车轮传动装置设计
- 格式:doc
- 大小:224.50 KB
- 文档页数:7
《汽车设计》课程教学大纲课程代码:020241010课程英文名称:Automobile Design课程总学时:48 讲课:48 实验:0 上机:0适用专业:车辆工程专业大纲编写(修订)时间:2017.5一、大纲使用说明(一)课程的地位及教学目标该课程是车辆工程专业本科生的一门必修专业课。
通过本课程的教学,使学生掌握汽车总体设计的步骤、方法、有关参数对汽车性能的影响;学会分析和评价整车及总成的结构与性能,合理选择结构方案及有关参数;学会主要总成的设计计算方法。
学生在完成本课程的学习后,应能进行初步的汽车总体设计和总成设计与计算等技术工作,为今后从事汽车及科研、设计等工作打下扎实的基础。
(二)知识、能力及技能方面的基本要求1.基本知识:掌握汽车设计的一般流程、主要设计指标、汽车主要总成的选型、主要参数的选择;汽车主要零部件的主要类型、工作条件、设计要求、材料、性能、结构特点等。
2.基本理论和方法:掌握汽车设计的基本原则,明了汽车发动机的相关参数对汽车设计的重大影响,着重掌握汽车底盘主要总成的参数选择、确定、设计计算,掌握提高零件疲劳强度,降低或增强摩擦,提高零部件工艺性的途径和方法等在设计中的应用。
3.基本技能:掌握设计计算、结构设计,编制技术文件等技能。
(三)实施说明1、本大纲中各章内容之间既相互关联又各自独立,每一章论述车辆一个系统的设计;2、本课程中未提及汽车车架设计的内容,这一部分在另外一门课程中讲述;3、本课程重点是有关汽车设计的基本理论、方法和程序,忌将设计理解为设计计算,教师应结合车辆工程专业的实际问题,在教学过程中注意理论与实际结合,突出实际应用;4、教师在授课过程中可以根据实际情况酌情安排各部分的学时,课时分配表仅供参考;5、课程的教学目标通过讲授、课后作业、实验和课程设计四个环节来实现。
教师要注重对基本概念、基本方法和解决实际问题思路的讲解,以便学生在实际应用中能举一反三,灵活运用。
传动轴设计指南范文传动轴是一种将动力从发动机传输到车轮或其他驱动装置的机械装置。
在传动系统中,传动轴起着至关重要的作用。
本文将介绍传动轴设计的一些基本原则和指南。
首先,传动轴的设计必须符合所需的扭矩和转速要求。
传动轴必须能够承受所施加的扭矩,并将动力传输到所需的转速。
其次,传动轴的材料选择非常重要。
传动轴通常由高强度合金钢或碳纤维等材料制成。
材料的选择要考虑扭矩和转速的要求,以及轴的重量和成本。
第三,传动轴的直径和长度也需要仔细设计。
较大的直径可以增加传动轴的强度和刚度,从而承受更大的扭矩。
然而,直径过大可能会增加轴的重量和成本。
轴的长度可以影响传输功率的效率,较长的轴可能引起振动和弯曲问题。
第四,传动轴的设计中需考虑自平衡的需求。
如果传动轴存在不平衡,将会引起振动和噪音,并可能导致轴的损坏。
因此,设计师应该采取措施来平衡轴,例如在适当的位置安装平衡块。
第五,传动轴的连接方法也非常重要。
连接方法应有效地传递扭矩,并保持轴的正确定位。
常用的连接方法有键槽连接、伞齿轮连接和膨胀连接等。
第六,传动轴的润滑也是一个重要的设计因素。
适当的润滑可以减少传动轴的摩擦和磨损,并提高传动效率。
润滑剂选择应考虑工作条件和轴的材料。
第七,传动轴的安装和维护也需要注意。
传动轴的正确安装可以确保轴和其他部件的正常运行。
定期检查和维护传动轴可以延长其寿命并避免故障。
最后,传动轴设计时应考虑实际应用环境的影响。
例如,在恶劣的工作条件下,如高温、高湿度或腐蚀性环境中,轴的材料和设计必须能够适应这些条件。
综上所述,传动轴的设计是传动系统中不可或缺的一部分。
合理的设计可以保证传动系统的正常运行和高效性能。
设计人员应该充分考虑扭矩和转速要求、材料选择、直径和长度、自平衡、连接方法、润滑、安装和维护等因素,以确保传动轴的正常运行和长寿命。
