二次函数面积最值问题的4种解法
- 格式:pdf
- 大小:920.94 KB
- 文档页数:6
解题秘诀二次函数最值的4种解法二次函数是高中数学中的一个重要知识点,掌握了解题的秘诀和方法,就可以更好地解决与二次函数相关的各种问题。
本文将介绍四种解法来求解二次函数的最值问题。
一、二次函数的最值根据导数解法要求解二次函数的最值,可以通过求导数的方法来解决。
具体步骤如下:1. 将二次函数表示为一般式:f(x) = ax^2 + bx + c。
2. 对函数进行求导,得到导函数:f'(x) = 2ax + b。
3.导函数表示了二次函数的斜率,要求函数的最值,就是要求导函数为零点时的x值。
4. 解方程2ax + b = 0,求得x = -b / 2a。
5.将求得的x值代入二次函数,计算得到对应的y值。
6.x和y的值就是二次函数的最值。
二、二次函数的最值根据顶点法解法顶点法也是求解二次函数的最值的一种方法,具体步骤如下:1. 将二次函数表示为一般式:f(x) = ax^2 + bx + c。
2.求出二次函数的顶点坐标,顶点的x值为-x/2a。
3.将求得的x值代入二次函数,计算得到对应的y值。
4.x和y的值就是二次函数的最值。
三、二次函数的最值根据平移法解法平移法是一种通过平移变换求解二次函数最值的方法,具体步骤如下:1. 将二次函数表示为一般式:f(x) = ax^2 + bx + c。
2.将二次函数表示为顶点形式:f(x)=a(x-h)^2+k,其中(h,k)为顶点坐标。
3.根据函数的几何性质,二次函数的最值就是顶点的纵坐标k。
四、二次函数的最值根据因式分解解法因式分解是一种求解二次函数最值的常用方法,具体步骤如下:1. 将二次函数表示为一般式:f(x) = ax^2 + bx + c。
2.将二次函数进行因式分解:f(x)=a(x-x1)(x-x2),其中x1和x2为二次函数的两个零点。
3.根据函数的几何性质,二次函数的最值为x轴与二次函数的拐点处的纵坐标。
通过以上四种解法,我们可以灵活地解决二次函数的最值问题。
(D)二次函数中的面积计算问题【典型例子】例如,如图所示,二次函数2y x bx c =++图像x 在A 和B 两点(A 在B 的左边)与y 轴相交,在C 点与轴相交,顶点为M ,MAB ∆为直角三角形,图像的对称轴是一条直线2-=x ,该点P 是两点之间抛物线上的移动点,A C ,则PAC ∆面积的最大值为(C )A.274 B. 112C 。
278D.3 二次函数中常见的面积问题类型:1.选择填空的简单应用2.不规则三角形的面积用S=3.使用4.使用相似的三角形5.使用分割法将不规则图形转为规则图形例 1如图 1 所示,已知正方形ABCD 的边长为 1 , E , F , G , H 为每边的点, AE=BF=CG=DH ,设面积为小s 正方形EFGH 为, AE 为x , 那么about s 的x 函数图大致为 (乙)示例 2.回答以下问题:如图1所示,抛物线的顶点坐标为C 点( 1,4 ),与x 轴相交于A 点( 3 , 0),与y 轴相交于B 点。
抛物线和直线AB 的解析公式;(2)求△ CA AB 和S △ CAB 的垂直高度CD ;(3)假设点P 是抛物线上(第一象限)上的一个移动点,是否存在点P ,使得S △ PA B = 89S △ CA B ,如果存在,求点P 的坐标;如果不存在,请解释原因。
思想分析这个问题是二次函数中的常见面积问题。
该方法不是唯一的。
可以使用截补法,但是有点麻烦。
如图第10题xyABCOM图1B铅垂高水平宽ha图2A xC Oy ABD 112所示,我们可以画出一种计算三角形面积的新方法:ah S ABC 21=∆即三角形的面积等于水平宽度与前导垂直乘积的一半。
掌握了这个公式之后,思路就直截了当,过程也比较简单,计算量也相对少了很多。
答: (1)据已知,抛物线的解析公式可以设为y 1 = a ( x - 1 ) 2+ 4 ( a ≠ 0 ) 。
将A (3, 0)代入解析表达式,得到a = - 1 ,∴抛物线的解析公式为y 1 = - ( x - 1 ) 2+ 4,即y 1 = - x 2+2 x +3。
铅垂线法二次函数面积最大值问题铅垂线法二次函数面积最大值问题1. 引言在数学中,二次函数是一种非常重要的函数形式。
它以抛物线的形式呈现,具有丰富的几何和代数特性。
铅垂线法是一种常见的解决问题的方法,可以应用于许多数学和物理问题中。
本文将介绍铅垂线法在二次函数面积最大值问题中的应用,探讨如何通过该方法求解最优解。
2. 二次函数的基本形式二次函数可以写为 y = ax^2 + bx + c 的形式,其中 a、b 和 c 是常数,a ≠ 0。
它的图像是一个抛物线,开口的方向取决于 a 的正负。
二次函数的图像关于一个对称轴对称,这个对称轴可以用铅垂线表示。
铅垂线是通过顶点并与抛物线垂直的线段,它对应的 x 坐标就是对称轴的 x 坐标。
3. 铅垂线法的基本原理铅垂线法是一种基于几何和代数思想的问题解决方法。
对于一个给定的二次函数,我们希望找到一个特定的线段,使得这个线段和 x 轴以及抛物线所围成的面积达到最大值。
根据几何原理,这个线段应该与铅垂线重合。
4. 铅垂线法步骤以下是使用铅垂线法求解铅垂线方程和最大面积的一般步骤:1)确定二次函数的标准形式,并找出对称轴的 x 坐标;2)以对称轴上的一点作为铅垂线的起点,并确定该线段的长度;3)利用铅垂线的起点和终点,计算所围成的面积;4)随着铅垂线的移动,不断重复步骤 2 和步骤 3;5)比较每一次计算的面积值,找到最大值对应的铅垂线长度,得到最大面积。
5. 铅垂线法在二次函数面积最大值问题中的应用对于给定的二次函数 y = ax^2 + bx + c,我们可以通过铅垂线法求解铅垂线方程。
假设对称轴的 x 坐标为 p,则铅垂线的方程可以表示为 x = p。
利用二次函数的顶点公式,我们可以得到顶点的坐标 (-b/2a, f(-b/2a))。
铅垂线的起点坐标可以表示为 (p, f(p))。
为了计算所围成的面积,我们可以使用定积分。
根据定积分的定义,对于一个 x 坐标在 p 和 q 之间的函数 f(x),所围成的面积可以表示为∫[p,q] f(x)dx。
因材教育二次函数中的面积最值问题从近几年的各地中考试卷来看,求面积的最值问题在压轴题中比较常见,而且通常与二次函数相结合.使解题具有一定难度,本文以一道中考题为例,介绍几种不同的解题方法,供同学们在解决这类问题时参考.如图1,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC 的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)如图2,在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.解答(1)抛物线解析式为y=-x2-2x+3;(2)Q(-1,2);下面着重探讨求第(3)小题中面积最大值的几种方法.一、补形、割形法几何图形中常见的处理方式有分割、补形等,通过对图形的这些直观处理,一般能辅助解题,使解题过程简捷、明快.此类方法的要点在于把所求图形的面积进行适当的补或割,变成有利于表示面积的图形.方法一如图3,设P点(x,-x2-2x+3)(-3<x<0).方法二如图4,设P 点(x ,-x 2-2x +3)(-3<x<0).(下略.)二、“铅垂高,水平宽”面积法如图5,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h)”,我们可得出一种计算三角形面积的另一种方法:S △ABC =12ah ,即三角形面积等于水平宽与铅垂高乘积的一半.根据上述方法,本题解答如下:解如图6,作PE ⊥x 轴于点E ,交BC 于点F .设P 点(x ,-x 2-2x +3)(-3<x<0).∴点P 坐标为(-32,154)三、切线法若要使△PBC 的面积最大,只需使BC 上的高最大.过点P 作BC 的平行线l ,当直线l 与抛物线有唯一交点(即点P)时,BC 上的高最大,此时△PBC 的面积最大,于是,得到下面的切线法.解如图7,直线BC 的解析式是y =x +3,过点P 作BC 的平行线l ,从而可设直线l 的解析式为:y =x +b .=278.四、三角函数法本题也可直接利用三角函数法求得.解如图8,作PE ⊥x 轴交于点E ,交BC 于点F ,怍PM ⊥BC 于点M .设P 点(x ,-x 2-2x +3)(-3<x<0),则F(x ,x +3).从以上四种解法可以看到,本题解题思路都是过点P 作辅助线,然后利用相关性质找出各元素之间的关系进行求解.如此深入挖掘一道题的多种解法,可使我们摆脱题海战术,提高解题能力.同时,善于总结一道题的多种解法能加快解题速度,提高解题效率,也有利于培养我们的钻研能力和创新精神.二次函数之面积问题(讲义)一、知识点睛1.二次函数之面积问题的处理思路①分析目标图形的点、线、图形特征;②依据特征、原则对图形进行割补、转化;③设计方案,求解、验证.面积问题的处理思路:公式、割补、转化.坐标系背景下问题处理原则:________________________,__________________________.2.二次函数之面积问题的常见模型①割补求面积——铅垂法:1()2APB B A S PM x x =⋅⋅-△1()2APB B A S PM x x =⋅⋅-△②转化法——借助平行线转化:若S △ABP =S △ABQ ,若S △ABP =S △ABQ ,当P ,Q 在AB 同侧时,当P ,Q 在AB 异侧时,PQ ∥AB .AB 平分PQ .二、精讲精练1.