目为基础,在碳原子数目前加上前缀和后缀。
例如,丙烯、丁烯、戊烯等。
2. 碳原子在主链上的位置:使用最小位置数法,即将双键所在的碳原子编号写在化合物名字的前面,用连字符-连接。
例如,2-戊烯、3-己烯等。
3. 多个双键的命名:使用前缀-adiene、-atriene等。
例如,1,3-丁二烯、1,3,5-己三烯等。
III. 炔烃的命名规则炔烃是含有碳-碳三键的有机化合物,其命名规则如下:1. 直链炔烃的命名:以炔烃分子中碳原子的数目为基础,在碳原子数目前加上前缀和后缀。
例如,乙炔、丙炔、戊炔等。
2. 碳原子在主链上的位置:使用最小位置数法,即将三键所在的碳原子编号写在化合物名字的前面,用连字符-连接。
例如,2-戊炔、3-己炔等。
IV. 卤代烃的命名规则卤代烃是含有卤素(氟、氯、溴、碘)取代的烷烃或烯烃,其命名规则如下:1. 卤代烷烃的命名:直接在烷烃的命名前加上相应的卤素前缀。
例如,氯甲烷、溴乙烷等。
2. 碳原子在主链上的位置:使用最小位置数法,即将卤素所在的碳原子编号写在化合物名字的前面,用连字符-连接。
第2节烃和卤代烃考纲定位要点网络1.掌握烷烃、烯烃、炔烃和芳香烃的结构与性质。
2.掌握卤代烃的结构与性质以及它们之间的相互转化。
掌握取代、加成、消去等有机反应类型。
3.了解烃类的重要应用。
4.了解有机化合物分子中官能团之间的相互影响。
脂肪烃——烷烃、烯烃和炔烃知识梳理1.脂肪烃的结构特点和分子通式烃类结构特点一般组成通式烷烃分子中碳原子之间以单键结合成链状,碳原子剩余的价键全部以单键结合的C n H2n+2(n≥1)饱和烃烯烃分子里含有碳碳双键的不饱和链烃C n H2n(n≥2)炔烃分子里含有碳碳叁键的不饱和链烃C n H2n-2(n≥2)2。
烯烃的顺反异构(1)顺反异构的含义由于碳碳双键不能旋转而导致分子中的原子或原子团在空间的排列方式不同所产生的异构现象。
(2)存在顺反异构的条件每个双键碳原子上连接了两个不同的原子或原子团。
(3)两种异构形式顺式结构反式结构特点两个相同的原子或原子团排列在双键的同一侧两个相同的原子或原子团排列在双键的两侧实例[辨易错](1)所有烯烃通式均为C n H2n,烷烃通式均为C n H2n+2.(2)C2H6与C4H10互为同系物,则C2H4与C4H8也互为同系物。
(3)符合C4H8的烯烃共有4种。
[答案](1)×(2)×(3)√3.脂肪烃的物理性质4.脂肪烃的化学性质(1)烷烃的取代反应①取代反应:有机物分子中某些原子或原子团被其他原子或原子团所替代的反应.②烷烃的卤代反应a.反应条件:气态烷烃与气态卤素单质在光照下反应。
b.产物成分:多种卤代烃混合物(非纯净物)+HX。
c.定量关系(以Cl2为例):即取代1 mol氢原子,消耗1_mol Cl2生成1 mol HCl。
(2)烯烃、炔烃的加成反应①加成反应:有机物分子中的不饱和碳原子与其他原子或原子团直接结合生成新的化合物的反应.②烯烃、炔烃的加成示例CH2===CH—CH3+Br2―→CH2BrCHBrCH3。
大学有机化学反应方程式总结卤代烃的取代反应与消除反应大学有机化学反应方程式总结——卤代烃的取代反应与消除反应有机化学是研究碳为主体的有机化合物及其反应性质的学科。