毕业设计(论文)开题报告题目:四驱越野车主传动装置结构设计参考文献[1] 杨立成,刘广森.全时四驱越野车新型传动系统[J].百科之窗,2011(7):24-25.[2] 孟文阁.四轮驱动汽车的工作特性研究[J].科技与经济,2006,36(4):57-58.[3] 杨立成,刘广森.淇林全时四驱系统—新型全时四驱技术[J].百科之窗,2011(9):25.[4] 赵治国,顾君,余卓平.四轮驱动混合动力轿车驱动防滑控制研究[J].机械工程学报,2011,47(14):83-98.[5] 本刊编辑部.莫让浮云遮望眼—越野车四驱技术[J].汽车与安全,2011(4):29-31.[6] 关大勇.四轮驱动汽车的机构特点及合理使用[J].农机使用与维修,2012(1):66.[7] 杨立贵,周毅.四轮驱动汽车新型动力传动技术[J].百科之窗,2011(6):24-25.[8] 胡建军,王银,秦大同等.基于轴间转矩分配的四轮驱动汽车牵引力控制[J].华南理工大学学报,2010,38(1):108-112.[9] 李明成.四轮驱动胸的结构特点及故障检修[J].汽车维修与保养,2013,(10):57-59.[10] 戚烈.车辆四轮驱动系统研究及仿真分析[D].辽宁:西北农林科技大学,2011.[11] 吴乙万,付苗苗,陈广.菱形四轮驱动汽车动力传动系统的设计与研究[J].计算机仿真,2010,27(2):286-289.[12] 叶斌,王洪军,王丹.齿形链传动在汽车变速箱及分动箱中的应用[J].机械传动,2012,(1):14-16.[13]蒋振江.四轮独立驱动电动汽车驱动控制策略的研究[D].重庆:重庆理工大学,2012,4.[14] 赵治国,何宁,朱阳等.四轮驱动混合动力轿车驱动模式切换控制[J].机械工程学报 ,2011,47(4):100-109.[15] 王贵明,王金懿.四轮驱动四轮转向的汽车电子差速转向控制[J].变频器世界,2011,(2):48-51.[16]QIZh-i quan,MA Yue-feng, LIU Zhao-du. Estimation of Vehicle Speed Based on WheelSpeeds from ASR System in Four-Wheel Drive Vehicles[J].Journal of Beijing Institute ofTechnology,2010,19(2):153-157[17]CHEN S-i zhong,SHU Jin, Y ANG Lin. Research on Vehicle Control Technology usingFour-Wheel Independent Steering System[J].Journal of Beijing Instiute of Technology,2006,15(1):22-26.[18] CHEN Ning,CHEN Nan, CHEN Yan-dong.On fractional control method for four-wheel-steering vehicle[J]. Science in China(Series E:Technological Sciences),2009,52(3):603-609.。
汽车传动工作原理演示步骤
1. 准备好模型汽车,并确保其传动系统未组装。
2. 首先,将发动机安装到车身上。
发动机通常位于模型汽车的前部,需要用螺丝固定。
3. 接下来,将变速器安装在发动机的后部。
变速器是将发动机的输出转速转变为适合车轮的转速的装置。
4. 将轴安装到变速器的输出轴上,并使其延伸到车轮的位置。
这根轴被称为传动轴。
5. 在车轮上安装齿轮或齿条,并让传动轴与齿轮或齿条的齿相咬合。
6. 确保传动轴能够无阻碍地旋转,并且齿轮或齿条能跟随传动轴的运动。
7. 最后,将所有零部件按照模型汽车的设计进行组装,确保每个部件都牢固地连接在一起。
8. 完成组装后,手动旋转发动机的曲轴或使用电源启动发动机,以观察传动系统的工作原理。
请注意,这只是一个简单的汽车传动工作原理演示步骤,具体步骤可能会因汽车模型的设计和传动系统类型而有所不同。
第一章轻型货车原始数据及设计要求发动机的输出扭矩:最大扭矩285.0N·m/2000r/min;轴距:3300mm;变速器传动比: 五挡1 ,一挡7.31,轮距:前轮1440毫米,后轮1395毫米,载重量2500千克设计要求:第二章万向传动轴的结构特点及基本要求万向传动轴一般是由万向节、传动轴和中间支承组成。
主要用于在工作过程中相对位置不节组成。
伸缩套能自动调节变速器与驱动桥之间距离的变化。
万向节是保证变速器输出轴与驱动桥输入轴两轴线夹角的变化,并实现两轴的等角速传动。
一般万向节由十字轴、十字轴承和凸缘叉等组成。
传动轴是一个高转速、少支承的旋转体,因断改变的两根轴间传递转矩和旋转运动。