如图,抛物线经过A(-1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式.(2)点M是直线BC上方抛物线上的点(不与B,C重合),过点M作MN∥y轴交线段BC于点N,若点M的横坐标为m,请用含m 的代数式表示MN的长.(3)在(2)的条件下,连接MB,MC,是否存在点M,使四边形OBMC的面积最大?若存在,求出点M的坐标及四边形OBMC的最大面积;若不存在,请说明理由.2.如图,抛物线322++-=x x y 与直线1+=x y 交于A ,C 两点,其中C点坐标为(2,t ).(1)若P 是直线AC 上方抛物线上的一个动点,求△APC 面积的最大值.(2)在直线AC 下方的抛物线上,是否存在点G ,使得6AGC S =△?如果存在,求出点G 的坐标;如果不存在,请说明理由.3.如图,抛物线223y x x =--与x 轴交于A ,B 两点,与直线y x p =-+交于点A 和点C (2,-3).(1)若点M 在抛物线上,且以点M ,A ,C 以及另一点N 为顶点的平行四边形ACNM 的面积为12,求M ,N 两点的坐标.(2)在(1)的条件下,若点Q 是x 轴下方抛物线上的一动点,当△QMN 的面积最大时,请求出△QMN 的最大面积及此时点Q 的坐标.4.如图,抛物线223y x x =-++与x 轴交于A ,B 两点,与y 轴交于点C ,对称轴与抛物线交于点P ,与直线BC 交于点M ,连接PB .(1)抛物线上是否存在异于点P 的一点Q ,使△QMB 与△PMB 的面积相等?若存在,求出点Q 的坐标;若不存在,请说明理由.(2)在第一象限对称轴右侧的抛物线上是否存在一点R ,使△RMP 与△RMB 的面积相等?若存在,求出点R 的坐标;若不存在,请说明理由.5.如图,已知抛物线2y x bx c =++与x 轴交于点A (1,0)和点B ,与y 轴交于点C (0,-3).(1)求抛物线的解析式.(2)如图,已知点H (0,-1).①在x 轴下方的抛物线上是否存在点D ,使得S △ABH =S △ABD ?若存在,求出点D 的坐标;若不存在,请说明理由.②在抛物线上是否存在点G (点G 在y 轴的左侧),使得S △GHC =S △GHA ?若存在,求出点G 的坐标;若不存在,请说明理由.【参考答案】一、知识点睛充分利用横平竖直的线段长函数特征几何特征互转二、精讲精练12。
初中数学:二次函数面积最值问题的4种解法原题:在(1)中的抛物线上的第二象限是否存在一点P,使△PBC的面积最大?若存在,求出P点的坐标及△PBC 的面积最大值,若没有,请说明理由。
考试题型,大多类似于此。
求面积最大值的动点坐标,并求出面积最大值。
一般解题思路和步骤是,设动点P的坐标,然后用代数式表达各线段的长。
通过公式计算,得出二次函数顶点式,则坐标和最值,即出。
解法一:补形,割形法。
方法要点是,把所求图像的面积适当的割补,转化成有利于面积表达的常规几何图形。
请看解题步骤。
解法二:铅锤定理,面积=铅锤高度×水平宽度÷2。
这是三角形面积表达方法的一种非常重要的定理。
铅锤定理,在教材上没有,但是大多数数学老师都会作为重点,在课堂上讲解。
因为,铅锤定理,在很多地方都用的到。
这里,也有铅锤定理的简单推导,建议大家认真体会。
解法二:铅锤定理,在求二次函数三角形面积最值问题,运用非常多。
设动点P的坐标,然后用代数式分别表达出铅锤高度和水平宽度,然后利用铅锤定理的计算公式,得出二次函数,必有最大值。
解法三:切线法。
这其实属于高中内容。
但是,基础好的同学也很容易理解,可以看看,提前了解一下。
解法四:三角函数法。
请大家认真看上面的解题步骤。
总之,从以上的四种解法可以得出一个规律。
过点P做辅助线,然后利用相关性质,找出各元素之间的关系。
设动点P的坐标,然后找出各线段的代数式,再通过面积计算公式,得出二次函数顶点式,求出三角形面积的最大值。
对于同学们中考数学来说,只要你熟练掌握解法一和解法二,那么二次函数几何综合题中,求三角形面积最大值问题,就非常简单了。
二次函数的实际应用——面积最大(小)值问题知识要点:在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。
求最值的问题的方法归纳起来有以下几点: 1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值; 3.建立函数模型求最值;4.利用基本不等式或不等分析法求最值.[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少? (2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少? 答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S tt t t y =∴+-=<<+-=+--⨯=+-=⋅-=[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米则长为:x x 4342432-=+-(米)则:)434(x x S -= x x 3442+-=4289)417(42+--=x ∵104340≤-<x∴2176<≤x∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的范围内, 而当2176<≤x 内,S 随x 的增大而减小,∴当6=x 时,604289)4176(42max =+--=S (平方米) 答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大.[例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积. 解:设矩形PNDM 的边DN=x ,NP=y , 则矩形PNDM 的面积S=xy (2≤x≤4) 易知CN=4-x ,EM=4-y .过点B 作BH ⊥PN 于点H 则有△AFB ∽△BHP ∴PH BH BF AF =,即3412--=y x, ∴521+-=x y , x x xy S 5212+-==)42(≤≤x ,此二次函数的图象开口向下,对称轴为x=5, ∴当x≤5时,函数值y 随x 的增大而增大, 对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S . 【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.[例4]:某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD,点E、F分别在边BC和CD上,△CFE、△ABE和四边形AEFD均由单一材料制成,制成△CFE、△ABE 和四边形AEFD的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH.(1)判断图(2)中四边形EFGH是何形状,并说明理由;(2)E、F在什么位置时,定制这批地砖所需的材料费用最省?解:(1) 四边形EFGH是正方形.图(2)可以看作是由四块图(1)所示地砖绕C点按顺(逆)时针方向旋转90°后得到的,故CE=CF =CG.∴△CEF是等腰直角三角形因此四边形EFGH是正方形.(2)设CE=x, 则BE=0.4-x,每块地砖的费用为y元那么:y =x×30+×0.4×(0.4-x)×20+[0.16-x-×0.4×(0.4-x)×10])24.02.0(102+-=xx3.2)1.0(102+-=x)4.00(<<x当x=0.1时,y有最小值,即费用为最省,此时CE=CF=0.1.答:当CE=CF=0.1米时,总费用最省.作业布置:1.(2008浙江台州)某人从地面垂直向上抛出一小球,小球的高度h(单位:米)与小球运动时间t(单位:秒)的函数关系式是,那么小球运动中的最大高度=最大h 4.9米.2.(2008庆阳市)兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y(元/平方米)随楼层数x(楼)的变化而变化(x=1,2,3,4,5,6,7,8);已知点(x,y)都在一个二次函数的图像上,(如图所示),则6楼房子的价格为元/平方米.提示:利用对称性,答案:2080.3.如图所示,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )A .424m B .6 m C .15 m D .25m 解:AB =x m ,AD=b ,长方形的面积为y m 2∵AD ∥BC ∴△MAD ∽△MBN ∴MB MA BN AD =,即5512x b -=,)5(512x b -= )5(512)5(5122x x x x xb y --=-⋅==, 当5.2=x 时,y 有最大值.4.(2008湖北恩施)将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大( C ) A .7 B .6 C .5 D .45.如图,铅球运动员掷铅球的高度y (m)与水平距离x (m)之间的函数关系式是:35321212++-=x x y ,则该运动员此次掷铅球的成绩是( D ) A .6 mB .12 mC .8 mD .10m解:令0=y ,则:02082=--x x 0)10)(2(=-+x x(图5) (图6) (图7)6.