核酸的分子结构
- 格式:docx
- 大小:14.38 KB
- 文档页数:2
核酸的结构与功能核酸,这个生物体的基本组成部分,以其独特的结构和功能,影响着生物体的生命活动。
它包括DNA和RNA两种主要类型,各有其独特的特点和功能。
一、核酸的结构核酸是由磷酸、核糖和四种不同的碱基组成。
这四种碱基分别是腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和尿嘧啶(U)。
它们通过特定的方式连接在一起,形成DNA或RNA。
DNA,也被称为脱氧核糖核酸,是生物体遗传信息的主要载体。
它是由两条相互旋转的链组成的双螺旋结构,其中碱基通过氢键以特定的配对方式连接,即A与T配对,G与C配对。
这种配对方式保证了DNA 的稳定性和遗传信息的正确复制。
RNA,也被称为核糖核酸,是生物体内重要的信息传递者和调节者。
它通常是由单链结构组成,也可以是双链结构。
与DNA不同,RNA的碱基配对方式相对简单,通常是A与U配对,G与C配对。
二、核酸的功能1、遗传信息的储存和传递:DNA是生物体遗传信息的主要载体,负责储存和传递生物的遗传信息。
这些信息通过DNA的复制传递给下一代,并指导生物体的生长和发育。
2、基因表达的调控:RNA在基因表达中起着重要的调控作用。
它可以通过碱基配对原则识别并携带DNA中的遗传信息,将遗传信息从DNA传递到蛋白质合成的地方。
同时,一些RNA还可以作为调节分子,影响基因的表达。
3、蛋白质合成:RNA不仅是遗传信息的载体,还是蛋白质合成的模板。
在蛋白质合成过程中,RNA将DNA中的遗传信息翻译成蛋白质中的氨基酸序列。
4、细胞内的信号传导:某些RNA分子可以作为分子开关,调控细胞内的信号传导通路。
这些RNA可以结合并调控蛋白质的活性,从而影响细胞内的生物化学反应。
5、免疫反应的调节:某些RNA分子还可以作为免疫反应的调节剂。
它们可以影响免疫细胞的活性,从而影响免疫反应的强度和持续时间。
总结起来,核酸是生物体中至关重要的分子,其结构和功能共同保证了生物体的正常生长和发育。
从DNA中的遗传信息传递到RNA的信息载体作用,再到蛋白质的合成和细胞内信号传导的调控,核酸都发挥着不可或缺的作用。
第二节核酸的分子结构核酸的一级结构是指其结构中核苷酸的排列次序。
在庞大的核酸分子中,各个核苷酸的唯一不同之处仅在于碱基的不同。
因此核苷酸的排列次序也称碱基排列次序。
核酸就是由许多核苷酸单位通过3’,5’-磷酸二酯键连接起来形成的不含侧链的长链状化合物。
核酸具有方向性的长链状化合物,多核苷酸链的两端,一端称为5’-端,另一端称为3’-端。
组成DNA的核苷酸虽然只有四种,但是各种核苷酸的数量、比例和排列次序不同,并且DNA分子中的核苷酸(碱基)数量都多达百万乃至千万,因此可以形成各种特异性的DNA片段,由这些排列方式所提供的信息,几乎是无限的,从而造就了自然界丰富多彩的物种和个体之间的千差万别。
二、DNA的二级结构——双螺旋结构模式DNA双螺旋结构是DNA二级结构的一种重要形式,它是Watson和Crick两位科学家于1953年提出来的一种结构模型。
双螺旋模型的要点如下:1.DNA分子是由两条长度相同、方向相反的多聚脱氧核糖核苷酸链平行围绕同一“想象中”的中心轴形成的双股螺旋结构。
二链均为右手螺旋。
双螺旋表面存在着两条凹沟,与脱氧核糖-磷酸骨架平行。
较深的沟称为大沟(major groove),较浅的称为小沟(minor groove)。
这些沟状结构与蛋白质和DNA的识别及结合有关,通过这样的相互作用,实现对基因表达的调控。
2.两条多核苷酸链中,脱氧核糖和磷酸形成的骨架作为主链位于螺旋外侧,而碱基朝向内侧。
两链朝内的碱基间以氢键相连,使两链不至松散。
碱基间的氢键形成有一定的规律:即腺嘌呤与胸腺嘧啶以二个氢键配对相连;鸟嘌呤与胞嘧啶以三个氢键相连(即A=T,G≡C)。
这种碱基配对规律被称为“碱基互补规律”。