重型载货汽车根据驱动形式的不同选择不同型式的传动轴。
一般来讲4×2驱动形式的汽车仅有一根主传动轴。
6×4驱动形式的汽车有中间传动轴、主传动轴和中、后桥传动轴。
6×6驱动形式的汽车不仅有中间传动轴、主传动轴和中、后桥传动轴,而且还有前桥驱动传动轴。
在长轴距车辆的中间传动轴一般设有传动轴中间支承.它是由支承架、轴承和橡胶支承组成。
传动轴是由轴管、伸缩套和万向此它的动平衡是至关重要的。
一般传动轴在出厂前都要进行动平衡试验,并在平衡机上进行了调整。
因此,一组传动轴是配套出厂的,在使用中就应特别注意。
图 2-1 万向传动装置的工作原理及功用图 2-2 变速器与驱动桥之间的万向传动装置基本要求:1.保证所连接的两根轴相对位置在预计范围内变动时,能可靠地传递动力。
2.保证所连接两轴尽可能等速运转。
3.由于万向节夹角而产生的附加载荷、振动和噪声应在允许范围内。
4.传动效率高,使用寿命长,结构简单,制造方便,维修容易等第三章轻型货车万向传动轴结构分析及选型由于货车轴距不算太长,且载重量2.5吨属轻型货车,所以不选中间支承,只选用一根主传动轴,货车发动机一般为前置后驱,由于悬架不断变形,变速器或分动器输出轴轴线之间的相对位置经常变化,根据货车的总体布置要求,将离合器与变速器、变速器与分动器之间拉开一段距离,考虑到它们之间很难保证轴与轴同心及车架的变形,所以采用十字轴万向传动轴,为了避免运动干涉,在传动轴中设有由滑动叉和花键轴组成的伸缩节,以实现传动轴长度的变化。
第一章轮式工程机械传动系在发动机与行走机构之间传递动力的所有构件组成传动系,所以,传动系的主要作用是将发动机的动力传递到驱动轮。
工作时发动机需要在空载情况下起动、也需要机器停止工作而发动机不熄火,因而传动系需要有接通、断开动力的功能。
负荷有大有小、设备也需要以不同的速度工作,为了充分发挥机器的工作能力,传动系也要有改变行驶速度和牵引力的能力。
机器工作中还需要后退,传动系要可以实现机器的这个功能。
机器工作时难免会超载,为了防止其损坏,传动系应有一定的过载保护能力。
许多机器(如:汽车、拖拉机、推土机等)的传动系还有动力输出功能。
第一节传动系的类型与组成一、机械传动图1-l为SDZl0型轮式装载机传动系简图。
它的传动系主要由主离合器2、变速箱3、驱动图1一1 SDZl0型轮式装载机传动系1一发动机,2一离台器,3一变速器,4一油泵。
5一驱动桥,6一传动轴,7~脱拆装置,8一手制动器桥5组成。
可以看出,在机械式传动系中,除了主离合器传动外,所有其它构件均为刚性传动。
机械式传动系有以下特点:1)优点:结构简单、便于维修、工作可靠、成本低廉、传动效率高,可以利用柴油机运动构件的惯性作业。
2)缺点:(1)发动机的振动冲击直接传到传动系,外负荷的冲击波动直接到达发动机,造成发动机功率下降.所有零部件的使用寿命降低。
(2)由于传动系没有自动适应能力,在传动系的传动比不变的条件下设备只能依靠发动机的调速特性适应外负荷的变化。
而发动机的调速特性的调整能力又十分有限,实际不可能适应工程机械的外负荷大范围变化。
为了解决这个问题,通常在传动系中设置变速箱,通过增加档位数拓宽机器的工作范围,使机械式传动系中变速箱的档位数目较多,换档过程复杂。
(3)为保证在负荷变化时机器有较高的生产率,超负荷时发动机不熄火,要求驾驶员有丰富的经验和熟练的技巧,同时频繁的换档动作会使驾驶员的劳动强度增加。
(4)换档过程中分离主离合器造成的动力中断,往往使工作中的工程机械停止前进,造成机器起步困难。
传动轴设计1概述在汽车传动轴系或其它系统中,为了实现一些轴线相交或相对置经常变化的转轴之间的动力传递,必须采用万向传动装置。
万向传动装置一般由万向节和传动轴组成,当距离较远时,还需要中间支承。
在汽车行业中把连接发动机与前、后轴的万向传动装置简称传动轴。
传动轴设计应能满足所要传递的扭矩与转速。
现轻型载货汽车多采用不等速万向节传动轴。
2传动轴设计2.1传动轴万向节、花键、轴管型式的选择根据整车提供发动机的最高转速、最大扭矩及变速箱提供的一档速比,及由后轴负荷车轮附着力,计算得扭矩,由两者比较得出的最小扭矩来确定传动轴的万向节、花键、轴管型式。
a按最大附着力计算传动轴的额定负荷公式:Mψmax=G·r k·ψ/i oG满载时驱动轴上的负荷r k车轮的滚动半径ψ车轮与地面的附着系数i o主减速器速比b按发动机最大扭矩计算传动轴的额定负荷公式:Mψmax =M·i k1·i p/nM 发动机最大扭矩i k1变速器一档速比i p 分动器低档速比n 使用分动器时的驱动轴数按《汽车传动轴总成台架试验方法》中贯定选取以上二者较小值为额定负荷。