其中,卤代烃是有机化合物中的一类重要化合物,它们在有机合成和医药领域具有广泛的应用。
卤代烃的取代反应和消除反应是有机化学中的基础反应之一。
本文将对这两种反应进行总结,并列举相关的反应方程式。
一、卤代烃的取代反应1. 氢氧离子的取代反应:卤代烃在碱性条件下可以发生醇和醚的生成反应。
具体反应方程式如下:R-X + OH- → R-OH + X-R-X + OR' → R-OR' + X-这种反应称为亲核取代反应,其中OH-或OR'为亲核试剂,R和X分别代表有机基团和卤素原子。
2. 氨或胺的取代反应:卤代烃与氨或胺反应可以生成相应的胺或胺盐。
具体反应方程式如下:R-X + NH3 → R-NH2 + HXR-X + RNH2 → R-NHR' + HX这种反应可以通过控制反应条件和反应物的选择来对生成物进行调控。
3. 芳香化合物的取代反应:芳香化合物的取代反应是有机化学中的重要反应。
卤代烃作为芳烃的取代试剂,可以发生芳香取代反应。
具体反应方程式如下:Ar-X + Nu- → Ar-Nu + X-Ar-X + Ar'-ONa → Ar-Ar' + X- + Na+这种反应可以引入不同的官能团和基团,从而改变芳香化合物的性质。
二、卤代烃的消除反应1. 亲电质消除反应:卤代烃在鹰式消除剂的作用下,发生亲电质消除反应。
具体反应方程式如下:R-X + Z → R-Z + X-其中,Z为鹰式消除剂。
这种反应可以生成亲电质和卤素离子。
2. 氢氧化物消除反应:卤代烃在碱性条件下,通过内消除反应,发生氢氧化物消除。
具体反应方程式如下:R-X + OH- → R-H + X-这种反应可以生成烯烃或炔烃等不饱和化合物。
有机化学中的炔烃的合成方法有机化学中炔烃的合成方法炔烃是一类具有三重键的有机化合物,具有广泛的应用领域,如医药、农药、材料科学等。
为了满足不同领域对炔烃的需求,有机化学家们通过多种方法开发出了一系列有效的炔烃合成方法。
本文将探讨有机化学中炔烃的合成方法,重点介绍一些常用的合成途径。
一、酸催化的炔烃合成方法酸催化是炔烃常用的合成方法之一,通过酸催化反应可以将适当的化合物转化为炔烃。
常用的酸催化反应有卤代烃的脱卤化反应、芳香醇的脱水反应和酯的热裂解反应等。
这些反应通常需要较高的温度和酸催化剂,反应条件较为苛刻。
二、金属催化的炔烃合成方法金属催化是炔烃合成的重要方法之一,在有机化学领域中得到了广泛的应用。
常见的金属催化炔烃合成方法有钯催化的交叉偶联反应、铜催化的瑞利大反应和铑催化的环加成反应等。
1. 钯催化的交叉偶联反应钯催化的交叉偶联反应是合成炔烃的重要方法之一。
该方法通过将含有卤素基团的化合物和含有炔基团的化合物进行反应,以产生新的炔烃化合物。
常见的交叉偶联反应有钯催化的Suzuki偶联反应、钯催化的Sonogashira偶联反应等。
2. 铜催化的瑞利大反应铜催化的瑞利大反应是一种常见的合成炔烃的方法。
这种反应可以将含有卤素基团的芳香化合物和含有炔基团的有机锌试剂反应,以合成炔烃。
瑞利大反应是高效、环境友好的方法,被广泛应用于炔烃的合成。
3. 铑催化的环加成反应铑催化的环加成反应是一类高效的合成炔烃的方法。
这种反应基于炔丙基金属中间体的形成,通过环外配体的替代反应来构建炔烃的碳链。
铑催化的环加成反应在有机合成中具有广泛的应用,能够合成多种不同结构的炔烃。