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图6,如果抛物线的最高点M 离墙1 m ,离地面340m ,则水流落地点B 离墙的距离OB 是( B )A .2 mB .3 mC .4 mD .5 m解:顶点为)340,1(,设340)1(2+-=x a y ,将点)10,0(代入,310-=a 令0340)1(3102=+--=x y ,得:4)1(2=-x ,所以OB=3 7.(2007乌兰察布)小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图7所示,若命中篮圈中心,则他与篮底的距离L 是( B )8.某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少? 解:)240(x x y -=)20(22x x --=200)10(22+--=x∵152400≤-<x ∴205.12<≤x∵二次函数的顶点不在自变量x 的范围内, 而当205.12<≤x 内,y 随x 的增大而减小, ∴当5.12=x 时,5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.9.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ? (2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,则宽为350x-米,设面积为S 平方米. )50(313502x x x x S --=-⋅= 3625)25(312+--=x∴当25=x 时,3625max =S (平方米)即:鸡场的长度为25米时,面积最大.(2) 中间有n 道篱笆,则宽为250+-n x米,设面积为S 平方米. 则:)50(212502x x n n x x S -+-=+-⋅= 2625)25(212++-+-=n x n∴当25=x 时,2625max +=n S (平方米)由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米. 即:使面积最大的x 值与中间有多少道隔墙无关.10.如图,矩形ABCD 的边AB=6 cm ,BC=8cm ,在BC 上取一点P ,在CD 边上取一点Q ,使∠APQ 成直角,设BP=x cm ,CQ=y cm ,试以x 为自变量,写出y 与x 的函数关系式.ABCD PQ解:∵∠APQ=90°, ∴∠APB+∠QPC=90°. ∵∠APB+∠BAP=90°,∴∠QPC=∠BAP ,∠B=∠C=90° .∴△ABP ∽△PCQ.,86,yxx CQ BP PC AB =-= ∴x x y 34612+-=.11.(2006年南京市)如图,在矩形ABCD 中,AB=2AD ,线段EF=10.在EF 上取一点M ,•分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN=x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少? 解:∵矩形MFGN ∽矩形ABCD ∴MF=2MN =2x ∴ EM=10-2x ∴S=x (10-2x )=-2x 2+10x=-2(x-2.5)2+12.5 ∵1020<<x ,∴50<<x当x=2.5时,S 有最大值12.5易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 0.5 米. 答案:如图所示建立直角坐标系则:设c ax y +=2 将点)1,5.0(-,)5.2,1(代入,⎩⎨⎧+=+-⨯=ca c a 5.2)5.0(12,解得⎩⎨⎧==5.02c a 5.022+=x y 顶点)5.0,0(,最低点距地面0.5米.13.(2008黑龙江哈尔滨)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当x 是多少时,矩形场地面积S 最大?最大面积是多少? 解:(1)根据题意,得x x x xS 3022602+-=⋅-=自变量的取值范围是(2)∵01<-=a ,∴S 有最大值当时,答:当为15米时,才能使矩形场地面积最大,最大面积是225平方米.14.(2008年南宁市)随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图12-①所示;种植花卉的利润与投资量成二次函数关系,如图12-②所示(注:利润与投资量的单位:万元)(1)分别求出利润与关于投资量的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少? 解:(1)设=,由图12-①所示,函数=的图像过(1,2),所以2=,故利润关于投资量的函数关系式是=;因为该抛物线的顶点是原点,所以设2y =,由图12-②所示,函数2y =的图像过(2,2),所以,故利润2y 关于投资量的函数关系式是2221x y =; (2)设这位专业户投入种植花卉万元(),则投入种植树木(x -8)万元,他获得的利润是万元,根据题意,得==+21y y +== ∵021>=a ∴当时,的最小值是14;∴他至少获得14万元的利润.因为,所以在对称轴2=x 的右侧, z 随x 的增大而增大所以,当8=x 时,z 的最大值为32.15.(08山东聊城)如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.解:(1)设正方形的边长为cm,则.即.解得(不合题意,舍去),.剪去的正方形的边长为1cm.(2)有侧面积最大的情况.设正方形的边长为cm,盒子的侧面积为cm2,则与的函数关系式为:.即.改写为.当时,.即当剪去的正方形的边长为2.25cm时,长方体盒子的侧面积最大为40.5cm2.设正方形的边长为cm ,盒子的侧面积为cm 2.若按图1所示的方法剪折, 则与的函数关系式为:x xx x y ⋅-⋅+-=22102)28(2 即.当时,.若按图2所示的方法剪折, 则与的函数关系式为:x xx x y ⋅-⋅+-=2282)210(2. 即.当时,.比较以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm 时,折成的有盖长方体盒子的侧面积最大,最大面积为cm 2.16.(08兰州)一座拱桥的轮廓是抛物线型(如图16所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m .(1)将抛物线放在所给的直角坐标系中(如图17所示),求抛物线的解析式; (2)求支柱的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.解:(1)根据题目条件,的坐标分别是.设抛物线的解析式为,11 将的坐标代入, 得 解得. 所以抛物线的表达式是.(2)可设,于是从而支柱的长度是米.(3)设是隔离带的宽,是三辆车的宽度和,则点坐标是. 过点作垂直交抛物线于, 则.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.。
二次函数的实际应用——面积最大(小)值问题知识要点:在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。
求最值的问题的方法归纳起来有以下几点:1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值;3.建立函数模型求最值;4.利用基本不等式或不等分析法求最值.[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少?(2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少?答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S t t t t y =∴+-=<<+-=+--⨯=+-=⋅-=Θ[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米则长为:x x 4342432-=+-(米)则:)434(x x S -=2 x x 3442+-= 4289)417(42+--=x ∵104340≤-<x∴2176<≤x ∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的范围内, 而当2176<≤x 内,S 随x 的增大而减小, ∴当6=x 时,604289)4176(42max =+--=S (平方米) 答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大.[例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.解:设矩形PNDM 的边DN=x ,NP=y ,则矩形PNDM 的面积S=xy (2≤x≤4)易知CN=4-x ,EM=4-y .过点B 作BH ⊥PN 于点H则有△AFB ∽△BHP∴PHBH BF AF =,即3412--=y x , ∴521+-=x y , x x xy S 5212+-==)42(≤≤x , 此二次函数的图象开口向下,对称轴为x=5,∴当x≤5时,函数值y 随x 的增大而增大,对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S . 【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.