考虑到出现最大附着力时的工况是紧急制动工况此时的载荷转移系数为μ因此实际可利用最大附着力矩:M ψmaxo = M max ·μ传动轴的试验扭矩:由汽车设计丛书《传动轴和万向节》中得知:一般总成的检查扭矩为设计扭矩的1.5-2.0倍。
传动轴设计中轴管与万向节的设计扭矩也应选取1.5-2.0倍的计算扭矩,以满足整车使用中的冲击载荷。
轴管扭转应力公式:τ=16000DM π(D 4-d 4)<[τ] =120N/ mm2D 轴管直径; d 轴管内径;M 变速箱输出最大扭矩;花键轴的扭转应力:τ=16000M πD 23<[τ] =350N/ mm 2D 2花键轴花键底径;D 2=27.667mm 。
Z 花键齿数 m 花键模数M变速箱输出最大扭矩;传动轴花键齿侧的挤压应力:δ=2×TΨ×Z×m×L×Z×m在25-50N.mm2推荐范围内Ψ各齿载荷不均系数;Z花键齿数;L花键齿的最短工作长度长度;m花键模数;2.2传动轴的临界转速计算传动轴的临界转速。
传动轴设计及应用演示文稿一、传动轴的定义和作用传动轴是将动力从发动机传递到驱动轮或其他传动装置上的重要传动元件。
它能够将发动机的转动力矩和转速传递给驱动轮,实现车辆或机械设备的运动。
二、传动轴的设计原则1.强度设计原则:传动轴必须具有足够的强度和刚度,能够承受发动机输出的各种动力载荷。
强度设计时需要考虑轴的材料、直径、长度和转动速度等因素。
2.轻量化设计原则:传动轴的重量直接影响车辆或机械设备的整体性能。
设计时要追求轴的轻量化,通过优化结构、选用高强度材料等方式实现。
3.自平衡设计原则:为了减少传动过程中的振动和噪音,传动轴应当采用自平衡设计。
将轴体两端的重量均衡分布,使轴在运动过程中保持平衡。
4.耐磨损设计原则:传动轴通常与其他传动装置直接接触,容易发生磨损。
设计时要选用耐磨损的材料,并采取必要的表面处理措施,以延长传动轴的使用寿命。
三、传动轴的应用1.汽车传动系统:传动轴是汽车传动系统中最重要的组成部分之一、它将发动机的动力传递给驱动轮,从而实现汽车的运动。
2.工业机械传动:传动轴广泛应用于各种类型的工业机械中,如数控机床、风力发电机组、钢铁设备等,实现动力的传递和转动。
3.农业机械传动:传动轴用于农业机械中,如拖拉机、收割机等。
它将发动机的动力传递给农机各个部位,实现农业机械的工作。
4.船舶传动系统:传动轴是船舶传动系统中的重要组成部分。
它将主机的动力传递给螺旋桨,使船舶前进或后退。
5.轨道交通传动:传动轴广泛应用于轨道交通系统中,如火车、地铁等。
它将电动机的动力传递给车轮,实现车辆的运动。
四、传动轴的设计案例以汽车传动轴为例,对其设计进行详细介绍。
汽车传动轴的设计要求:1.强度要求高:传动轴需要承受高强度的扭矩和冲击载荷。
2.轻量化设计:传动轴的重量直接影响汽车的燃油消耗和操控性能。
3.自平衡设计:传动轴需要在高速运动中保持平衡,减少振动和噪音。
4.耐磨损设计:传动轴需要与齿轮、万向节等传动装置直接接触,容易发生磨损。
车辆工程技术121机械电子0 概述 在汽车行驶过程中,传动轴高速运转,任何外部激励都有可能引起传动轴的振动和噪声,进而影响整车的NVH。
NVH 性能指标是消费者直观感知项目之一,控制好NVH 性能的传动轴,提升驾乘舒适性,由此可见传动轴设计和研究非常重要。
1 传动轴工作原理及设计要求1.1 传动轴工作原理 在汽车行业中把连接变速器和驱动桥的万向传动装置简称传动轴。
汽车传动轴总成一般由万向节、中间支撑、滑动花键、轴管及其两端的花键和万向节叉组成,常见结构示意图如图1所示。
汽车传动轴总成主要用于车辆行驶过程中,在相对位置不断改变的两个零部件间传递扭矩和旋转运动,其本身的长度和万向夹角在一定范围内不断变化。
图11.2 传动轴设计要求 (1)保证所连接的两根轴相对位置在预计范围内变动时,能可靠地传递动力。
(2)传动轴设计应能满足所要传递的扭矩与转速,保证所连接两轴尽可能等速运转。
(3)传动轴的长度和夹角及它们的变化范围,由汽车总布置设计决定。
设计时应保证在传动轴长度处在最大值时,花键套与花键轴有足够的配合长度,而在长度处于最小时,两者不顶死。