三、羰基化合物的脱羰基反应羰基化合物的脱羰基反应是一种合成炔烃的重要方法。
这种反应通过在适当条件下将含有羰基基团的化合物进行脱羰基反应,从而生成炔烃。
常见的脱羰基反应有马尔尼科夫反应、礼山氏反应等。
四、氧化嘧啶的还原氧化嘧啶化合物可通过还原反应合成炔烃。
高中有机化学官能团汇总1. 烃类官能团- 烯烃:含有双键的烃类,如烯烃(C=C)。
常见的官能团有烯烃基(-C=C-)。
- 炔烃:含有三键的烃类,如炔烃(C≡C)。
常见的官能团有炔烃基(-C≡C-)。
2. 羟基官能团- 醇:含有羟基(-OH)的有机化合物。
常见的官能团有羟基(-OH)。
- 酚:含有苯环上的羟基的化合物。
常见的官能团有苯酚基(-C6H5OH)。
3. 羧基官能团- 酸:含有羧基(-COOH)的有机化合物。
常见的官能团有羧基(-COOH)。
4. 醛酮官能团- 醛:含有羰基(-C=O)的有机化合物。
常见的官能团有醛基(-CHO)。
- 酮:含有羰基(-C=O)的有机化合物。
常见的官能团有酮基(-COR)。
5. 氨基官能团- 胺:含有氨基(-NH2)的有机化合物。
常见的官能团有氨基(-NH2)。
6. 卤素官能团- 卤代烃:含有卤素(F、Cl、Br、I)的有机化合物。
常见的官能团有卤素基(-X,X为卤素符号)。
7. 醚化合物和酯类官能团- 醚:含有氧原子的链状结构。
常见的官能团有醚基(-O-)。
- 酯:含有酯基(-COO-)的有机化合物。
常见的官能团有酯基(-R-COO-R')。
8. 脂肪族和芳香族类官能团- 脂肪族:指脂肪酸及其衍生物,如醇、醚、酮、酯等。
- 芳香族:指苯环及其衍生物,如苯胺、硝基苯、羟基苯等。
此文档总结了高中化学中常见的有机化学官能团,希望对学习有机化学的学生有所帮助。
contents •炔烃概述与结构特点•炔烃物理性质与化学性质•炔烃合成方法与路线设计•炔烃在有机合成中应用•炔烃分析方法与鉴定技术•实验操作注意事项及安全防护措施目录炔烃定义及分类定义分类结构特点与化学键性质结构特点化学键性质炔烃中的碳-碳三键具有较高的反应活性,容易发生加成反应、氧化反应等。
命名规则及同分异构现象命名规则同分异构现象炔烃的熔沸点炔烃的密度炔烃的溶解性030201物理性质表现化学性质活泼性分析炔烃的加成反应炔烃的氧化反应炔烃的聚合反应典型反应类型举例炔烃的加成反应举例乙炔与氢气在催化剂存在下发生加成反应,生成乙烯。
炔烃的氧化反应举例乙炔被高锰酸钾氧化,生成二氧化碳和水。
炔烃的聚合反应举例乙炔在特定条件下发生聚合反应,生成聚乙炔。
常见合成方法介绍末端炔烃的制备乙炔的制备通过卤代烃与金属反应得到末端炔烃,如碘乙烷与镁反应得到乙炔。
内炔烃的制备路线设计原则原料易得,成本低廉。
反应条件温和,易于操作。
产物易于分离提纯,收率高。
优化策略选择合适的催化剂和反应条件,提高反应速率和选择性。
01 02原料选择反应条件产物分离提纯结果分析实例分析:某炔烃合成过程解析炔烃的取代反应利用炔烃中的碳碳三键活性,进行取代反应,引入新的官能团或侧链。
炔烃的加成反应通过亲电加成、亲核加成等反应,将炔烃转化为其他官能团,如醇、醛、酮等。
炔烃的环化反应通过分子内或分子间的环化反应,构建环状化合物,如环戊二烯、苯等。
