风机变频电控改造方案(通用方案)
- 格式:doc
- 大小:108.00 KB
- 文档页数:6
关于引风机电机变频改造的方案关于引风机电机变频改造的方案一、引风机电机运行现状热电公司两台130T/H锅炉所配置的两台引风机额定功率为560KW,平均消耗功率约为401KW,月耗电约30万度,其运行参数如下:二、原一次风机变频改造效果分析及引风机变频改造的必要性(一)原两台一次风机变频改造效果分析2007年10月在进行变频改造前公司专业技术人员对锅炉两台一次风机的运行情况进行了调查,其运行情况如下:运行工况:通过调节风门开度来调节风量,从而达到调节锅炉负荷的目的,锅炉负荷小范围变化对电机功率消耗影响不大。
但由于3#锅炉与4#锅炉在带负荷特性上有些差异,所以在同负荷情况下其风量要求不一样(3#炉风量>4#炉风量),其电机消耗功率也不一样。
平均运行电流3#炉I3:67A 4#炉I4:63A额定电压U:6KV平均运行功率:3#炉P3 =1.732*平均运行电流*额定电压*功率因数=1.732*67*6*0.85=595(KW)4#炉P4=1.732*平均运行电流*额定电压*功率因数=1.732*63*6*0.85=554(KW)加装变频装置后,其运行情况如下:运行工况:风门全开,通过调节风机电机的输入电压频率来改变电机的转速来调节风量,从而达到调节锅炉负荷的目的,锅炉负荷变化对电机功率消耗影响较大。
平均运行电流:3#炉I3:45A 4#炉I4:39A额定电压U:6KV平均运行功率:3#炉P3变=1.732*平均运行电流*额定电压*功率因数=1.732*45*6*0.85=397(KW)4#炉P4变=1.732*平均运行电流*额定电压*功率因数=1.732*39*6*0.85=344(KW)从以上统计数据我们可以得出:平均节省电量:3#炉P3省= P3-P3变=595-397=198(KW)4#炉P4省= P4-P4变=554-344=210(KW)节电率:3#炉= P3省/P3*100%=198/595*100%=33%4#炉= P4省/P4*100%=210/554*100%=38%以2008年3月至2009年3月这一时间段为例,3#炉运行4309小时,4#炉运行5563小时,电价按0.41元/度计算,节省电量和电费为:3#炉总节省电量=运行时间*平均节省电量=4309*198=85.3182万度总节省电费=节省电量*电价=85.3182*0.41=34.9804万元4#炉总节省电量=运行时间*平均节省电量=5563*210=116.823万度总节省电费=节省电量*电价=116.823*0.41=47.8974万元两台共节省电量和电费为:总节省电量=3#炉总节省电量+4#炉总节省电量=85.3182+116.823=202.1412万度总节省电费=3#炉总节省电费+4#炉总节省电费=34.9804+47.8974=82.8778万元(二)引风机电机变频改造的必要性公司电气专业技术人员通过对该两台风机电机运行数据的分析,发现该两台引电机负荷容裕量大。
变频风机的改造方案与实践应用作者:张伟来源:《师道·教研》2018年第06期广州某厂涂装二科1#作业场空调器现有90KW送风机一台,目前送风机采用软启控制,开机后以工频50HZ运行,设备的运行状态可在触摸屏上监控。
由于该空调器只有制冷功能没有制热功能,在冬季送风机工频运行时,送风过大不仅造成电能的浪费、加剧了机械磨损缩减电机寿命,同时还导致车间气温比室外低很多,车身容易结露,影响喷漆效果,工人工作难度加大。
为了改善冬季作业场环境,防止车身结露,并且节能环保,因此提出对涂装二科1#作业场空调器送风机进行变频改造,通过改变频率实现改变送风量。
一、系统需求分析1. 新增变频器和控制柜,电柜要合理设计送、排风等降温措施,做好防尘保护;2. 保留送风机软启控制功能,增加变频控制风机。