传动轴夹角大小会影响万向节十字轴和滚动轴承的寿命、万向传动效率和十字轴的不均匀性。
由于万向节夹角而产生的附加载荷、振动和噪声应在允许范围内。
(4)传动效率高,使用寿命长,结构简单,制造方便,维修容易等。
2 传动轴设计 (1)传动轴扭矩的选用,根据整车提供发动机的最高转速、最大扭矩和变速箱提供的一档速比、后轴负荷车轮附着力,通过理论公式计算得出。
(2)传动轴长度的确定。
1)多根传动轴传动时各传动轴长度的确定。
多根传动轴传动设计原则,与驱动桥分动器相连的传动轴为长度可变化的伸缩传动轴,其余传动轴为中间传动轴。
中间传动轴与变速器输出轴或中间传递轴之间夹角不能大于3°;伸缩传动轴两端的夹角,满载状态时不能大于5°,特殊情况最大不能大于8°。
设计过程中,在传动轴最高转速小于0.7倍传动临界转速前提下,尽可能选用较长的伸缩传动轴,以减小伸缩传动轴夹角。
目录摘要 (3)Abstract. (4)0文献综述 (5)0.1轮边驱动系统发展背景 (5)0.2轮边驱动系统国内外发展现状 (5)1引言 (6)2研究基本内容 (7)3轮边驱动系统方案设计 (7)3.1驱动系统方案选定 (7)3.2减速装置方案选定 (8)4轮边驱动系统齿轮传动设计 (10)4.1轮边减速器的传动啮合计算 (10)4.1.1确定齿轮满足条件,进行配齿计算 (10)4.1.2齿轮材料及热处理工艺的确定 (11)4.1.3齿轮配合模数m计算 (12)4.1.4几何尺寸计算 (13)4.1.5齿轮传动啮合要素计算 (13)4.1.6齿轮强度校核 (13)5轮边减速器行星齿轮传动的均载机构选取 (21)6各传动轴的结构设计与强度校核 (22)6.1电机轴设计 (22)6.2行星轴设计 (23)6.3输出轴设计 (23)7减速器润滑与密封 (24)8轮边驱动系统三维建模与仿真 (24)8.1驱动系统齿轮零件建模 (25)8.2行星架建模 (27)8.3壳体与端盖建模 (28)8.4总装配爆炸模型 (29)8.5轮边驱动系统运动仿真 (30)8.5.1运动仿真建模 (30)9总结 (32)参考文献 (33)致谢 (34)基于Pro/E的小型电动车轮边驱动系统设计与运动仿真摘要:电动汽车一般使用可再生能源,其能源多元化与高效化,在城市交通中,可以实现极低排放,甚至零排放。
目前电动车能源主要来自电力,在众多的驱动系统形式中,采用轮边减速驱动系统结构形式是目前的主要发展方向。
目前轮边驱动系统主要采用的是轮毂电机,这种电机成本较高,制造过程复杂,并且主要应用于大型电动轿车上,在小型电动车上采用结构简单的轮边驱动系统还较少,本文提出了由一级2K-H (NGW)型行星传动组成的小型电动汽车用轮边驱动系统,并按照齿根弯曲强度和齿面接触强度计算公式对各级齿轮进行了设计;对各级齿轮、轴、轴承等进行了强度和寿命校核;对行星架的结构、齿轮箱的结构进行设计,并根据设计结果画出小型电动汽车轮边驱动系统零件图和总装图。
轮式装载机⼯作装置设计轮式装载机⼯作装置设计学⽣:指导⽼师:(中国矿业⼤学成⼈教育学院,徐州 221000)摘要:装载机属于铲⼟运输机械类,是⼀种通过安装在前端⼀个完整的铲⽃⽀撑结构和连杆,随机器向前运动进⾏装载或挖掘,以及提升、运输和卸载的⾃⾏式机械。
它⼴泛⽤于公路、铁路、建筑、⽔电、港⼝和矿⼭等⼯程建设。
装载机具有作业速度快、效率⾼、机动性好、操作轻便等优点,因此成为⼯程建设中⼟⽯⽅施⼯的主要机种之⼀,对于加快⼯程建设速度,减轻劳动强度,提⾼⼯程质量,降低⼯程成本都发挥着重要的作⽤,是现代机械化施⼯中不可缺少的装备之⼀。
关键词:装载机;机械化;⼯作装置The Design of the Wheel Loader Working DeviceStudent:Tutor:Han(Adult Education college of CUMT ,XuZhou 221000)Abstract:Loader of soil belonging to the transport machinery,Through the installation of a front-end in a bucket full support structure and linkage, Random forward movement for loading or excavation, And the upgrading, transportation