作为合成子参与反应构建复杂分子骨架策略炔烃的偶联反应利用过渡金属催化剂,实现炔烃与卤代烃、烯烃等之间的偶联反应,构建碳碳键。
炔烃的聚合反应通过炔烃的聚合反应,合成高分子化合物,如聚乙炔等。
炔烃的环加成反应利用炔烃与烯烃、醛、酮等之间的环加成反应,构建复杂环状化合物。
案例分享:具有生物活性化合物合成抗癌药物紫杉醇的合成01天然产物全合成的案例02药物分子的设计与合成031 2 3气相色谱法(GC)高效液相色谱法(HPLC)薄层色谱法(TLC)电子轰击质谱(EI-MS)01化学电离质谱(CI-MS)02场解吸质谱(FD-MS)03其他辅助手段简介红外光谱(IR)核磁共振(NMR)紫外可见光谱(UV-Vis)实验操作规范流程和注意事项熟悉实验步骤,检查实验器材和试剂是否齐全、完好。
乙炔 炔烃知识重点1.乙炔的分子结构、化学性质、实验室制法; 2.炔烃的组成、结构、通式、通性。
炔烃是一类含有碳碳三键的脂肪烃。
其通式为CnH2n-2,属于不饱和烃。
一、乙炔分子的结构和组成分子式 电子式 结构式 结构简式 C 2H 2 H -C ≡C -H CH ≡CH 或 HC ≡CH 空间结构:直线型,键角1800 乙炔是无色、无味的气体,微溶于水几类重要烃的代表物比较二、乙炔的实验室制法CaC 2+2H 2O C 2H 2↑+Ca(OH)2 实验中采用块状CaC2和饱和食盐水,为何? 为了减缓电石与水的反映速度,实验室长滴加 饱和食盐水而不是直接滴加水。
三、化学性质 (1)氧化反映a.燃烧 2CH≡CH+5O 2−−→−点燃4CO 2+2H 2O 火焰敞亮,并伴有浓烟。
b.易被酸性KMnO 4溶液氧化,乙炔能使酸性KMnO4溶液褪色。
(2)加成反映乙炔与乙烯类似,也可以与溴水中的溴发生加成反映而使溴水褪色,且加成也是分步进行的;乙炔除和溴可发生加成反映外,在必然条件下还可以与氢气、氯化氢等发生加成反映。
乙炔与氢气加成时第一步加成产物为乙烯,第二步产物为乙烷, 乙炔是一种重要的大体有机原料,可以用来制备氯乙烯HC≡CH+HCl H 2C==CHCl四、炔烃1.炔烃的概念分子里含有碳碳三键的一类链烃 2.炔烃的通式 C n H 2n -2烯烃在组成上比等碳原子数的饱和烷烃少两个氢,通式变成C n H 2n ,炔烃的碳碳叁键,使得分子内氢原子数比等碳原子数的烯烃又少了两个,故其通式应为C n H 2n -2 3.炔烃的物理性质①一系列无支链、叁键位于第一个碳原子和第二个碳原子之间的炔烃,随着分子里碳原子数的增加,也就是相对分子质量的增加,熔沸点逐渐升高,相对密度逐渐增大; ②炔烃中n ≤4时,常温常压下为气态,其他的炔烃为液态或固态; ③炔烃的相对密度小于水的密度; ④炔烃不溶于水,但易溶于有机溶剂。
乙炔 炔烃
知识重点
1.乙炔的分子结构、化学性质、实验室制法; 2.炔烃的组成、结构、通式、通性。
炔烃是一类含有碳碳三键的脂肪烃。
其通式为CnH2n-2,属于不饱和烃。
一、乙炔分子的结构和组成
分子式 电子式 结构式 结构简式 C 2H 2 H -C ≡C -H CH ≡CH 或 HC ≡CH
空间结构:直线型,键角1800
乙炔是无色、无味的气体,微溶于水
几类重要烃的代表物比较
二、乙炔的实验室制法