3. 更改三菱Q系列PLC程序,通过CC Link网络控制变频启停和转速。
4. 更改三菱GOT人机界面,设置三档调速控制风机,并显示相关变频参数信息。
5. 控制柜增加变频/软启切换功能。
6. 在必要的情况下增加变频柜面报警、控制、启动方式切换功能。
7. 设计变频柜排布初步图纸、电气原理图纸等。
二、系统设计1. 系统概述在该控制系统中,采用三菱公司的Q系列PLC作为主控制器,GOT触摸屏作为上位机监控系统,触摸屏不仅可以对变频器的运行频率进行多档设定,并可以时时监控现场设备运行状态。
PLC通过CC Link网络,控制风机的启停和频率。
其中上位机采用三菱公司的触摸屏GTO对现场设备进行监控;中央控制站:采用三菱公司的Q系列PLC,完成整个控制系统的自动节能控制;现场设备:变频器采用三菱公司针对风机泵设计的RF-F740系列变频器对风机进行控制,具体如图1所示。
2. 系统功能在原触摸屏上实现变频器的启/停、频率的设定以及状态监测、故障报警等,提高了系统的可操作性;保留原风机软启控制逻辑,通过变频柜柜板转换开关选择当前风机控制模式,不仅丰富了系统的控制模式,而且保证了设备的可靠运行;变频控制柜增加有手/自动转换功能,在PLC故障或者网络中断情况下,操作员通过柜板的转换开关切换到手动控制,保证系统的连续运行;在电机出现过流、过载、缺相等报警时,变频器自动停机,并输出故障信号,完善了系统的安全信息;实现PLC和变频器的网络通讯,减少了现场布线及维护成本。
风机变频节能改造方案1. 引言随着能源问题日益凸显和环境保护意识的加强,如何实现工业生产过程中的节能减排成为了重要的研究方向。
风机作为工业生产中常用的设备之一,其能源消耗一直是制约工业节能的关键因素之一。
本文将介绍一种风机变频节能改造方案,通过采用变频器来调节风机运行速度,从而达到节能的目的。
下面将分别从背景、方案设计、实施步骤和效果评估等方面进行详细阐述。
2. 背景风机在工业生产过程中广泛应用,但由于其传统固定转速的特性,容易造成能源浪费和系统运行效率低下。
因此,引入变频器的风机变频控制技术成为了改善这一问题的有效途径。
3. 方案设计风机变频节能改造方案主要包括以下几个方面的设计:3.1 变频器的选择选择适合风机变频控制的变频器是关键的一步。
应考虑功率范围、可靠性、响应速度和成本等因素来选择合适的变频器。
3.2 变频器的安装与调试安装变频器时需要注意保证其与风机的机械连接,同时进行电气接线,确保变频器能够准确地感知风机的工作状态。
安装完成后,需要进行调试,根据风机的工作特性和需求进行参数设置,确保风机变频控制能够达到预期的效果。
3.3 控制策略的制定为了实现风机的节能控制,需要制定合理的控制策略。
可以根据风机的负荷情况,调整变频器的输出频率和电压,使风机在工作过程中始终处于最佳运行状态。
4. 实施步骤风机变频节能改造的实施步骤如下:4.1 确定改造对象选择合适的风机作为改造对象,通常优先选择功率较大、使用频率较高的风机。
4.2 选购变频器根据设计要求,选购合适的变频器,并确保其与风机的匹配性。
4.3 安装变频器按照变频器的安装要求进行安装和接线。
4.4 调试和测试安装完成后,进行变频器的调试和测试,确保风机变频控制效果良好。
4.5 运行监测与优化改造完成后,对风机的运行状态进行监测与优化,根据实际情况调整控制策略,进一步提升节能效果。
5. 效果评估对风机变频节能改造方案的效果进行评估,包括能源消耗的降低和系统运行效率的提高等方面。
三水恒益发电厂引风机变频改造方案三水恒益发电厂引风机一拖二变频调速节能改造方案:1.变频器采用高-高方式,ROBINCON PH-6-6-800型2.引风机电动机(315kW/6kV/39A),采用“一拖二”方案:即用一台6kV/800kV A的高压变频器,同时拖动两台315kW的引风机运行。