and unloading of self-propelled machinery. It widely used in highway, railway, construction, utilities, ports and mines, and other construction projects. Loader is operating speed, high efficiency, good mobility, the advantages of operating the Light, So as the construction of earth and stone in the construction of one of the main machine, speed up the construction speed and reduce labor intensity and improve quality, lower costs of the project has played an important role in the construction of a modern mechanized equipment indispensable one.Keywords:Loader;Mechanization;Work-Equipment1 绪论1.1 轮式装载机概述1.1.1 装载机简介装载机属于铲⼟运输机械类,是⼀种通过安装在前端⼀个完整的铲⽃⽀撑结构和连杆,随机器向前运动进⾏装载或挖掘,以及提升、运输和卸载的⾃⾏式履带或轮胎机械。
电动汽车变速传动装置设计摘要随着石油资源的日益减少和环境保护要求的提高,电动汽车的发展越来越受到人们的重视,然而,对动力传动系统部件的设计参数进行研究是提高电动汽车性能的重要手段之一。
变速器是汽车重要的传动系组成,在较大范围内改变汽车行驶速度的大小和汽车驱动轮上扭矩的大小。
电动汽车的变速器与普通变速器相比,其结构有所不同。
因为驱动电机的旋向可以通过电路控制实现变换,所以电动汽车无需内燃机汽车变速器中的倒档而设置倒档轴,只需应用电机反转来实现倒车行驶。
设计中利用已知参数确定变速器各参数,对轴和各挡齿轮进行校核,绘制出装配图及零件图。
同时本设计对电动汽车的动力传动系统进行了匹配设计计算,计算结果表明达到性能要求。
目录第1章绪论 (1)1.1电动汽车的简介.........................................................1 1.2电动汽车传动装置的特点.............................................1 1.3电动汽车变速器的功用 (2)第2章电动汽车动力传动系统匹配计算 (3)2.1计算最高车速.........v.......................................v.........3 2.2车辆加速时间的计算...................................................4 2.3车辆爬坡的计算......................................................4 2.4续驶里程的计算 (4)第3章电动汽车变速嚣设计方案及论证 (5)3.1电动汽车变速器的要求.............................................7 3.2变速器设计方案论证 (8)第4章变速置备主要参数的设计计算及校核 (8)4.1主要参数设计.........................................................8 4.2齿轮强度计算.........................................................13 4.3确定轴的尺寸 (16)第5章同步器的设计 (18)5.1同步器的工作原理...................................................19 5.2同步器的功用同步器的种类.......................................19 5.3同步器的参数的确定 (20)第6章变速器操纵机构................................................23 