分子荧光分析法
- 格式:ppt
- 大小:908.50 KB
- 文档页数:42
一、实验目的1. 熟悉分子荧光法的基本原理和操作步骤。
2. 掌握荧光光谱仪的使用方法。
3. 通过实验,测定罗丹明B的荧光光谱,分析其激发光谱和发射光谱。
4. 掌握荧光定量分析的方法。
二、实验原理分子荧光法是一种灵敏的定量分析方法,基于物质在特定波长范围内吸收光能后,电子从基态跃迁到激发态,再回到基态时释放出一定波长的荧光。
罗丹明B作为一种荧光物质,在特定波长范围内具有明显的荧光特性。
通过测定罗丹明B的激发光谱和发射光谱,可以确定其最佳激发波长和发射波长,从而进行定量分析。
三、实验仪器与试剂1. 仪器:荧光光谱仪、紫外-可见分光光度计、移液器、容量瓶、试管等。
2. 试剂:罗丹明B标准溶液、无水乙醇、蒸馏水等。
四、实验步骤1. 准备罗丹明B标准溶液:准确移取一定量的罗丹明B标准溶液,用无水乙醇稀释至100mL,配制成一定浓度的罗丹明B标准溶液。
2. 测定激发光谱:在荧光光谱仪上,设定罗丹明B标准溶液的浓度为1.0×10^-5 mol/L,以无水乙醇为参比溶液,扫描激发光谱,记录激发波长范围内荧光强度的变化。
3. 测定发射光谱:在荧光光谱仪上,设定罗丹明B标准溶液的浓度为1.0×10^-5 mol/L,以无水乙醇为参比溶液,以激发光谱中最大激发波长为激发波长,扫描发射光谱,记录发射波长范围内荧光强度的变化。
4. 荧光定量分析:取一定量的罗丹明B样品溶液,按照上述步骤测定其激发光谱和发射光谱,计算样品溶液中罗丹明B的浓度。
五、实验结果与讨论1. 激发光谱:罗丹明B的激发光谱显示,在激发波长为540nm附近,荧光强度达到最大值。
因此,选择540nm作为激发波长。
2. 发射光谱:罗丹明B的发射光谱显示,在发射波长为590nm附近,荧光强度达到最大值。
因此,选择590nm作为发射波长。
3. 荧光定量分析:根据罗丹明B的激发光谱和发射光谱,以及标准曲线,计算样品溶液中罗丹明B的浓度为1.2×10^-5 mol/L。
分子荧光分析法物质吸收外界能量后,其电子能级由基态跃迁到激发态,物质的激发态分子以无辐射跃迁的形式释放能量,之后降至第一电子激发单线态的最低振动能级,并以光的形式释放能量回到基态的各个振动能级,此时,分子发射的光即称之为荧光分子荧光分析法:通过测定物质分子所发射荧光的特征和强度,对物质进行定性和定量分析的方法。
(一)基本原理一、分子荧光的产生1. 单线态:当物质处于基态时,电子成对地填充在能量最低的各轨道中,一个给定轨道中的两个电子具有相反的自旋(自旋量子数S分别为1/2和 -1/2),即总自旋量子数S为0,分子中电子能级的多重度M=2S+1=1。
此种状态称为单线态。
• 激发单线态:当物质受到光照射,吸收紫外光或可见光时,物质分子内可发生电子能级的跃迁。
若吸收能量后电子在跃迁过程中不发生自旋方向的变化,即总自旋量子数S为0,分子中电子能级的多重度为1。
则该分子所处的能级状态称为激发单线态。
• 激发三线态:当物质受到光照射,吸收紫外光或可见光时,物质分子内可发生电子能级的跃迁。
若吸收能量后电子在跃迁过程中还伴随自旋方向的变化,即分子具有两个自旋平行的电子,其总自旋量子数S为1,分子中电子能级的多重度M=2S+1=3,则该分子所处的能级状态称为激发三线态。
2. 振动弛豫:同一电子能级内的荧光物质分子与溶剂分子相碰撞,以热能量交换的形式由高振动能级至低振动能级间的跃迁。
3. 内部转移:两个电子能级非常接近时,电子从较高电子能级以非辐射跃迁形式转移至较低电子能级,此过程称为能量的内部转移。
4. 荧光发射:处于激发单线态的电子经过振动弛豫和能量内部转移,回到第一电子激发单线态的最低振动能级,以辐射的形式回到基态的各个振动能级,此过程称为荧光发射。
5. 系间跨越:受激发分子的电子在激发态发生自旋反转,使分子的多重态发生变化的过程。