CaC 2+2H 2O C 2H 2↑+Ca(OH)2 实验中采用块状CaC2和饱和食盐水,为什么? 为了缓解电石与水的反应速率,实验室长滴加 饱和食盐水而不是直接滴加水。
三、化学性质 (1)氧化反应
a.燃烧 2CH≡CH+5O 2−−→−点燃
4CO 2+2H 2O 火焰明亮,并伴有浓烟。
b.易被酸性KMnO 4溶液氧化,乙炔能使酸性KMnO4溶液褪色。
(2)加成反应
乙炔与乙烯类似,也可以与溴水中的溴发生加成反应而使溴水褪色,且加成也是分步进行的;
乙炔除了和溴可发生加成反应外,在一定条件下还可以与氢气、氯化氢等发生加成反应。
乙炔与氢气加成时第一步加成产物为乙烯,第二步产物为乙烷, 乙炔是一种重要的基本有机原料,可以用来制备氯乙烯
HC≡CH+HCl H 2C==CHCl
四、炔烃
1.炔烃的概念
分子里含有碳碳三键的一类链烃 2.炔烃的通式 C n H 2n -2
烯烃在组成上比等碳原子数的饱和烷烃少两个氢,通式变为C n H 2n ,炔烃的碳碳叁键,使得分子内氢原子数比等碳原子数的烯烃又少了两个,故其通式应为C n H 2n -2 3.炔烃的物理性质
①一系列无支链、叁键位于第一个碳原子和第二个碳原子之间的炔烃,随着分子里碳原子数的增加,也就是相对分子质量的增加,熔沸点逐渐升高,相对密度逐渐增大; ②炔烃中n ≤4时,常温常压下为气态,其他的炔烃为液态或者固态; ③炔烃的相对密度小于水的密度; ④炔烃不溶于水,但易溶于有机溶剂。
4.炔烃的化学性质
由于炔烃中都含有相同的碳碳叁键,炔烃的化学性质就应与乙炔相似,如容易发生加成反应、氧化反应等,可使溴的四氯化碳溶液、溴的水溶液及酸性KMnO 4溶液褪色等。
也可以利用其能使上述几种有色溶液褪色来鉴别炔烃和烷烃,另外在足够的条件下,炔烃也能发生加聚反应生成高分子化合物,如有一种导电塑料就是将聚乙炔加工而成的。
1,2—二溴乙烯
1,1,2,2—四溴乙烷 催化剂
△
氯乙烯
芳香烃 1. 定义:分子中含有苯环的一类烃属于芳香烃
2. 最简单的芳香烃是
一、苯的物理性质
二、苯的结构
(1)分子式:C 6H 6,
(2)结构式: 结构简式
_或
(3)结构特点:
成键特点:6个碳原子之间的键完全相同,是介于碳碳单键和碳碳双键
之间的特殊的键。
空间构形:平面正六边形,分子里12个原子共平面。
C C
C C
C C H
H H
H H
H
苯
三、苯的化学性质
在通常情况下比较稳定,在一定条件下能发生氧化、加成、取代等反应。
四、苯的同系物
(1)概念:苯环上的氢原子被烷基取代的产物。
通式为:C n H2n-6(n≥6)。
(2)化学性质(以甲苯为例)
①氧化反应:甲苯能使酸性KMnO4溶液褪色,说明苯环对烷基的影响使其取代基易被氧化。
②取代反应
a.苯的同系物的硝化反应
①甲苯与HNO3的硝化反应,主要产物为三取代,而苯的硝化反应,产物主要是一取代。
②注意苯环上三个硝基(—NO2)的位置及写法。
三个硝基(—NO2)均处于彼此的间位上,
且都是氮原子与苯环上的碳原子相连。
③三硝基甲苯(TNT)是一种淡黄色的晶体,不溶于水。
它是一种烈性炸药,常用于国
际开矿,筑路、兴修水利等。
b.苯的同系物可发生溴代反应
有铁作催化剂时:
光照时:
烃的来源及应用
卤代烃
一、卤代烃
1. 概念:
烃分子中的氢原子被卤素原子取代后所生成的化合物,叫做卤代烃。