6.1对变速器操纵机构的要求..........................................23 6.2直接操纵手动换挡变速器..........................................23 6.3远距离操纵手动换挡变速器.......................................24 6.4变速器自锁、互锁、倒挡锁装置 (24)第7章变速器轴承................................................26 第8章变速器的润滑与密封....................................27 第9章零件的加工工艺 (28)9.1齿轮轴加工工艺...................................................28 9.2齿轮加工工艺......................................................28 9.3端盖加工工艺......................................................29 9.4装配图 (30)第1 0章结论......................................................31 参考文献.........................................................32 结束语............................................................33 附录 (34)电动汽车变速传动装置设计第1章绪论1.1电动汽车的简介电动汽车是指以车我电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆。
第五节车轮传动装置设计
车轮传动装置位于传动系的末端,其基本功用是接受从差速器传来的转矩并将其传给车轮。
对于非断开式驱动桥,车轮传动装置的主要零件为半轴;对于断开式驱动桥和转向驱动桥(图5—27),车轮传动装置为万向传动装置。
万向传动装置的设计见第四章,以下仅讲述半轴的设计。
一、结构形式分析
半轴根据其车轮端的支承方式不同,可分为牛浮式、3/4浮式和全浮式三种形式。
半浮式半轴(图5—28a)的结构特点是半轴外端支承轴承位于半轴套管外端的内孔,车轮装在半轴上。
半浮式半轴除传递转矩外,其外端还承受由路面对车轮的反力所引起的全部力和力矩。
半浮式半轴结构简单,所受载荷较大,只用于轿车和轻型货车及轻型客车上。
3/4浮式半轴(图5—28b)的结构特点是半轴外端仅有一个轴承并装在驱动桥壳半轴套管的端部,直接支承着车轮轮毂,而半轴则以其端部凸缘与轮毂用螺钉联接。
该形式半轴受载情况与半浮式相似,只是载荷有所减轻,一般仅用在轿车和轻型货车上。
全浮式半轴(图5—28c)的结构特点是半轴外端的凸缘用螺钉与轮毂相联,而轮毂又借用两个圆锥滚子轴承支承在驱动桥壳的半轴套管上。
理论上来说,半轴只承受转矩,作用于驱动轮上的其它反力和弯矩全由桥壳来承受。
但由于桥壳变形、轮毂与差速器半轴齿轮
不同女、半轴法兰平面相对其轴线不垂直等因素,会引起半轴的弯曲变形,由此引起的弯曲应力一般为5~70MPa 。
全浮式半轴主要用于中、重型货车上。
二、半轴计算 1.全浮式半轴
全浮式半轴的计算载荷可按车轮附着力矩M ϕ,计算
ϕϕr r G m 22'2
1
M =
(5 - 43) 式中,2G 为驱动桥的最大静载荷;r r 为车轮滚动半径;'
2m 为负荷转移系数;ϕ
为附着系数,计算时ϕ取0.8。
半轴的扭转切应力为
式中,τ为半轴扭转切应力;d 为半轴直径。
半轴的扭转角为
π
θϕp GI l M 180=
(5 - 45)
式中,θ为扭转角;l 为半轴长度;G 为材料剪切弹性模量;
p I 为半轴断面极惯性矩,
32/4d I p π=。
半轴的扭转切应力宜为500~700MPa ,转角宜为每米长度︒6~︒15。
2.半浮式半轴
半浮式半轴设计应考虑如下三种载荷工况: (1)纵向力
2x F 最大,侧向力2y F 为0:此时垂向力2/2'
22G m F z =,纵向力最大值
2/2'
222ϕϕG m F F x x ==,计算时'2