这些配对的碱基一般处在同一个平面上,称碱基平面,它与双螺旋的长轴垂直。
正因为两链间的碱基是互补的,所以两链的核苷酸排列次序也是互补的,即两链互为互补链。
当知道一条链的一级结构,另一条互补链也就被确定。
核酸的结构和功能核酸是生物体内的重要生物大分子之一,其结构和功能对于生物体的正常生理活动具有重要意义。
核酸主要包括核糖核酸(RNA)和脱氧核糖核酸(DNA),它们在细胞中扮演着信息传递、遗传、调控等方面的重要角色。
本文将详细介绍核酸的结构和功能。
一、核酸的结构核酸是由核苷酸单元组成的长链分子。
核苷酸由一个含氮碱基、糖分子和磷酸组成。
核苷酸通过磷酸二酯键连接成链状结构,相邻核苷酸之间的磷酸二酯键被称为链的磷酸骨架。
在DNA中,糖分子是脱氧核糖(deoxyribose),而在RNA中则是核糖(ribose)。
碱基分为嘌呤(鸟嘌呤和胸腺嘧啶)和嘧啶(腺嘌呤、鸟嘌呤和尿嘧啶)两类。
在DNA中,鸟嘌呤和胸腺嘧啶以氢键的方式通过碱基配对相互结合,形成双螺旋结构。
而在RNA中,核糖和碱基之间没有形成稳定的双螺旋结构。
二、核酸的功能1.存储遗传信息:DNA是生物体内存储遗传信息的主要分子。
通过DNA的序列编码了生物体内所有蛋白质的合成信息。
每一个DNA分子都包含了生物体所有的遗传信息,它能够准确地复制自身,并通过遗传信息的传递实现后代群体的生存和繁殖。
2.转录和翻译:DNA的遗传信息通过转录作用被转录成一种中间产物RNA,即RNA的合成过程。
在细胞质中,RNA通过读取DNA上的密码信息并翻译成蛋白质序列,从而实现遗传信息的传递。
这个过程被称为翻译。
3.转运和储存能量:核酸还能承担转运和储存能量的功能。
例如,三磷酸腺苷(ATP)是细胞内的一种重要能量转移分子,在胞吞、细胞呼吸等细胞代谢过程中转运和释放能量。
4. 催化作用:部分RNA分子具有催化作用,被称为酶RNA (ribozyme)。
酶RNA能够在特定条件下催化化学反应,例如:RNA酶能够剪切RNA链,还能参与核酸的合成和修复等生物化学过程。
5.调控基因表达:除了DNA编码蛋白质的功能外,核酸还能调控基因表达过程。
RNA在细胞内扮演着信使RNA、转运RNA和核糖体RNA等不同角色,参与调控基因表达的过程,例如:转录因子通过与一些基因的调控区域结合,将DNA转录为RNA,进而调控该基因的表达。
第二章核酸的分子结构核酸是一类重要的生物大分子,包括DNA(脱氧核糖核酸)和RNA(核糖核酸)。
它们是细胞内负责遗传信息存储和传递的关键分子。
核酸的分子结构是由不同的分子组成,形成了独特的双螺旋结构,这种结构使得核酸能够实现遗传信息的稳定传递以及多种生物功能的实现。
DNA是由鸟嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)和鸟嘌呤(G)四种碱基组成的核酸分子。
碱基通过N-糖苷键链接到核糖磷酸分子上,形成了核苷酸,进而形成了DNA的整个分子结构。
DNA的双螺旋结构采用了著名的Watson-Crick结构模型,即两根互相以螺旋形状缠绕的链。
这种结构由两条链通过碱基间的氢键相互连接,形成了DNA的双螺旋结构。
其中,鸟嘌呤通过三个氢键连接到胸腺嘧啶,胞嘧啶通过两个氢键连接到鸟嘌呤。
这种碱基之间的选择性配对使得DNA能够实现信息的复制和传递。
在DNA的分子结构中,糖苷和磷酸通过磷酸二酯键链接在一起,形成了DNA的骨架。
两条糖磷酸链反向排列,形成了DNA的双螺旋结构。
糖苷分子是由五个碳原子组成的环状结构,每个碳原子上有一个氧原子和一个氢原子,还有一个碱基。
两条DNA链互相以反向排列的方式连接,即一个链上的3'-OH基团连接到另一个链上的5'-磷酸基团。
这种反向排列使得DNA具有了方向性,即5'端和3'端。
与DNA不同,RNA由磷酸核糖分子和碱基组成。
在RNA分子中,脱氧核糖被核糖取代,并且鸟嘌呤(A)和胸腺嘧啶(T)不再是碱基对,取而代之的是鸟嘌呤(A)和尿嘧啶(U)。
RNA的磷酸二酯键连接在一起,形成了RNA的线性结构。