[例4]:某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省?解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点按顺(逆)时针方向旋转90°后得到的,故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形.(2)设CE =x , 则BE =0.4-x ,每块地砖的费用为y 元那么:y =x ×30+×0.4×(0.4-x )×20+[0.16-x -×0.4×(0.4-x )×10] )24.02.0(102+-=x x3.2)1.0(102+-=x )4.00(<<x当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省.作业布置:1.(2008浙江台州)某人从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是,那么小球运动中的最大高度=最大h 4.9米 .2.(2008庆阳市)兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);已知点(x ,y )都在一个二次函数的图像上,(如图所示),则6楼房子的价格为 元/平方米.5 m 12 m AB CD提示:利用对称性,答案:2080.3.如图所示,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )。
数学篇纵观近年来各地中考数学试题,一类以二次函数为载体,探讨图形面积的最值问题频频出现.这类试题整合了代数和几何的部分重要知识,并融合了许多数学方法,难度颇高.如何根据题目提供的信息,依据图形的变化特征,抓住解答问题的关键,从而化难为易,正确解题呢?对此,笔者介绍四种常用方法,希望能给同学们攻破难题带来帮助.一、割补法在平面直角坐标系中,当三角形任意一边均不在坐标轴上,或者不与坐标轴平行时,一般采用割补法求解.割补法分为两部分,割是指将图形分解成几部分分别求解;补是指将所求图形填上一部分,然后用补后的图形面积减去所补部分的面积.两种方法的实质都是将二次函数中图形面积的最值问题通过“转化”思想,化为“线段(和)”最值问题,间接地求出图形面积的最值.例1如图1,在平面直角坐标系中,二次函数y =x 2+2x -3交x 轴于点A ,B ,在y 轴上有一点E (0,1),连接AE .(1)求直线AE 的解析式;(2)若点D 为抛物线在x 轴负半轴下方的一个动点,求△ADE面积的最大值.图1解:(1)∵y =x 2+2x -3=(x +3)(x -1),∴当y =0时,x 1=-3,x 2=1,∴点A 的坐标为(-3,0),设直线AE 的解析式为y =kx +b ,∵过点A (-3,0),E (0,1),∴ìíî-3k +b =0,b =1,解得:ìíîïïk =13,b =1,∴直线AE 的解析式为y =13x +1;(2)如图1,过点D 作DG ⊥x 轴于点G ,延长DG 交AE 于点F ,设D (m ,m 2+2m -3),则F (m ,13m +1),∴DF =-m 2-2m +3+13m +1=-m 2-53m +4,∴S △ADE =S △ADF +S △DEF=12×DF ×AG +12DF ×OG =12×3×DF =32(-m 2-53m +4)=-32(m +56)2+16924,∴当m =-56时,△ADE 的面积取得最大值为16924.二、铅垂法如图2,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高”(h ).我们可以得出一种计算三角形面积的新方法:即三角形面积等于水平宽与铅垂高乘积的一半.这种方法我们称之为铅垂法.求二次函数中三角形面积的最值,往往可以转化为求铅垂高的最值,当铅垂高取得最大值时,三角形的面积最大.二次函数背景下三角形面积最值问题的几种解法四川绵阳陈霖数苑纵横23数学篇例2已知:如图3,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(-2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?图3解:(1)∵抛物线过点B(6,0)、C(-2,0),∴设抛物线解析式为y=a(x-6)(x+2),将点A(0,6)代入,得:-12a=6,解得:a=-12,所以抛物线的解析式为y=-12(x-6)(x+2)=-12x2+2x+6;(2)如图3,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB解析式为y=kx+b,将点A(0,6)、B(6,0)代入,得:ìíîb=6,6k+b=0,解得:ìíîk=-1,b=6,则直线AB的解析式为y=-x+6,设P(t,-12t2+2t+6),其中0<t<6,则N(t,-t+6),所以PN=PM-MN=-12t2+2t+6-(-t+6)=-12t2+3t,所以S△PAB=S△PAN+S△PBN=12PN⋅AG+12PN⋅BM=12PN(AG+BM)=12PN⋅OB=12×(-12t2+3t)×6=-32(t-3)2+272,所以当t=3,P位于(3,152)时,△PAB三、切线法切线法体现了数学中最为常见的数形结合思想,将三角形的一边作为三角形的底,只要求出高的最大值就可以求出面积的最值.将底边所在的直线平移,与抛物线只有一个交点,即相切时,两直线的距离即高的长度最大,然后将直线与抛物线的解析式联立方程组,求出切点的坐标,此时不用求出三角形面积的解析式就可直接运用三角形的面积公式求出最值.例3如图4,在平面直角坐标系xOy中,直线y=-x-4与x轴,y轴分别交于点A和点B.抛物线y=ax2+bx+c经过A,B两点,且对称轴为直线x=-1,抛物线与x轴的另一交点为点C.(1)求抛物线的函数表达式;(2)设点E是抛物线上一动点,且点E在直线AB下方.当△ABE的面积最大时,求点E的坐标,及△ABE面积的最大值S.图4解:(1)在y=-x-4中分别令x=0,y=0,可得点A(-4,0),B(0,-4),根据A,B坐标及对称轴为直线x=-1,可得方程组ìíîïïïï-b2a=-1,16a-4b+c=0,c=-4,解方程组可得:ìíîïïïïa=12,b=1,c=-4,∴抛物线的函数表达式为y=12x2+x-4;(2)设点E的坐标为(m,12m2数苑纵横数学篇上且距AB 最远,此时E 点所在直线与AB 平行,且与抛物线相切,只有一个交点,设点E 所在直线为l :y =-x +b ,联立得方程组:ìíîïïy =-x +b ,y =12x 2+x -4,消去y ,得:12x 2+2x -4-b =0,据题意得Δ=22-4×12(-4-b )=0,解得b =-6,∴直线l 的解析式为y =-x -6,联立方程,得ìíîïïy =-x -6,y =12x 2+x -4,解得:ìíîx =-2,y =-4,∴点E (-2,-4),过点E 作y 轴的平行线交直线AB 于H ,此时点N (-2,-2),EN =-2-(-4)=2,∴S △ABE =12EN ×AO =12×2×4=4,△ABE 面积的最大值为4.四、三角函数法对于三角形问题,三角函数的引入可以为求线段长度提供新的解题思路.在直角三角形中,只需要知道一边的长度和除直角外任意一个角的度数,就可以用三角函数式表示出其余的边长或高.然后将三角函数式带入三角形面积公式,求出三角形面积的解析式,利用二次函数的性质即可求得面积最值.例4如图5,已知抛物线y =-x 2+bx +c 经过点A (-1,0),B (3,0)两点,且与y 轴交于点C .(1)求抛物线的表达式;(2)设抛物线交y 轴于点C ,在抛物线上的第一象限上是否存在一点P ,使△PAC 的面积最大?若存在,求出点P 的坐标及△PAC 面积的最大值;若不存在,请说明理由.图5解:(1)把A (-1,0),B (3,0)代入y =-x 2+bx +c ,可得,{-1+b +c =0,-9-3b +c =0,解得{b =-2,c =3,∴抛物线的解析式为:y =-x 2-2x +3.(2)如图5,作PE ⊥x 轴于点E ,交AC 于点F ,作PM ⊥AC 于点M .设直线AC 的解析式为y =mx +n ,把B (-3,0)、C (0,3),代入得{-3m +n =0,n =3,解得{m =1,n =3,故直线BC 的解析式为y =x +3.设点P 的坐标为(x ,-x 2-2x +3)(-3<x <0),则点F 的坐标为(x ,x +3).由A 、C 坐标可知,AC =32,S ΔPAC =12AC ∙PM=12×32PF ∙sin ∠PFM =]()-x 2-2x +3-()x +3∙sin ∠ACO =32()-x 2-3x =-32æèöøx +322+278,当x =-32时,-x 2-2x +3=154,即P (-32,154).所以存在一点P ,使△PAC 的面积最大,最大值为278,P 点坐标为(-32,154).通过对以上四种方法的分析介绍,相信同学们对二次函数背景下三角形面积的最值问题的解法有了一定的了解.同学们只要掌握好了这四种方法,在二次函数的综合题中,再出现求图形面积的最值问题,就能轻松应对了.数苑纵横25。