二、变频改造一次接线示意图:甲引风机乙引风机三、运行方式要求1、变频一拖二启动:手动合上K3、K4、K5开关,手动启动变频器,两台引风机同时由静止状态软启动。
2、变频一拖二运行时,当变频器发生严重故障,自动切开K3、K4|、K5开关。
停甲、乙引风机,锅炉保护动作灭火。
运行人员手动切换引风机至工频运行,按灭火处理。
3、变频一拖二运行时,停运单台引风机:如甲引风机故障需停运时,可远方手动或就地按甲引风机事故按钮切开K4开关,若电机过流保护动作,则直接跳K4开关,由DCS系统自动向变频器发出指令,将乙引风机转速提升至额定转速运行。
4、两台引风机工频运行时,不能在运行中切换至变频运行,须按1、方式进行。
5、单台引风机变频运行时,不能直接合K4或K5开关启动另一台风机。
三、实施方案的相关专业的要求(一)电气1、电厂6kV段原先供两台引风机起停用的隔离刀闸和真空断路器(K1、K2)维持不变,供两台引风机工频旁路投切,另外增加一路隔离刀闸和真空断路器(K3)给变频器用,6kVⅠ段没有空余电柜,可利用原励磁系统试验备用电源柜。
新增开关K3、K4、K5选用真空断路器,1250A,电缆50mm2。
2、变频器输出端隔离刀闸G1、G2、G3、G4以及开关K4、K5以及CT、保护等一二次设备成套外委设计制造安装。
3.G1、G2刀闸与K4开关要机械闭锁,G3、G4刀闸与K5开关要机械闭锁。
4.K3、K4、K5开关分合闸位置信号(开关量)送入DCS系统,DCS系统向开关出输出开关分合指令(开关量)。
5.K4与K1开关互锁,K5与K2开关互锁。
中央空调风机变频节能改造中央空调节能改造一、中央空调风机传统运行方式空调系统设计完成后,风系统通常以末端变流量方式运行。
由于空调负荷变化,风机实际工作点与设计工作点发生偏移,造成部分运载能量浪费。
二、中央空调风机变频调整原理流量W与转速n成正比关系:W1 / W2 = n1 / n2压力h与转速n2成正比关系:h1 / h2 = ( n1 / n2 )2功率N与转速n3成正比关系:N1 / N2 = ( n1 / n2 )3通过对风机转速调节,可使其流量、扬程及消耗的功率作出相应变化。
三、中央空调风机定风量变频控制1、普通空调末端风柜设计选型时由于管道阻力计算不是很详细,往往导致风柜余压选择过大,实际运行风量远大于额定风量,造成能量浪费。
这时可以通过变频调速来保持风机风量的恒定,从而达到风机节能的目目的,节能率需要根据实际情况而定。
2、净化空调系统中由于高中效过滤器的初、终阻力大约相差1倍左右,组合风柜运行时实际风量也远大于额定风量,造成能量浪费。
通过变速调节,保证额定的送风量,节能率一般为30%~40%。
四、中央空调风机定压差变频控制净化车间内对室内压力有一定的要求,一般大约维持正压在5Pa至10Pa左右,而保持该正压是通过两种途径实现:1、新风机定频运转,室内正压靠车间内的余压阀来调节控制。
2、新风机变频运转,室内正压靠变频器来调节控制。
五、中央空调风机定静压变频控制生产车间内往往有许多生产设备需要排风或者送风,这时一般采取一台排风机或者送风机给好几台生产设备排风或者送风。
当部分生产设备因不生产而不需要排风或者送风时,系统总风量将远大于实际需求,造成能量的浪费。
如排风机或者送风机采取定静压变频控制,风机风量能根据末端需求而变化,能取得较好的节能效果。
引风机电机变频改造项目设计方案引风机是锅炉燃烧过程中一个非常重要的设备,它的主要功能是将空气送入燃烧区,通过氧化反应来促进燃烧。
经过多年的运行,引风机电机存在着一些问题,包括能效低、噪音大、寿命短等。
针对这些问题,我们提出了一份引风机电机变频改造项目设计方案。