虽然RNA也可以形成双螺旋结构,但大部分的RNA通常是单链结构。
RNA还具有许多不同的结构和功能,例如mRNA(信使RNA)、rRNA(核糖体RNA)和tRNA(转运RNA),它们参与了蛋白质的合成过程。
总之,核酸的分子结构是由不同的分子组成,形成了特殊的双螺旋结构。
核酸的基本骨架
核酸是一类由氮等元素构成的有机分子,它有独特的结构和用途。
它
的基本骨架主要有以下几点。
一、核酸分子的本质
1、核酸的分子由二糖(即糖类)、磷酸根和肝素氨基酸三大要素组成。
换句话说,核酸中还含有少量脂质分子,它们共同形成了核酸的基本
骨架。
2、核酸的分子组成采用了双螺旋构型,是由磷酸根上每一个糖碳基的
胞嘧啶或胸腺嘧啶组成的;肝素氨基酸是终于形成双螺旋构型的重要
分子,它在核酸体系中起贯穿线丝状骨架的作用。
二、核酸分子的作用
1、核酸分子可以存放遗传信息。
核酸分子通过其独特的双螺旋结构,
可以将遗传信息进行包装,从而达到存放遗传信息的目的。
2、核酸分子可以表达遗传信息。
只要提供原料和能量,核酸分子就能
够按其存储的遗传信息生成有特殊功能的蛋白质,它们的功能包括营
养的合成、抗病毒的作用等。
3、核酸分子还可以参与各种生物反应。
核酸分子可以储存酶,它们能够参与生物反应,进而影响细胞的活动,促进细胞的生长、分裂和修复。
三、核酸分子的形成
1、核酸分子的形成受源核酸碱基的引物作用介导。
碱基引物可以识别到正确的模板,一旦源核酸就能够在催化剂的影响下形成核酸分子。
2、另外,核酸分子的形成还与合成酶有关。
细菌体内有一类蛋白质包含酶,叫做核酸合成酶,它可以促进核酸分子的形成,从而对细胞活动起到调节作用。
本文介绍了核酸的基本骨架,即由二糖、磷酸根和肝素氨基酸三大要素组成的双螺旋构型,源核酸碱基的引物作用介导核酸分子的形成,核酸分子可以存放遗传信息,也可以表达遗传信息,以及参与各种生物反应。
核酸的分子组成和结构核酸是构成生物体基本遗传信息的大分子,包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。
它们在细胞中起着传递、复制和转录遗传信息的重要作用。
核酸的分子组成和结构是理解其功能和特性的基础。
我们来看核酸的分子组成。
核酸由核苷酸组成,而核苷酸又由糖、磷酸和碱基三个部分组成。
其中,DNA的糖是脱氧核糖,而RNA 的糖是核糖。
糖和磷酸通过磷酸二酯键连接在一起,形成核苷酸的主体结构。
碱基则连接在糖的1号碳上,通过N-糖苷键与糖相连。
DNA的碱基有腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞嘧啶(C),而RNA的碱基则是腺嘌呤(A)、尿嘧啶(U)、鸟嘌呤(G)和胞嘧啶(C)。
我们来探讨核酸的分子结构。
DNA和RNA的分子结构都是由两条互补的链组成的。
这种结构被称为双螺旋结构。
在DNA中,两条链通过碱基之间的氢键相互连接,形成稳定的螺旋结构。
其中,腺嘌呤和胸腺嘧啶之间是通过两个氢键连接的,而鸟嘌呤和胞嘧啶之间是通过三个氢键连接的。
这种特殊的氢键配对使得DNA的两条链保持互补性。
RNA的结构与DNA类似,但由于RNA含有尿嘧啶而不含胸腺嘧啶,因此RNA是以单链的形式存在的。
除了双螺旋结构,核酸还可以形成其他的二级和三级结构。
在DNA中,双螺旋可以进一步形成超螺旋、环形和染色质等结构。
RNA则可以形成各种不同的二级结构,如发夹结构、环状结构和四链结构等。
这些二级和三级结构的形成与核酸的碱基序列、糖基连接方式以及环境条件等因素有关。
总结起来,核酸的分子组成和结构是由核苷酸、糖、磷酸和碱基等部分组成的。
核酸分为DNA和RNA两种类型,其糖的种类和碱基的组成略有不同。
核酸以双螺旋结构为基础,通过碱基之间的氢键相互连接,形成稳定的结构。
此外,核酸还可以形成其他的二级和三级结构,这些结构对于核酸的功能和特性具有重要影响。