2. 分类:
按卤原子数目:一卤、二卤、多卤代烃。
按卤元素不同:氟代烃、氯代烃、溴代烃、碘代烃等。
3. 卤代烃的命名:
A. 含连接—X的C原子的最长碳链为主链,命名“某烷”。
B. 从离—X原子最近的一端编号,命名出—原子与其它取代基的位置和名称。
例:
二、溴乙烷
1. 溴乙烷的结构
乙烷分子里的一个氢原子被溴原子取代就得到溴乙烷,分子式是C 2H 5Br ,
结构简式 C 2H 5Br CH 3CH 2Br
2. 溴乙烷的物理性质
无色液体,沸点38.4℃,密度比水的大。
3. 溴乙烷的化学性质
C —Br 键为极性键,由于溴原子吸引电子能力强, C —Br 键易断裂;由于官能团(-Br )的作用,乙基可能被活化。
溴乙烷的化学性质比乙烷活泼,既易发生水解反应,又可以发生消去反应。
(1)水解反应(与氢氧化钠溶液共热)
溴乙烷在NaOH 存在的条件下可以跟水发生水解反应,生成乙醇和溴化氢:
取溴乙烷加入氢氧化钠溶液,共热;加热完毕,取上层清液,加入硝酸酸化的硝酸银溶液,观察有无浅黄色沉淀析出。
现象描述: 有浅黄色沉淀析出
此反应叫做水解反应,属于取代反应!
(2)消去反应(与氢氧化钠的醇溶液共热)
CH 3CH 2Br + Na OH
CH 3CH 2OH + Na Br
水
△
溴乙烷与强碱(NaOH或KOH)的醇溶液共热,从分子中脱去HBr,生成乙烯:取溴乙烷加入氢氧化钠的醇溶液,共热;将产生的气体通入酸性高锰酸钾溶液中,观察酸性高锰酸钾溶液是否褪色。
现象:有气泡产生;油层逐渐减少至消失,酸性高锰
酸钾溶液褪色
取反应后的液体加入稀硝酸酸化后,加硝酸银溶液,
观察有浅黄色沉淀生成现象。
A.生成的气体通入高锰酸钾溶液前要先通入盛水的试管?
除CH3CH2OH蒸汽
B.还可以用什么方法鉴别乙烯,这一方法还需要将生成的气体先通入盛水的试管中吗?
实验的注意事项
C2H5Br与NaOH的醇溶液共热实验的注意事项:
1.反应物:溴乙烷+氢氧化钠的醇溶液;
2.反应条件:共热
3.产物检验:将产生的气体通入溴水或酸性高锰酸钾溶液中,二者均褪色。
有机化合物(卤代烃等)在一定条件下从一个分子中脱去一个小分子(卤代氢等),而生成不饱和(含双键或三键)化合物的反应,叫消去反应。
与卤原子相连碳原子相邻的碳原子上有氢才能发生消去反应
卤代烃中无相邻C或相邻C上无H的不能发生消去反应
能否通过消去反应制备乙炔?用什么卤代烃?
强调:溴乙烷的水解反应的条件:碱性条件下水解。
消去反应发生的条件:与强碱的醇溶液共热。
比较溴乙烷的取代反应和消去反应,体会反应条件对化学反应的影响。
取代反应消去反应
反应物
CH3CH2Br CH3CH2Br
反应
条件
NaOH水溶液、加热NaOH醇溶液、加热
断键
C-Br C-Br,邻碳C-H
生成物
CH3CH2OH CH2=CH2
结论
溴乙烷和NaOH在不同条件下发生不同类型的反应。
乙烷乙烯乙炔化学式C2H6 C2H4 C2H2电子式
结构式
结构特点C - C(单键),
碳原子的化合达
“饱和”
C = C(双键),
碳原子的化合价未
达“饱和”
(叁键),
碳原子的化合价未
CH3Cl
能否都发生消去反应?
C CH2Cl H3C
CH3
CH3
CH3CH CH BrCH3
CH3
、。