一、方案背景引风机电机在长时间的运行中,会产生一些问题,比如说产生的噪音会对周围环境造成影响,甚至会给设备周围的操作人员带来危害;此外,由于引风机电机是一种比较老旧的设备,因此它的能效比较低,运行费用相对较高。
在面对这些问题的同时,我们也认识到引风机电机变频可以很好地解决这些问题。
变频器可以通过调整电机的转速来降低噪音并提高能效,延长电机的寿命,因此引风机电机变频改造的设计方案就应运而生。
二、方案概述引风机电机变频改造的设计方案主要包括以下几个方面:1. 引风机电机变频器的选型。
我们将会根据引风机电机的具体情况和需求来选定合适的变频器,确保其能够满足项目的需求;2. 变频器的安装。
我们将会把选好的变频器安装在引风机电机上,以实现对电机的控制;3. 基础电气控制设计。
我们将会对引风机进行电气控制,以满足变频器工作的必要条件及要求;4. 系统调试与运行。
在变频改造完成后,我们将对引风机进行运行调试,以确保系统正常运行,达到设计效果。
三、项目实施1. 引风机变频器的选型在选型方面,我们将会根据引风机电机的功率、转速等参数来选定合适的变频器。
选型的过程中,我们将会参考国内外的先进技术,对各种品牌的变频器进行分析和比较,最终选定一款性能稳定、品质可靠、功能完善的变频器。
2. 变频器的安装变频器的安装是本次改造中非常关键的一个环节。
我们将会遵循相关的设备安装流程和施工标准,对变频器进行安装和调试,保证变频器与引风机电机的连接符合设计要求,并确保其工作稳定,不会影响设备的正常运行。
3. 基础电气控制设计引风机电机变频改造后需要进行电气控制,以满足变频器的工作要求。
伟肯变频器在风机上的节能改造方案为节约地球10%的能源消耗而努力北京大恒电气有限责任公司和芬兰伟肯是生产变频器的专业公司,产品已形成四大系列,几十个规格,其中一些专用变频器是国内外首创。
在低压变频器系列中,大容量是我们的强项,这是因为我们有自己的科学的扩容技术,容量等级能覆盖0.25kw-5MW电机的所有功率等级.以风机185KW电机1台为例,作以下详细的介绍:一、风机工作原理在生产过程中所需要的风量是经常随工艺及操作的需要不同程度调节的,而传统的调节方案是通过放风阀来调节的,用来带动风机的电动机本身转速是不可调节的,因此大量的风量通过放风法放掉,也就是说,造成电能的大量的浪费,根据鼓风机风量和转速成正比关系。
Q1/Q2=N1/N2式中:Q1、Q2为转速快和慢的风量米/分鼓风机的风压和转速的平方成正比。
H1/H2=(N1/N2)式中:H1、H2为转速快和慢的风压鼓风机所需的功率与转速的立方成正比。
N1/N2=(N1/N2)式中:N1、N2为转速快和慢所需功率KW。
从上述关系可知,如果我们使用改变转速来实现改变风量的方法,就不至于把大量的风量白白放掉,从而节约了大量的电能,为此结合贵公司的实际情况,经多方论证,,着重致力于变频器调速在贵公司的推广应用工作。
芬兰伟肯NXS 型变频器,控制电机为185KW运行效果良好,节能效果≥30%(按24小时)158度。
根据测算,5个月可收回全部投资,从结果上看,均取得了显著的节电效果,不仅节电30%左右,同时还增加设备的使用寿命,提高电动机功率因数,改善了工人的操作条件,降低了环境噪音等。
二、调速方案的选择改变风机转速的方法目前使用调速型液力偶合器和电动机变频调速器等,现阶段在罗次鼓风机中应用较多的是使用调速型液力偶合器,而过去变频调速技术的应用,由于受技术条件的限制而极少有在这方面的报道,近年来随着改革开放深入发展,随着世界科学技术的进步,大功率的晶体管、电子技术的迅速的发展,大规模集成电路和微机技术的突飞猛进,变频调速已成为现实。
风机变频节能改造技术方案
一、节能改造方案背景
风机是一种广泛使用的电动机,用于输送空气或其他气体,是工业生产中的重要设备。
由于生产过程中风机的使用时间较长,其耗能量较大。