对于生物学研究和遗传工程等领域来说,对核酸的分子组成和结构有深入的理解是至关重要的。
了解核酸的组成和结构有助于我们理解生命的起源和进化,揭示基因的功能和调控机制,以及开发新的药物和治疗方法。
核酸的分子结构
脱氧核糖核酸的结构
我们希望提出一种脱氧核糖核酸盐(DNA)的结构。
这种结构具有新的特征,具有非常大的生物学意义。
核酸的结构已经由Pauling和Corey提出。
他们在出版前友好地给我们提供了手稿。
它们的模型由三条相互缠绕的链组成,磷酸盐在DNA链的轴附近,碱基在外侧。
我们认为,这种结构令人不满意的原因有两个:(1)我们认为,给出做X射线衍射实验的材料是脱氧核糖核酸盐,而不是游离的核酸。
没有酸性的氢原子,还不清楚什么力能使结构保持在一起,特别是靠近轴的带负电荷的磷酸盐会相互排斥。
(2)一些范德华距离似乎太小。
另一个三链结构也被Fraser提出(研究成果正在印刷)。
在他的模型中,磷酸盐在外面,碱基在内部,通过氢键连接在一起。
所描述的这种结构是很不清楚的,因此我们将不予置评。
我们希望对脱氧核糖酸的盐提出一种完全不同的结构。
这种结构有两个螺旋DNA链,绕同一个轴盘旋(见图)。
我们作出了通常的化学假设,也就是说,每个链由β-D-脱氧核糖核糖残基在3’,5’处连接磷酸二酯基组成。
这两个链(除了碱基部分)两两配对并垂直于中轴。
两条链都遵循右手螺旋规则,但是由于两两配对,两条链中的原子序列方向相反。
每个链条都与Furberg的第一个模型大致相似,即碱基位于螺旋的内部,磷酸盐位于外部。
糖及其附近的原子的构型接近于Furberg的“标准构型”,糖大致垂直于连接的碱基。
在Z轴方向上每3.4 A有一个残基。
我们假定同一链中相邻残基之间的夹角为36°,则每条链上每10个残基,即在34A之后,出现重复结构。
磷原子与纤维轴的距离是10A。
由于磷酸盐在外面,阳离子很容易接近它们。
该结构是值得商榷的,它的水含量较高。
在水含量较低的情况下,我们预测碱基会倾斜,从而使结构变得更紧凑。
该结构的新颖特征是两条链通过嘌呤和嘧啶碱基保持在一起。
碱基平面垂直于中轴。
它们成对地连接在一起,一个链的单个碱基与另一个链的单个碱基通过氢键结合,因此两个碱基以相同的z坐标并排排列。
为了有效结合,碱基对中的一个必须是嘌呤,另一个必须是嘧啶。
氢键的形成如下:嘌呤位置1对应嘧啶位置1;嘌呤位置6对应嘧啶位置6。
如果假设碱基只以最合理的互变异构形式出现(即酮式而非烯醇式),则发现只有特定的碱基对才能结合在一起。
这些碱基对是:腺嘌呤与胸腺嘧啶,鸟嘌呤与胞嘧啶。
换句话说,如果碱基对中的其中一个碱基是腺嘌呤,根据这些假设,另一个必须是胸腺嘧啶,鸟嘌呤和胞嘧啶也是如此。
单链上的碱基序列不受任何限制。
然而,如果仅能形成特定的碱基对,则如果给定一个链上的碱基序列,则自动确定另一个链上的碱基序列。
实验发现,在DNA中,腺嘌呤与胸腺嘧啶的比例以及鸟嘌呤与胞嘧啶的比例总是非常接近统一。
用核糖代替脱氧核糖来构建这种结构是不可能的,因为额外的氧原子会使范德华距离太近。
以前公布的脱氧核糖核酸的X射线数据不足以对我们的结构进行严格的测试。
据我们所知,它与实验数据大致相符,但必须把它看作未经证实的假设,直到用更精确的实验结果进行检验。
其中一些在下面的通信中给出。
当我们设计我们的结构时,我们并不知道下面给出的实验结果的细节。
我们的理论主要基于我们的思考,并不完全依赖于公布的实验数据和立体化学理论。
我们注意到,我们假设出特定碱基配对,这种规则立即揭示了遗传物质的一种可能的复制机制。
该结构的全部细节,包括建造时假定的条件,以及原子的一组坐标,将在别处公布。
我们非常感谢Jerry Donohue博士不断的建议和批评,尤其是原子间距离。
我们还被伦敦国王学院的M.H.F.威尔金斯博士、R.E.富兰克林博士及其同事关于未公布的实验结果和想法的一般性质的知识所鼓舞。
Watson得到了来自全国小儿麻痹基金会的帮助。
J. D. W ATSON
F. H. C. C RICK。