二次函数的最值(4种题型)【题型细目表】题型一:利用二次函数的对称性求最短路径题型二:面积最值问题题型三:最大利润问题题型四:线段最值问题【考点剖析】题型一:利用二次函数的对称性求最短路径一、填空题1(浙江宁波·九年级宁波东海实验学校校考期中)如图,抛物线y =ax 2+bx +3过点A (1,0),B (3,0),与y 轴相交于点C .若点P 为线段OC 上的动点,连结BP ,过点C 作CN 垂直于直线BP ,垂足为N ,当点P 从点O 运动到点C 时,点N 运动路径的长为【答案】324π【分析】先求出抛物线的解析式,连接BC ,可得点N 的路径是以BC 的中点M 为圆心,BC 长的一半为半径的OC ,,求出OC的长度即可.【详解】解:把点A (1,0),B (3,0),代入抛物线,则0=a +b +30=9a +3b +3 ,解得:a =1b =-4 ,∴y =x 2-4x +3;连接BC ,可得点N 的路径是以BC 的中点M 为圆心,BC 长的一半为半径的OC ,连接OM ,如图:∵OB =OC =3,∴OM ⊥BC ,∴∠OMC =90°,∵BC =OB 2+OC 2=32+32=32,∴OM =322,∴点N 运动路径的长为:90π180•322=324π;故答案为:324π.【点睛】本题考查了二次函数的综合题,涉及了待定系数法求二次函数解析式、弧长公式,勾股定理,解题的关键是熟练掌握所学的知识,正确的进行解题.2(浙江杭州·九年级翠苑中学校联考期中)若抛物线y =-x 2+2x +m +1(m 为常数)交y 轴于点A ,与x 轴的一个交点在2和3之间,抛物线顶点为点B .①抛物线y =-x 2+2x +m +1与直线y =m +2有且只有一个交点;②若点M (-2,y 1)、点N 12,y 2、点P (2,y 3)在该函数图象上,则y 1<y 2<y 3;③将该抛物线向左平移2个单位,再向下平移2个单位,所得的抛物线解析式为y =-(x +1)2+m ;④点A 关于直线x =1的对称点为C ,点D 、E 分别在x 轴和y 轴上,当m =1时,四边形BCDE 周长的最小值为3+2+13.其中正确的是.(填序号)【答案】①③【分析】①联立抛物线y =-x 2+2x +m +1与直线y =m +2,然后根据韦达定理可进行判断;②根据二次函数的增减性可直接进行判断;③根据图象平移可直接进行求解;④由题意画出函数图象,进而作点B 关于y 轴的对称点B ,作点C 关于x 轴的对称点C ,连接B C 与x 轴、y 轴分别交于D 、E 两点,最后问题可求解.【详解】解:联立抛物线y =-x 2+2x +m +1与直线y =m +2可得:x 2-2x +1=0,其中Δ=4-4=0,∴此方程有两个相等的实数根,∴抛物线y =-x 2+2x +m +1与直线y =m +2有且只有一个交点,故①正确;∵抛物线的对称轴为直线x =-b 2a=1,且a =-1<0,开口向下,∴根据抛物线的性质可知离对称轴越近,所对应的函数值越大,∵点M (-2,y 1)、点N 12,y 2、点P (2,y 3)在该函数图象上,∴y 1<y 3<y 2,故②错误;由将该抛物线向左平移2个单位,再向下平移2个单位,所得的抛物线解析式为:y =-x +2 2+2x +2 +m +1-2=-x +1 2+m ,故③正确;当m =1时,抛物线解析式为y =-x 2+2x +2,∴A 0,2 ,B 1,3 ,C 2,2 ,作点B 关于y 轴的对称点B ,作点C 关于x 轴的对称点C ,连接B C 与x 轴、y 轴分别交于D 、E 两点,如图所示:∴B -1,3,C 2,-2,∴BE+ED+CD+BC=B E+ED+C D+BC=B C +BC,根据两点之间线段最短,知B C 最短,而BC长度一定,∴此时四边形BCDE的周长为B C +BC最小,由两点距离公式可得:B C +BC=2+12+-2-32+2-12+2-32=34+2,故④错误;综上所述:正确的有①③;故答案为①③.【点睛】本题主要考查二次函数的图象与性质及轴对称,熟练掌握二次函数的图象与性质及轴对称是解题的关键.二、解答题3(浙江宁波·九年级统考期末)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且抛物线经过B(1,0),C(0,3)两点,与x轴交于点A.(1)求抛物线的解析式;(2)如图1,在抛物线的对称轴直线x=-1上找一点M,使点M到点B的距离与到点C的距离之和最小,求出点M的坐标;(3)如图2,点Q为直线AC上方抛物线上一点,若∠CBQ=45°,请求出点Q坐标.【答案】(1)y=-x2-2x+3;(2)当点M到点B的距离与到点C的距离之和最小时M的坐标为-1,2;(3)点Q-52 ,74.【分析】(1)根据对称轴方程可得-b2a=-1,把B、C坐标代入列方程组求出a、b、c的值即可得答案;(2)根据二次函数的对称性可得A点坐标,设直线AC与对称轴x=-1的交点为M,可得MB=MA,即可得出MB+MC=MC+MA=AC,为MB+MC的最小值,根据A、C坐标,利用待定系数法可求出直线AC的解析式,把x=-1代入求出y值,即可得点M的坐标.(3)设直线BQ交y轴于点H,过点H作HM⊥BC于点M,利用勾股定理可求出BC的长,根据∠CBQ=45°可得HM=BM,利用∠OCB的正切函数可得CM=3HM,即可求出CM、HM的长,利用勾股定理可求出CH的长,即可得H点坐标,利用待定系数法可得直线BH的解析式,联立直线BQ与抛物线的解析式求出交点坐标即可得点Q坐标.【详解】(1)∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,∴-b2a=-1,∵抛物线经过B(1,0),C(0,3)两点,∴-b2a=-1a+b+c=0 c=3,解得:a=-1 b=-2 c=3,∴抛物线解析式为y=-x2-2x+3.(2)设直线AC的解析式为y=mx+n,∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,B(0,0),∴点A坐标为(-3,0),∵C(0,3),∴-3m+n=0 n=3,解得:m=1 n=3,∴直线解析式为y=x+3,设直线AC与对称轴x=-1的交点为M,∵点A与点B关于对称轴x=-1对称,∴MA=MB,∴MB+MC=MA+MC=AC,∴此时MB+MC的值最小,当x=-1时,y=-1+3=2,∴当点M到点B的距离与到点C的距离之和最小时M的坐标为-1,2.(3)如图,设直线BQ交y轴于点H,过点H作HM⊥BC于点M,∵B(1,0),C(0,3),∴OB=1,OC=3,BC=OB2+OC2=10,∴tan∠OCB=OBCO =13,∵∠CBQ=45°,∴△BHM是等腰直角三角形,∴HM=BM,∵tan∠OCB=HMCM =13,∴CM =3HM ,∴BC =MB +CM =4HM =10,解得:HM =104,∴CM =3104,∴CH =CM 2+HM 2=52,∴OH =OC -CH =3-52=12,∴H 0,12,设直线BH 的解析式为:y =kx +b ,∴k +b =0b =12,解得:k =-12b =12 ,∴BH Q 的表达式为:y =-12x +12,联立直线BH 与抛物线解析式得y =-12x +12y =-x 2-2x +3,解得:x =1(舍去)或x =-52,当x =-52时,y =--52 2-2×-52 +3=74,∴点Q 坐标为-52,74.【点睛】本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度,熟练掌握二次函数的性质是解题关键.4(浙江杭州·九年级期末)如图,抛物线y =x 2+bx -3与x 轴交于A ,B 两点,与y 轴交于C 点,且A (-1,0).(1)求抛物线的解析式及顶点D 的坐标;(2)点M 是对称轴上的一个动点,当△ACM 的周长最小时,求点M 的坐标.【答案】(1)y =x 2-2x -3,(1,-4);(2)M (1,-2)【分析】(1)把A的坐标代入函数的解析式,即可求得b的值,然后利用配方法即可求得顶点坐标;(2)直线BC与抛物线的对称轴的交点就是使CM+AM取得最小值的M的点,BC的长就是最小值.【详解】解:(1)∵点A(-1,0)在抛物线y=x2+bx-3上,∴b=-2,∴抛物线解析式y=x2-2x-3,∵抛物线y=x2-2x-3=(x-1)2-4,∴顶点D的坐标(1,-4);(2)对于y=x2-2x-3,当x=0时,y=-3,∴C(0,-3),当y=0时,0=x2-2x-3,解得:x=3或-1,∴B(3,0),由抛物线的性质可知:点A和B是对称点,∴连接BC交函数的对称轴于点M,此时AM+CM=BC为最小值,而AC的长度是常数,故此时△ACM的周长最小,设直线BC的表达式为y=mx+n,则0=3m+n n=-3,解得:m=1 n=-3,故直线BC的表达式为y=x-3,当x=1时,y=-2,故点M(1,-2).【点睛】本题考查了利用配方法确定二次函数的顶点坐标以及对称点的作法,正确确定直线BC与抛物线的对称轴的交点就是使CM+AM取得最小值的M的点,是本题解题的关键.5(浙江绍兴·九年级校联考期中)如图,二次函数图象与x轴交于点A、B,与y轴交与点C,抛物线的顶点坐标是(2,9),且经过D(3,8).(1)求抛物线的函数关系式;(2)求△ABC的面积;(3)在抛物线的对称轴上是否存在一点M,使得BM+DM最短?若存在,求出M的坐标.若不存在,请说明理由.【答案】(1)y=-(x-2)2+9;(2)S△ABC=15;(3)M(2,6)【分析】(1)根据顶点坐标可设抛物线的顶点式,再将点D的坐标代入即可得;(2)求出A,B,C点坐标,利用三角形的面积公式即可求解;(3)先求出点D关于对称轴对称的点D'的坐标,从而可得BM+DM=BM+D'M,再根据两点之间线段最短可得当点B,D',M在一条直线上时,BM+D'M最短,然后利用待定系数法求出直线BD'的函数解析式,最后将点M的横坐标代入即可得.