如果不采取有效措施,将会使得生产成本增加,影响公司的经济效益。
因此,通过变频节能改造技术,以保证风机工作安全、稳定、高效可靠,是当前比较热门的节能技术之一
1、采用新型变频器采用变频技术进行变频节能改造的关键设备是电子变频器,它可以控制电机的转子转速,从而达到控制风机转速的目的,从而节约能耗。
2、安装控制系统为了使电子变频器更好地控制风机的转速,需要安装一套功能全面的控制系统,它可以从用户的不同需求出发,控制风机的转速,使之转速稳定,有效地提高风机的运行效率和节省能耗。
3、节能系统的维护为了保证变频节能改造工程的持续发挥作用,应定期对安装的节能系统进行维护,以确保系统的运行正常。
三、变频节能改造技术方案的经济效益分析
1、节约能源
变频节能改造技术可以有效控制风机的运行效率,节约能源,减少耗能量,可以节省大量能耗,使企业能耗更加节约,节省开支。
风机变频节能改造技术方案引言随着工业化进程的加速和国家能源政策的调整,能源消费已成为影响我国经济发展和可持续发展的重要因素。
在这种情况下,如何降低企业的能源消耗,变得越来越重要。
目前,风机变频节能成为降低能耗的重要方式之一,因为风机系统是通用的能耗设备,广泛应用于化工、电力、汽车、航空等领域。
因此,在本文中,我们将详细探讨风机变频节能改造技术方案,包括技术原理、影响因素、实施步骤等方面的内容,以期提高企业的能源利用率和整体经济效益。
技术原理风机变频节能的基本原理要理解风机变频节能技术,首先需要了解风机的基本原理。
普通三相感应电机运行时转速基本上与电网频率成正比,当电网变频时,如果保持电压与频率的比值不变,则电机转速不变。
由于风机负荷为压力负载,所以通常情况下会有一定的压差,这将导致风机的流量不稳定,速度不能维持在额定值上,真正的吸入功率将增加,而容积流量增加。
当转速降低时,气体的密度增加,从而增加了气体体积流量,这将进一步增加了工作点。
因此,在转动时,流量还需加速到一定程度,从而减少风机所消耗的能量。
风机变频节能原理是将常规的电动机驱动风机系统改变成交流驱动风机系统,风机系统中使用的交流电机称为变频电机。
变频电机能够根据负载需求提供符合等效滑动频率的转速。
由于此技术在工作时具有更高效的响应和更快的调速能力,所以在提供高质量的空气和水流率时,比传统驱动风机更为高效。
风机变频节能技术的节能原理风机变频节能技术的节能原理是通过调节变频电机的转速来达到节能目的。
通常,风机系统在工作时,会受到一定的操作约束,特别是在流量、压力、负载等方面。
当这些要素发生变化时,风机将消耗更多的能量来维持正常操作,从而导致能源浪费。
而变频调速技术可以根据实际需要实现变频电机的调速,从而保证能源的高效利用。
影响因素1. 变频器的型号和制造技术变频器是实现风机变频节能技术的关键设备,因此,变频器型号和制造工艺对节能损失、条件细节等方面产生直接影响。
23冷却塔风机变频改造方案冷却塔是一种常见的冷却设备,用于将热水或冷却剂排放到大气中,以使其冷却。
冷却塔通常由风机来促进空气循环,以提高散热效果。
然而,传统的冷却塔风机通常是定速运行的,这导致了一些问题,例如高耗电和能源浪费。
因此,对冷却塔风机进行变频改造是一种有效的节能措施,可以降低能源消耗,提高设备的效率。
变频改造方案的主要目标是通过控制风机的转速,使其能根据工作负荷的变化来调整风量。
具体的变频改造方案如下:1.变频器的选型:选择适合冷却塔风机的变频器型号和规格,确保其具有足够的功率和稳定性。
2.风机传动系统的改造:如果冷却塔风机采用皮带传动系统,可以使用双齿轮传动系统替代。
这种传动系统更加稳定和高效,能够减少能量损耗。
3.风机控制系统的改造:安装变频器并与原来的控制系统进行连接,通过变频器来控制风机的转速。
这样,冷却塔风机的转速可以根据需要自动调整,从而实现节能和调节风量的目的。