由第一激发单线态(S1)跃迁至第一激发三线态(T1),使原来两个自旋配对的电子不再配对。
分子荧光分析法标准化管理部编码-[99968T-6889628-J68568-1689N]分子荧光分析法用X射线作光源,待测物质的原子受激发后在很短时间内(10-8 s)发射波长在X射线范围内的荧光。
2. 原子荧光分析法:待测元素的原子蒸气吸收辐射激发后,在很短的时间内(10-8 s),部分将发生辐射跃迁至基态,这种二次辐射即为荧光,根据其波长可进行定性,根据谱线强度进行定量。
荧光的波长如与激发光相同,称为共振荧光。
荧光的波长比激发光波长长,称为stokes荧光;若短,称为反stokes荧光。
3. 分子荧光分析法:有些物质的多原子分子,在用紫外、可见光(或红外光)照射时,也能发射波长在紫外、可见(红外)区荧光,根据其波长及强度可进行定性和定量分析,这就是通常的(分子)荧光分析法。
基本原理一. 分子荧光的发生过程(一)分子的激发态——单线激发态和三线激发态大多数分子含有偶数电子,在基态时,这些电子成对地存在于各个原子或分子轨道中,成对自旋,方向相反,电子净自旋等于零:S=+(-)=0,其多重性M=2S+1=1 (M 为磁量子数),因此,分子是抗(反)磁性的,其能级不受外界磁场影响而分裂,称“单线态”;图1 单线基态(A)、单线激发态(B)和三线激发态(C)当基态分子的一个成对电子吸收光辐射后,被激发跃迁到能量较高的轨道上,通常它的自旋方向不改变,即S=0,则激发态仍是单线态,即“单线(重)激发态”;如果电子在跃迁过程中,还伴随着自旋方向的改变,这时便具有两个自旋不配对的电子,电子净自旋不等于零,而等于1: S=1/2+1/2=1 其多重性: M=2S+1=3即分子在磁场中受到影响而产生能级分裂,这种受激态称为“三线(重)激发态”;“三线激发态” 比“单线激发态” 能量稍低。
但由于电子自旋方向的改变在光谱学上一般是禁阻的,即跃迁几率非常小,只相当于单线态→单线态过程的 10-6~10-7。
(二)分子去活化过程及荧光的发生:(一个分子的外层电子能级包括 S0(基态)和各激发态S1,S2,…..,T1…..,每个电子能级又包括一系列能量非常接近的振动能级)处于激发态的分子不稳定,在较短的时间内可通过不同途径释放多余的能量(辐射或非辐射跃迁)回到激态,这个过程称为“去活化过程”,这些途径为:1. 振动弛豫:在溶液中,处于激发态的溶质分子与溶剂分子间发生碰撞,把一部分能量以热的形式迅速传递给溶剂分子(环境),在10-11~10-13 秒时间回到同一电子激发态的最低振动能级,这一过程称为振动弛豫。
分子荧光的定性分析原理
分子荧光定性分析是一种用于确定化合物是否具有荧光性质的方法。
荧光是指分子吸收光能后发出的短波长光。
以下是分子荧光定性分析的原理:
1. 激发:荧光分析通常需要先将化合物激发到一个能级,使其能够吸收能量。
通常使用紫外光或可见光来激发化合物。
这个能级通常对应着化合物的电子跃迁。
2. 吸收:化合物吸收光能后,电子从基态跃迁到激发态能级。
这个激发态能级通常是一个高能量、不稳定的能级。
3. 跃迁:电子在激发态能级上停留的时间很短,随后会再次跃迁到较低的能级。
在这个过程中,荧光光子被释放出来。
光子的能量通常比激发光的能量低,对应着较长波长的光。
4. 发射:荧光光子的发射可以通过荧光光谱来观察。
荧光光谱通常是一个峰状曲线,波峰对应着荧光发射的波长。
通过比较样品的荧光光谱与已知荧光性化合物的光谱,可以确定样品是否具有荧光性质。
5. 荧光颜色:荧光发射的波长与化合物的结构密切相关,不同化合物具有不同的荧光颜色。
因此,荧光颜色也可以用来进行分子荧光定性分析。
需要注意的是,分子荧光定性分析只能确定一个化合物是荧光性还是非荧光性,
并不能提供关于分子结构和化合物量的定量信息。
为了进行准确的分子荧光定性分析,通常需要使用荧光光谱仪或相关的仪器。