【详解】(1)∵抛物线的顶点坐标为(2,9),设抛物线的解析式为y=a(x-2)2+9,∵抛物线经过点D(3,8),∴(3-2)2•a+9=8,解得a=-1,∴抛物线的函数解析式为y=-(x-2)2+9;(2)令y=-(x-2)2+9=0,解得x1=5,x2=-1,∴A(-1,0),B(5,0),令x=0,则y=-(0-2)2+9=5∴C(0,5)∴S△ABC=12AB⋅h=12×6×5=15;(3)存在,求解过程如下:∵二次函数y=-(x-2)2+9的对称轴为直线x=2,∴A(-1,0),B(5,0),∵点D(3,8)关于对称轴x=2对称的点的坐标为D'(1,8),由对称性得:DM=D'M,则BM+DM=BM+D'M,如图,由两点之间线段最短可知,当点B,D',M在一条直线上时,BM+DM最短,设直线BD'的函数解析式为y=kx+b,把(5,0),(1,8)代入y=kx+b,得:0=5k+b 8=k+b,解得k=-2b=10,∴y=-2x+10,取x =2,则-2×2+10=6,∴M (2,6).【点睛】本题考查了利用待定系数法求二次函数的解析式、二次函数的对称性、两点之间线段最短等知识点,熟练掌握待定系数法和二次函数的性质是解题关键.6(2022秋·浙江丽水·九年级校联考期中)如图,已知抛物线y =-x 2+mx +5与x 轴交于A ,B 两点,与y 轴交于点C ,点B 的坐标为(5,0).(1)求m 的值及抛物线的顶点坐标.(2)点P 是抛物线对称轴l 上的一个动点,当PA +PC 的值最小时,求点P 的坐标.【答案】(1)m =4,顶点坐标为(2,9)(2)P (2,3)【分析】(1)将点(5,0),代入y =-x 2+mx +5,得其解析式,从而求出m 的值及抛物线的顶点坐标;(2)利用“将军饮马”思路,点A 关于抛物线对称轴l 对称的点是点B ,进而解决问题.【详解】(1)将点(5,0)代入y =-x 2+mx +5得,0=-25+5m +5,m =4,∴抛物线解析式为y =-x 2+4x +5y =-x 2+4x +5=-(x -2)2+9,∴抛物线的顶点坐标为(2,9);(2)如下图,点A 与点B 是关于直线l 成轴对称,根据其性质有,PA +PC =PC +PB ,当点C 、点P 、点B 共线时,PC +PB =BC 为最小值,即为PA +PC 的最小值,由抛物线解析式为y =-x 2+4x +5=-x -2 2+9,可得点C 坐标为(0,5),点B 坐标为(5,0),对称轴l 为x =2,设直线BC 的解释为y =kx +b ,将点C (0,5),点B (5,0),代入y =kx +b 得,0=5k +b 5=b ,解得k =-1b =5 ,∴直线BC 的解析式为y =-x +5,联立方程,y =-x +5x =2 ,解得x =2y =3 ,∴当PA +PC 的值最小时,点P 的坐标为(2,3).【点睛】本题考查了二次函数的图像和性质和最短路径问题,解决本题的关键是掌握二次函数的性质.7(浙江宁波·校联考一模)如图,抛物线M 1:y =x 2-4与x 轴的负半轴相交于点A ,将抛物线M 1平移得到抛物线M 2:y =ax 2+bx +c ,M 1与M 2相交于点B ,直线AB 交M 2于点C (8,m ),且AB =BC .(1)求点A ,B ,C 的坐标;(2)写出一种将抛物线M 1平移到抛物线M 2的方法;(3)在y 轴上找点P ,使得BP +CP 的值最小,求点P的坐标.【答案】(1)A (-2,0),B (3,5),C (8,10);(2)由M 1平移得到抛物线M 2先向右平移5个单位长度,再向上平移5个单位长度;(3)P 0,7011 .【分析】(1)y =0,即求A ;AB =BC ,得B 3,m 2,求出直线AB 的解析式与二次函数求交点,利用根与系数的关系求m 的值,从而确定B 与C 的坐标;(2)抛物线平移前后a 的值不变,由点B (3,5),C (8,10)在抛物线y =x 2+bx +c 上,确定抛物线解析式,从而得到平移过程;(3)作点B 关于y 轴的对称点B ',连接CB '与y 轴的交点即为P ,求出直线B 'C 的直线解析式的解析式与y 轴交点即为P ;【详解】(1)M 1:y =x 2-4与x 轴的负半轴相交于点A ,∴A (-2,0),∵AB =BC ,C (8,m ),∴B 3,m 2,设AB 直线解析式为y =kx +b ,∴0=-2k +b m 2=3k +b ,∴k =m 10b =m 5 ,∴y =m 10x +m 5,∵y =x 2-4与y =m 10x +m 5相交于点A 和B ,∴x 2-m 10x +m 5-4=0,∴x 1+x 2=m 10=1,∴m =10,∴B (3,5),C (8,10);(2)∵抛物线M 1平移得到抛物线M 2,∴a =1,∵B (3,5),C (8,10)在抛物线y =x 2+bx +c 上,∴10=64+8b +c 5=9+3b +c,∴b =-10c =26 ,∴y =x 2-10+26=(x -5)2+1,由M 1平移得到抛物线M 2先向右平移5个单位长度,再向上平移5个单位长度;(3)作点B 关于y 轴的对称点B ',连接CB '与y 轴的交点即为P ,∴B '(-3,5),设直线B 'C 的直线解析式为y =mx +n ,∴5=-3k +b 10=8k +b,∴k =511b =7011 ,∴y =511x +7011,∴P 0,7011.【点睛】本题考查二次函数图象的平移,最短路径问题;掌握二次函数平移前后a 的值不变是解决平移后二次函数解析的关键,通过作对称点,将线段和的最小进行转化是解决最短路径的关键.8(2022秋·浙江金华·九年级校考阶段练习)已知抛物线y =x 2+bx +c 的图象如图所示,它与x 轴的一个交点的坐标为A (-1,0),与y 轴的交点坐标为C (0,-3).(1)求抛物线的解析式及与x 轴的另一个交点B 的坐标;(2)根据图象回答:当x 取何值时,y <0?(3)在抛物线的对称轴上有一动点P ,求PA +PB 的值最小时的点P 的坐标.【答案】(1)y =x 2-2x -3,B (3,0)(2)-1<x <3(3)P (1,0)【分析】(1)把A (-1,0),C (0,-3)代入y =x 2+bx +c ,利用待定系数法求解b ,c ,再求解点B 的坐标即可得到答案;(2)由y <0,可得抛物线的图像在x 轴的下方,结合图象可得x 的取值范围,从而可得答案;(3)由A(-1,0),B(3,0)关于抛物线的对称轴x=1对称,可得AB与对称轴的交点满足PA+PB 最小,从而可得答案.【详解】(1)把A(-1,0),C(0,-3)代入y=x2+bx+c,∴1-b+c=0 c=-3,解得:b=-2 c=-3,∴抛物线的解析式为y=x2-2x-3,由x2-2x-3=0,∴(x-3)(x+1)=0,∴x1=3,x2=-1,∴B(3,0);(2)∵抛物线与x轴交于A(-1,0),B(3,0),y<0,∴抛物线的图象在x轴的下方,结合图象可得:-1<x<3;(3)∵A(-1,0),B(3,0),∴对称轴是直线x=1,如图,当A、B、P三点共线时,PA+PB的值最小,此时点P是对称轴与x轴的交点,即P(1,0).【点睛】本题考查了抛物线与x轴的交点,利用待定系数法求得抛物线的解析式,利用轴对称的性质求解两条线段和的最小值,利用抛物线的图象解一元二次不等式,掌握以上知识是解题的关键.题型二:面积最值问题一、解答题9(2022·浙江·九年级自主招生)中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为a,b,c,三角形的面积S可由公式S=p(p-a)(p-b)(p-c)求得,其中p为三角形周长的一半,这个公式也被称为海伦--秦九韶公式,现有一个三角形的边长满足a+b=10,c= 6,求这个三角形面积的最大值,并判断此时三角形的形状.【答案】12,等腰三角形【分析】根据已知条件a+b=10,再表示成b=10-a,代入公式,再利用二次函数的性质求出最值,最后根据三边长判断三角形的形状.【详解】解:∵三角形的边长满足c=6,a+b=10,∴p=12(a+b+c)=8,∴b=10-a,∴S=p(p-a)(p-b)(p-c)=8×(8-a)×(8-b)×(8-6)=8×2×(8-a)×(a-2)=-16a-52+144当a=5时,S有最大值为12,此时三角形三边分别为5,5,6,故为等腰三角形.【点睛】本题主要考查了二次函数的最值,解答本题的关键是明确题意,利用新公式将三角形面积表示出来,并利用二次函数的性质求最值.10(2022秋·浙江宁波·九年级校考期中)如图,在足够大的空地上有一段长为a 米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,其中AD ≤MN ,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.若设AD 的长度为x 米,矩形菜园ABCD 面积为S 平方米.(1)写出S 与x 的关系式(不要求写出自变量的取值范围);(2)若a =20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD 的长;(3)求矩形菜园ABCD 面积的最大值.【答案】(1)S =12x (100-x )(2)10m(3)当0<a <50时,矩形菜园ABCD 面积的最大值为-12a 2+50a 平方米,当a ≥50时,最大值为1250平方米.【分析】(1)根据题意得出BC =100-x 2m ,然后求面积即可;(2)利用(1)中结论,直接代入求解即可;(3)将(1)中结果化为顶点式,然后分两种情况分析即可.