4.温控系统的改造:安装温度探测器和温控器,测量和控制冷却塔的进水温度。
当进水温度达到或超过设定值时,温控器会自动调整冷却塔风机的转速,以保持合适的冷却效果。
5.变频器的运维和维护:定期检查变频器的运行状态和设定参数,保证其正常工作。
另外,注意变频器的散热问题,保证其在适宜的温度范围内运行。
通过上述的变频改造方案,可以有效地降低冷却塔风机的能耗,提高设备的运行效率。
1.节能减排:由于风机转速可以按需调整,变频改造能够降低能耗,减少对电力资源的消耗,达到节能减排的目的。
2.精确控制:通过变频器可以实现对风机转速的精确控制,使得冷却塔在不同负荷下能够提供所需的冷却效果,提高设备的运行效率。
3.设备寿命延长:变频器可以减小风机的启停冲击,降低设备的磨损和故障率,从而延长了设备的使用寿命。
综上所述,对冷却塔风机进行变频改造是一种有效的节能措施,可以降低能源消耗,提高设备的效率。
变频器的选型和安装要根据冷却塔的实际情况进行,同时要注意变频器的运维和维护。
风机变频节能必要性改造方案大量不同功率的风机,均采用百叶阀门(挡风板)来调节控制风量,能源浪费严重。
现以改造一强45KW的风机为例,作如下方案。
一、基本情况风机功率45KW,一般电机额定功率因数约COSφ=0.87,效率约η=0.9,额定电流:I=P÷1.732÷U÷COSφ÷/η=45÷1.732÷0.38÷0.87÷0.9≈87(A) 22小时运行。
目前风量偏大,采用百叶阀门(挡风板)来调节控制风量,据了解贵公司说明风量电流节能到50-60A 已够生产需求以60A为例节能电流百分比=(87-60)÷87×100%=31%,节能27A节能百分31以50A为例节能电流百分比=(87-50)÷87×100%=42%,节能37A节能百分42本案例以保守的变频节能运行40HZ,节能百分20为例二、风机的运行情况分析1.电能浪费风机功率45KW,挡板的调节控制风门。
风机的转速恒定,由挡板来控制风量,造成风量的大小与电机输出功率不成比例,造成大量的能量浪费。
2.对生产工艺中负荷的适应能力差由于生产负荷在变化,而风门的调节也在不断变化,若风量不稳定,变造成风压的变化,影响到工作效率,造成粉尘的分离效果,影响生产质量。
3.电机起动冲击电网电机启动采用降低起动方式。
在启动过程中起动冲击高压额不定期电流的4 - 5倍,对电网冲击很大。
而且操作复杂,维护量大,设备故障率高,维护费用高,造成停产损失大。
三、风机系统变频节能的特点和效果1.变频调风无可比似的优越性节能效果显著。
根据流体力学原理,风机水泵负载的流量Q与转速N成正比,而所需功率P与转速N的三次方成正比。
因此当风量小于额定风量时,改变电机转速,其功率明显下降,具有显著的节能效果。
2.风机的效率提高风机的工作效率由下式计算:ηp=C1(Q/n)-C2(Q/n)2式中Q为风量,n为转速,C1C2为常数通过风门控风量时,因转速n不变,而流量Q下降,故效率ηp下降,而通过转速控制风量时,风量与转速成正比,比值(Q/n)不变,故效率ηp始终保持最佳状况。
风机变频节能改造技术方案随着社会经济的快速发展,国家对环保要求越来越高,企业逐渐意识到降低能耗对于环保和企业利润都非常重要。
风机是建筑和工业最大的用电设备之一,传统的恒速运行方式不仅浪费电能,而且维护成本较高,因此采用风机变频节能改造技术来实现风机的节能和智能控制十分重要。
风机变频技术简介风机变频技术是使用变频器来改变风机电机的功率输出,以实现风机的智能控制和节能运行。
变频器是目前智能控制领域中最常用的装备之一,可以改变电机的转速和频率,从而实现节能和控制的目的。
变频器可以将电机转速和电压进行智能控制,从而可以更好地适应不同环境和负荷要求,以达到最佳的节能效果。
变频器可以调整风机的电源电压、频率和相数,从而实现电机的变频调速和节能控制。