分子发光分析法基态分子吸收了一定能量后,跃迁至激发态,当激发态分子以辐射跃迁形式将其能量释放返回基态时,便产生分子发光(Molecular Luminescence)。
依据激发的模式不同,分子发光分为光致发光、热致发光、场致发光和化学发光等。
光致发光按激发态的类型又可分为荧光和磷光两种。
本章讨论分子荧光(Molecular Fluorescence)、分子磷光(Molecular Phosphorescence)和化学发光(Chemiluminescence)分析法。
第一节荧光分析法一、概述分子荧光分析法是根据物质的分子荧光光谱进行定性,以荧光强度进行定量的一种分析方法。
早在16世纪,人们观察到当紫外和可见光照射到某些物质时。
这些物质就会发出各种颜色和不同强度的光,而当照射停止时,物质的发光也随之很快消失。
到1852年才由斯托克斯(Stokes)给予了解释,即它是物质在吸收了光能后发射出的分子荧光。
斯托克斯在对荧光强度与浓度之间的关系进行研究的基础上,于1864年提出可将荧光作为一种分析手段。
1867年Goppelsroder应用铝—桑色素络合物的荧光对铝进行了测定。
进入20世纪,随着荧光分析仪器的问世,荧光分析的方法和技术得到了极大发展,如今已成为一种重要且有效的光谱分析手段。
荧光分析法的最大优点是灵敏度高,它的检出限通常比分光光度法低2~4个数量级,选择性也较分光光度法好。
虽然能产生强荧光的化合物相对较少,荧光分析法的应用不如分光光度法广泛,但由于它的高灵敏度以及许多重要的生物物质都具有荧光性质。
使得该方法在药物、临床、环境、食品的微量、痕量分析以及生命科学研究各个领域具有重要意义。
二、基本原理(一)分子荧光的产生大多数分子含有偶数电子。
根据保里不相容原理,基态分子的每一个轨道中两个电子的自旋方向总是相反的,因而大多数基态分子处于单重态(2S+1=1),基态单重态以S0表示。
当物质受光照射时,基态分子吸收光能就会产生电子能级跃迁而处于第一、第二电子激发单重态,以S1、S2表示。
第七章分子荧光分析法第一节概述物质的分子吸收一定的能量后,其电子从基态跃迁到激发态,如果在返回基态的过程中伴随有光辐射,这种现象称为分子发光(molecular luminescence),以此建立起来的分析方法,称为分子发光分析法。
物质因吸收光能激发而发光,称为光致发光(根据发光机理和过程的不同又可分为荧光和燐光);因吸收电能激发而发光,称为电致发光;因吸收化学反应或生物体释放的能量激发而发光,称为化学发光或生物发光。
根据分子受激发光的类型、机理和性质的不同,分子发光分析法通常分为荧光分析法,燐光分析法和化学发光分析法。
荧光分析法历史悠久。
早在16世纪西班牙内科医生和植物学家N.Monardes,就发现含有一种称为“Lignum Nephriticum”的木头切片的水溶液中,呈现出极为可爱的天蓝色,但未能解释这种荧光现象。
直到1852年Stokes在考察奎宁和叶绿素的荧光时,用分光计观察到它们能发射比入射光波长稍长的光,才判明这种现象是这些物质在吸收光能后重新发射的不同波长的光,从而导入了荧光是光发射的概念,并根据荧石发荧光的性质提出“荧光”这一术语,他还论述了Stokes 位移定律和荧光猝灭现象。
到19世纪末,人们已经知道了包括荧光素、曙红、多环芳烃等600多种荧光化合物。
近十几年来,由于激光、微处理机和电子学新成就等科学科术的引入,大大推动了荧光分析理论的进步,促进了诸如同步荧光测定、导数荧光测定、时间分辨荧光测定、相分辨荧光测定、荧光偏振测定、荧光免疫测定、低温荧光测定、固体表面荧光测定、荧光反应速率法、三维荧光光谱技术和荧光光纤化学传感器等荧光分析方面的发展,加速了各种新型荧光分析仪器的问世,进一步提高了分析方法的灵敏度、准确度和选择性,解决了生产和科研中的不少难题。
目前,分子发光分析法在生物化学,分子生物学,免疫学,环境科学以及农牧产品分析,卫生检验、工农业生产和科学研究等领域得到了广泛的应用。