【详解】(1)解:设AD =xm .则BC =100-x 2m ,∴S =12x (100-x );(2)由(1)得S =12x (100-x ),则450=12x (100-x )解得x 1=10,x 2=90(舍去),∴AD 的长为10m ;(3)①当a ≥50时,由(1)得S =12x (100-x )=-12(x -50)2+1250,∵a ≥50,∴x =50时,S 的最大值为1250.②当0<a <50时,则0<x ≤a ,S 随a 的增大而增大,当x =a 时,S 的最大值为-12a 2+50a ;综上所述,当0<a <50时,矩形菜园ABCD 面积的最大值为-12a 2+50a 平方米,当a ≥50时,最大值为1250平方米.【点睛】题目主要考查二次函数的应用,理解题意,列出函数关系式进行分类讨论是解题关键.11(2023秋·浙江台州·九年级统考期末)某校科技兴趣小组制作了一个机器人,该机器人能根据指令要求进行旋转和行走.机器人从起点出发,连续执行如下指令:机器人先向前直行b n (表示第n 次行走的路程),再逆时针旋转α0°<α≤90°,直到第一次回到起点后停止.记机器人共行走的路程为l,所走路径形成的封闭图形的面积为S.例如:如图1,当每次直行路程均为1(即b n=1),α=60°时,机器人的运动路径为A→B→C→D→E→F→A,机器人共走的路程l=6,由图1图2易得所走路径形成的封闭图形的面积为S=332.(1)若b n=1,请完成下表.α30°45°72°l(2)如图3,若α=60°,机器人执行六次指令后回到起点处停止.①若b1=2,b2=4,b3=1.5,b4=3,则b5=,b5+b6=.②若b1=2,b2=4,l=20,请直接写出b3与b4之间的数量关系,并求出当S最大时b4的值.【答案】(1)12,8,5(2)①3,5.5;②2b3+b4=10;b4=3【分析】(1)根据每次逆时针旋转α,旋转360°α次,可回到起点,即可进行解答;(2)①构造如图所示三角形,则△ABC,△AIH,△DBE,△GFC为等边三角形,根据等边三角形三边相等,即可依次推出各边长度;②构造如图所示三角形,根据题意可得GI=b3+b4+4,b6=b3+b4-2,b5 =6-b4,进而得出2b3+b4=10,根据等边三角形的面积公式,即可求出S的表达式,即可求解.【详解】(1)解:当α=30°时,l=1×36030=12,当α=45°时,l=1×36045=8,当α=72°时,l=1×36072=5,故答案为:12,8,5.(2)①构造如图所示的三角形,∵α=60°,∴△ABC,△AIH,△DBE,△GFC为等边三角形,∴CG=b2=4,AH=b4=3,∴AC=AH+b3+CG=4+1.5+3=8.5,则AB=AC=BC=8.5,∵b1=2,b2=4,∴EF=2,CF=4,∴b6=BE=BC-EF-CF=8.5-2-4=2.5,∴b5=DI=AB-AI-BD=8.5-3-2.5=3,∴b5+b6=2.5+3=5.5,故答案为:3,5.5.3,5.5②如图,构造等边△GHI∴GI=b3+b4+4,b6=b3+b4-2,b5=6-b4,∵l=20,∴2+4+b3+b4+6-b4+b3+b4-2=20,∴2b3+b4=10,如图:等边三角形边长为a,高为h,h=a sin60°=32a,∴等边三角形面积=12ah=12a⋅32a=34a2∴S=34b3+b4+42-34b3+b4-22-34b4-3442∴S=34-b42+6b42+56=-34b-32+6534,∴当S最大时,b4=3.【点睛】本题主要考查了多边形的外角,解题的关键是掌握多边形的外角和为360°,根据题意构造等边三角形,根据等边三角形的性质求解.12(2022秋·浙江杭州·九年级校考期中)如图,有一个铝合金窗框,所使用的铝合金材料长度为24m.设AB长为xm,窗户的总面积为Sm2.(1)求S关于x的函数表达式;(2)若AB的长不能低于2m,且AB<BC,求此时窗户总面积S的最大值和最小值.【答案】(1)S=-32x2+12x(2)窗户总面积S的最大值24m2,最小值是18m2【分析】(1)根据题意和图形可以求得S与x的函数表达式;(2)根据题意可以得到关于x的不等式,从而求出x的范围,然后根据(1)中的函数解析式和二次函数的性质即可解答.【详解】(1)解:根据题意,得S=x⋅24-3x2=-32x2+12x.即S与x的函数表达式是S=-32x2+12x.(2)解:根据题意,得2≤x<24-3x2.解得:2≤x<4.8.S=-32x2+12x=-32x-42+24,∵-32<0,∴S有最大值,∵2≤x<4.8,抛物线的对称轴为直线x=4.∴当x=4时,S有最大值,此时S=24,当x=2时,S有最小值,此时S=-322-42+24=18,答:窗户总面积S的最大值24m2,最小值是18m2.【点睛】本题主要考查了二次函数的实际应用,明确题意,准确列出函数关系式是解题的关键.13(2023·浙江宁波·统考一模)有一块形状如图1的四边形余料ABCD,AB=6,AD=2,∠A=90°,∠D=135°,tan∠B=2,要在这块余料上截取一块矩形材料,其中一条边在AB上.(1)如图2,若所截矩形材料的另一条边AE 在AD 上,设AE =x ,矩形AEFG 的面积为y ,①求y 关于x 的函数表达式.②求矩形面积y 的最大值.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.【答案】(1)①y =-x 22+6x ;②当x =2时,y 取到最大值10(2)能截出面积更大的矩形材料,这些矩形材料的最大面积为323【分析】(1)①由锐角三角函数可求GB 的长,由矩形的面积公式可求解;②由二次函数的性质可求解;(2)用NH 分别表示BH ,AF 的长,由面积公式和二次函数的性质可求解.【详解】(1)解:①如图2,∵四边形AEFG 是矩形,∴AE =FG ,∠A =∠FGB =90°,∵tan ∠B =FG GB =2,∴GB =12x ,∴AG =AB -GB =6-12x ,∴S =AE ⋅AG =x 6-12x =-12x 2+6x ;②∵点E 在线段AE 上,∴0<x ≤2,∵y =-12x 2+6x =-12(x -6)2+18,∴当x =2时,y 的最大值为10;(2)能,如图1,当点E 在线段CD 上时,过点D 作DM ⊥EF 于M ,∵四边形EFHN 是矩形,∴EF =NH ,EN =FH ,∵tan ∠B =NH HB =2,∴HB =12NH ,∵∠A =90°=∠AFE ,DM ⊥EF ,∴四边形ADMF 是矩形,∴DM =AF ,AD =MF =2,∵∠ADC =135°,∴∠EDM =45°,∴DM =EM =NH -2,∴AF =NH -2,∴FH =AB -AF -BH =8-32NH ,∴S =FH ⋅NH =NH 8-32NH =-32NH -83 2+323,∴当NH =83时,S 有最大值为323,∵323>10,∴能截出比(1)中更大面积的矩形材料,这些矩形材料面积的最大值为323.【点睛】本题是四边形综合题,考查了矩形的性质,锐角三角函数,二次函数的性质,等腰直角三角形的性质等知识,灵活运用这些性质解决问题是解题的关键.14(2023·浙江嘉兴·统考一模)“距离”是数学研究的重要对象,如我们所熟悉的两点间的距离.现在我们定义一种新的距离:已知P (a ,b ),Q (c ,d )是平面直角坐标系内的两点,我们将a -c +b -d 称作P ,Q 间的“L 型距离”,记作L (P ,Q ),即L P ,Q =a -c +b -d .已知二次函数y 1的图像经过平面直角坐标系内的A ,B ,C 三点,其中A ,B 两点的坐标为A (-1,0),B (0,3),点C 在直线x =2上运动,且满足L B ,C ≤BC .(1)求L (A ,B );(2)求抛物线y 1的表达式;(3)已知y 2=2tx +1是该坐标系内的一个一次函数.①若D ,E 是y 2=2tx +1图像上的两个动点,且DE =5,求△CDE 面积的最大值;②当t ≤x ≤t +3时,若函数y =y 1+y 2的最大值与最小值之和为8,求实数t 的值.【答案】(1)4;(2)y 1=-x 2+2x +3;(3)①△CDE 面积最大值为52;②t =-1±2.【分析】(1)根据题干中对于“L 型距离”的定义,即可求解;(2)根据二次函数y 1经过点A 、B 、C 三点,所以只要求出C 点坐标即可:根据点C 在直线x =2上运动,所以可设点C 2,m ,根据L B ,C ≤BC 列方程求解出m 的值,利用待定系数法列方程组即可求出抛物线y 1的表达式;(3)①根据△CDE 的一边DE 长度固定等于5,所以只要求出顶点C 到DE 的最大距离即可:由DE 所在的直线y 2=2tx +1过固定点N 0,1 ,故直线y 2的图像是绕点N 0,1 旋转的直线,当CN ⊥直线y 2时,点C 到DE 的距离最大,此时就是△CDE 的最大面积,根据三角形面积公式求解即可;②根据y =y 1+y 2,可得函数y 的解析式:y =-x 2+2t +1 x +4,可知函数y 的图像是一个开口向下,对称轴是x =t +1的抛物线,由此可知函数y 在对称轴上取得最大值,根据t ≤x ≤t +3可知当x =t +3时y 有最小值,最后根据函数y 的最大值与最小值之和是8,从而列出方程即可求出t 的值.