m 可取1.2,ϕ取0.8。
半轴弯曲应力,和扭转切应力τ为
⎪⎪⎩
⎪⎪⎨
⎧=+=32322
221632d r F d F F a r x z x πτπσ (5 - 46) 式中,d 为轮毂支承轴承到车轮中心平面之间的距离,如图5—28所示。
合成应力
(2)侧向力2y F 最大,纵向力2x F =0,此时意味着发生侧滑:外轮上的垂直反力o z F 2。
和内轮上的垂直反力i z F 2分别为
)
(0.5G F F -G F 12
2z20z2o
2z2i {ϕB h g +
== (5 - 48)
式中,g h 为汽车质心高度;2B 为轮距;1ϕ为侧滑附着系数,
计算时叭可取1.0。
外轮上侧向力o y F 2和内轮上侧向力i y F 2分别为
1
2z201
2z2i F F {
ϕϕo z i z F F == (5 - 49)
内、外车轮上的总侧向力2y F 为12ϕG 。
这样,外轮半轴的弯曲应力0δ和内轮半轴的弯曲应力i δ分别为
⎪⎪⎩
⎪⎪⎨
⎧+=-=3223
220)(32)(32d a F r F d a F r F i z r i y i o z r o y πσπσ (5 - 50)
(3)汽车通过不平路面,垂向力2z F 最大,纵向力02=x F ,侧向力02=y F :此时垂直力最大值2z F 为:
式中,是为动载系数,轿车:75.1=k ,货车:0.2=k ,越野车:5.2=k 。
半轴弯曲应力,为
3
2321632d
a
kG d a F z ππσ==
(5 - 52)
半浮式半轴的许用合成应力为600—750MPa 。
3.3/4浮式半轴
3/4浮式半轴计算与半浮式类似,只是半轴的危险断面不同,危险断面位于半轴与轮手相配表面的内端。
半轴和牛轴齿轮一般采用渐开线花键连接,对花键应进行挤压应力和键齿切应力验算。
挤压应力不大于200MPa ,切应力不大于73MPa 。
三、半轴可靠性设计
在汽车设计中,可靠性已成为比较重要的技术指标之一。
对于产品设计,须考虑各参量的统计分散性,进行随机不确定分析,真实正确地反映产品的强度与受载等情况。
1.可靠度计算
对于全浮式半轴来说,所受的扭转切应力,按下式计算
式中,丁为半轴所传递的转矩;d 为半轴的直径。
根据二阶矩技术,以应力极限状态表示的状态方程为
式中,r 为半轴材料的扭转强度;X 为基本随机变量矢量,T d T r X ),,(=。
设基本随机变量矢量
X
的均值T d T r X E ),,()(μμμ=,方差
T d T r X D ),0,0,0,,0,0,0,()(222δδδ=,且认为这些随机变量是服从正态分布的相互独
立的随机变量。
g(X)是反映半轴状态和性能的状态函数,可表示半轴的两种状态:
将g(X)在均值X X E =)(处展开成二阶泰勒级数,可得到g(X)的二阶近似均值
g μ,和一阶近似方差2g
σ
不论g(X)服从什么分布,可靠性指标定义为
g g σμβ/= (5 - 56)
可靠度的一阶估计量为
)(βφ=R (5 - 57)
式中,)(βφ为标准正态分布函数。
2.可靠性设计
给定半轴可靠度R ,查表得可靠性指标β,由式(5—55)经推导整理得
02)(223
6222=-+--B A A d r d r r βμμμσβμ (5 - 58)
+
式中,
根据加工误差和3a 法则,取半轴直径标准差d δ为0.005倍的半轴直径均值
d μ,求解式(5—58)即可求得半轴的最小直径的均值d μ和标准差d δ。
四、半轴的结构设计
对半轴进行结构设计时,应注意如下几点: (1) 全浮式半轴杆部直径可按下式初步选取
3ϕM K d = (5 - 59)
式中,d 为半轴杆部直径(mm);ϕM 为半轴计算转矩(M ·mm),按式(5—43)计算;K 为直径系数,取0.205~0.218。
根据初选的d ,按前面的应力公式进行强度校核。
2)半轴的杆部直径应小于或等于半轴花键的底径,以便使半轴各部分达到基本等强度。
3)半轴的破坏形式大多是扭转疲劳损坏,在结构设计时应尽量增大各过渡部分的圆角半径,尤其是凸缘与杆部、花键与杆部的过渡部分,以减小应力集中。
4)对于杆部较粗且外端凸缘也较大时,可采用两端用花键连接的结构。
5)设计全浮式半轴杆部的强度储备应低于驱动桥其它传力零件的强度储备,使半轴起一个“熔丝”的作用。
半浮式半轴直接安装车轮,应视为保安件。