【详解】(1)解:由题意得:∵A -1,0 ,B 0,3 ,∴L A ,B =-1-0 +0-3 =1+3=4;(2)∵点C 在直线x =2上运动,∴设点C 2,m ,且B 0,3由平面上两点间距离,利用勾股定理得:∴BC 2=2-0 2+3-m 2=4+3-m 2∵L B ,C =0-2 +3-m =2+3-m∴L 2B ,C =2+3-m 2=22+43-m +3-m 2∵0≤L B ,C ≤BC∴L 2B ,C ≤BC 2即22+43-m +3-m 2≤4+3-m 2∴43-m ≤0,又∵3-m ≥0∴3-m =0∴m =3∴C 2,3∵二次函数y 1的图像经过A -1,0 ,B 0,3 ,C 2,3 ,∴设y 1=a 1x 2+b 1x +c 1∴代入解析式得:a 1-b 1+c 1=0c 1=34a 1+2b 1+c 1=3解方程组得:a 1=-1b 1=2c 1=3∴抛物线y 1的表达式为y 1=-x 2+2x +3;(3)①∵y 2=2tx +1令x =0时,y 2=1∴直线y 2恒过定点N 0,1∴直线y 2的图像是绕点N 0,1 旋转的直线,∴当CN ⊥直线y 2时,点C 到DE 的距离最大,△CDE 面积也最大,过点C 作CM ⊥DE 交直线y 2于点M由点到直线的距离,垂线段最短知:CM≤CN∴S△CDE=12DE×CM≤12DE×CN=52CN∵C2,3,N0,1∴CN=2-02+3-12=4+4=22∴5 2CN=52×22=52∴△CDE面积的最大值为52②∵y=y1+y2=-x2+2x+3+2tx+1=-x2+2t+1x+4二次函数y的对称轴为x=-2t+12×-1=t+1∵a=-1<0∴二次函数y的图像开口向下,当x=t+1时,函数值y取得最大值y=-t+12+2t+1t+1+ 4又∵t+3-t+1>t+1-t∴当x=t+3时,函数值y取得最小值y=-t+32+2t+1t+3+4∵函数y=y1+y2的最大值与最小值之和为8∴-t+12+2t+12+4-t+32+2t+1t+3+4=8整理得:t2+2t-1=0解得:t=-1±2∴实数t的值为-1±2.【点睛】本题属于二次函数综合题,考查了对于题干中“L型距离”的理解能力、以及根据“L型距离”以及用待定系数法求抛物线的表达式、根据垂线段最短求三角形最大面积、根据二次函数图像的性质求函数最值等,对知识的综合性很强.根据题意灵活运用所学知识以及扎实的计算基础是解此题的关键.题型三:最大利润问题一、解答题15(2023秋·浙江温州·九年级期末)某商店经营儿童益智玩具,已知成批购进时的单价是20元,调查发现,销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具的售价不能高于40元.设每件玩具的销售单价上涨了x元,(x为整数)月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)如果商店想要每月获得的利润不低于2520元,那么每月用于购进这种玩具的成本需要多少元?(4)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?【答案】(1)y=-10x2+130x+2300,x的取值范围为0≤x≤10(x为整数)(2)32元(3)每月用于购进这种玩具的成本需要4200元、4000元、3800元、3600元、3400元、3200元、3000元、2800元、2600元(4)每件玩具的售价定为36或37元时,可使月销售利润最大,最大的月利润是2720元【分析】(1)每件玩具的销售单价上涨x元时,单件利润为30-20+x件,根元,销量为230-10x据总利润等于单件利润乘以销量列式即可;(2)令y=2520,解一元二次方程,根据实际情况对求出的解进行取舍即可;(3)结合(2)中结论可知,当销售单价上涨2、3、4、5、6、7、8、9、10元时,每月获得的利润不低于2520元;(4)将y=-10x2+130x+2300化为顶点式,结合x的取值范围即可求出y的最大值.【详解】(1)解:依题意得:y=30-20+x=-10x2+130x+2300,230-10x∵每件首饰售价不能高于40元,∴x+30≤40,∴0≤x≤10(x为整数).因此y与x的函数关系式为y=-10x2+130x+2300,x的取值范围为0≤x≤10,且x为整数;(2)解:当y=2520时,-10x2+130x+2300=2520,整理得x2-13x+22=0,解得x1=2,x2=11,∵0≤x≤10,∴x=2,当x=2时,30+2=32.即每件首饰的售价定为32元时月销售利润恰好为2520元;(3)解:如图,由题可知:当每件玩具的销售单价上涨了2、3、4、5、6、7、8、9、10元,每月获得的利润不低于2520元,对应的销售量为210、200、190、180、170、160、150、140、130,每月用于购进这种玩具的成本需要4200元、4000元、3800元、3600元、3400元、3200元、3000元、2800元、2600元.(4)解:∵y=-10x2+130x+2300,∴y=-10x-6.52+2722.5.∵a=-10<0,0≤x≤10,且x取正整数,∴当x =6或7时,y 取最大值,y 最大值=-10×7-6.5 2+2722.5=2720,∴每件玩具的售价定为:30+6=36(元)或30+7=37(元).即每件玩具的售价定为36或37元时,可使月销售利润最大,最大的月利润是2720元.【点睛】本题考查二次函数的实际应用,解题的关键是读懂题意,根据“总利润=单件利润×销量”列出y 与x 的函数关系式.16(2023秋·浙江温州·九年级期末)某服装厂生产A 品种服装,每件成本为71元,零售商到此服装厂一次性批发A 品牌服装x 件时,批发单价为y 元,y 与x 之间满足如图所示的函数关系,其中批发件数x 为10的正整数倍.(1)当100≤x ≤300时,y 与x 的函数关系式为.(2)某零售商到此服装厂一次性批发A 品牌服装200件,需要支付多少元?(3)零售商到此服装厂一次性批发A 品牌服装x 100≤x ≤400 件,服装厂的利润为w 元,问:x 为何值时,w 最大?最大值是多少?【答案】(1)y =-110x +110(2)18000元(3)x 为190或200时,w 最大,最大值是3800元【分析】(1)设y 与x 的函数关系式为y =kx +b ,根据图象利用待定系数法求解析式即可;(2)根据(1)求出此时的批发单价,再乘以批发数量即可;(3)分类讨论①当100≤x ≤300时和②当300<x ≤400时,结合利润=销售量×(售价-成本)列出w 与x 的函数关系即可得出答案.【详解】(1)当100≤x ≤300时,设y 与x 的函数关系式为y =kx +b ,根据题意得出:100k +b =100300k +b =80 ,解得:k =-110b =110 ,∴y 与x 的函数关系式为:y =-110x +110,故答案为:y =-110x +110;(2)当x =200时,y =-20+110=90,∴90×200=18000(元),答:某零售商一次性批发A 品牌服装200件,需要支付18000元;(3)分两种情况:①当100≤x ≤300时,w =-110x +110-71 x =-110x 2+39x =-110x -195 2+3802.5,∵批发件数x为10的正整数倍,∴当x=190或200时,w有最大值是:-110200-1952+3802.5=3800;②当300<x≤400时,w=80-71x=9x,当x=400时,w有最大值是:9×400=3600,∴一次性批发A品牌服装x(100≤x≤400)件时,x为190或200时,w最大,最大值是3800元.【点睛】本题考查一次函数和二次函数的实际应用.掌握利用待定系数法求解析式以及理解题意利润=销售量×(售价-成本)列出w与x的函数关系式是解答本题的关键.17(2023秋·浙江温州·九年级期末)某水果店销售一种新鲜水果,平均每天可售出120箱,每箱盈利60元,为了扩大销售减少库存,水果店决定采取适当的降价措施,经调查发现,每箱水果每降价5元,水果店平均每天可多售出20箱.设每箱水果降价x元.(1)当x=10时,求销售该水果的总利润;(2)设每天销售该水果的总利润为w元.①求w与x之间的函数解析式:②试判断w能否达到8200元,如果能达到,求出此时x的值;如果不能达到,求出w的最大值.【答案】(1)8000元(2)①w=-4x2+120x+7200 ②不能达到,最大值是8100元【分析】(1)利用每箱利润=60-每箱降低的价格及平均每天的销售量=120+20×每箱降低的价格5,即可求出结论;(2)①设每箱应降价x元,则每箱利润为60-x元,平均每天可售出4x+120箱,利用平均每天销售该种水果获得的总利润=每箱的利润×平均每天的销售量,即可得出关于x的函数解析式,②利用二次函数的性质即可得出结论.【详解】(1)解:根据题意,可知:当每箱水果降价10元时,每箱利润为60-10=50(元),平均每天可售出120+20×105=160(箱)总利润为:50×160=8000(元).(2)①设每箱应降价x元,则每箱利润为60-x元,平均每天可售出120+20×x5=4x+120箱,依题意得:w与x之间的函数解析式为w=60-x120+x5×20=-4x2+120x+7200;②w不能达到8200元;w=-4x2+120x+7200=-4x-152+8100.∵-4<0,∴当x=15时,w取到最大值,w最大值=8100<8200,∴w不能达到8200元,w的最大值是8100元.【点睛】本题考查了二次函数的实际应用的应用,找准等量关系,正确列出二次函数关系式是解题的关键.18(2022秋·浙江宁波·九年级校联考期中)在新冠肺炎抗疫期间,小明决定在淘宝上销售一批口罩.经市场调研,某类型口罩进价每袋为20元,当售价为每袋25元时,销售量为250袋,若销售单价每提高1。