风机变频节能改造技术实现风机变频节能改造技术的实现需要遵循以下步骤:步骤一:选购适用的变频器在风机变频节能改造技术实现时,首先需要选购适用的变频器。
选择变频器需要考虑以下因素:风机电机的额定功率、额定电压、负载特性等等。
合理的选购变频器可以更好地保障风机的节能性能和智能控制效果。
步骤二:安装变频器安装变频器时需要注意以下几点:1.选好安装的位置,避免安装在过于潮湿、温度过高或过低的地方;2.尽量缩短电缆长度;3.保证接地良好。
步骤三:编程设置编程设置是实现风机变频节能改造技术的重要环节。
编程设置的目的是根据风机的不同要求,调整变频器的参数,实现节能和智能控制的目的。
编程设置要结合不同的应用场合和风机的特点,进行精细化的调整。
参数设置的重要性和精准性对于风机变频节能改造技术的实现有着至关重要的意义。
步骤四:调试及运行在风机变频节能改造技术实现完成后,需要对风机进行调试并确保其正常运行。
在调试过程中,需要注意以下几点:1.合理设置变频器参数;2.检查风机电机和变频器接线是否正确;3.合理调整风机负载。
风机变频节能改造技术的优势风机变频节能改造技术有以下优势:1.节能性能明显,降低风机的能耗;2.智能控制使得风机适应性更强,能够适应不同的载荷和环境;3.长期运行可大大减少火灾等安全事故的发生;4.降低运行噪音和振动;5.可以延长风机的使用寿命。
引风机电机变频改造项目设计方案
一、项目需求
1、变频调速改造的主要目的:
(1)提高风机电机的运行效率,节约能耗;
(2)改善煤矿的环境状况,减少煤矿粉尘污染;
(3)提高风机电机的运行稳定性,达到自动调节风量的效果。
2、变频调速系统采用Simens的变频调速器,具有良好的调速性能、优异的可靠性和安全性。
二、解决方案
1、配电系统
(1)风机电机原来采用20KW的高压抽风机,原来的配电系统是直流电压380V,额定电流32A。
为了满足变频调速系统的工作参数,现约定改造后的配电系统采用三相配电,电压采用交流电源,电压为220V,额定电流为32A。
(2)变频调速系统的总电功率为20KW,为了满足运行要求,配电箱应配备足够的断路器,并配有保护电路。
2、变频系统
(1)变频调速系统因其易于操作和性能稳定性强等优点,采用Simens的变频调速器。
(2)电源线采用4米长的8芯控制线,型号为KSYZ-4*0.5,线径为50mm2,两端应分别接备有接地标记的插头和插座。
(3)变频操作面板应装设在电机侧的控制室内,以便于操作工作人员进行故障检查和调节。
三、通讯控制系统
(1)变频调速器采用网络技术。
煤矿主风机变频电控系统节能改造方案一、概述煤矿巷道通风系统,在煤矿的安全生产中起到至关重要的作用,主通风机作为煤矿通风系统中的重要设备,通常采用直接启动、降压启动或者采用电力电子技术的交流电机软启动方式。
近年来,随着电力电子技术、大功率半导体技术以及计算技术的飞速发展,煤矿增产、降耗、提效被提到了重要的位置,设备节能改造势在必行。
变频调速技术以其优异的调速和启动性能,高效率、高功率因数、节电显著和应用范围广泛等诸多优点而被认为是最有发展前途的调速方式之一。
在煤矿巷道通风系统中,随着煤矿开采及掘进的不断延伸,巷道延长,矿井所需的风量不断增加,风机所用功率也将逐渐加大。
集结地交替,冷热的变化,所需的风量也不断调节,由此,煤矿原根据反风及开采后期运行工况所设计的通风机及拖动的电动机的功率,通常要比煤矿正常生产所需要的运行功率高。
存在以下问题:1、电能的严重浪费煤矿的服务年限大多在60年以上,投产初期到井田稳定开采一般在10年左右,这就意味着在这10年的时间里,主通风机一直处在较轻负载下运行。
在传统的技术条件下,由于电机的转速不可以调节,只能通过改变风机叶片或挡风板的角度进行风量调节。
因此造成能源浪费,增加生产成本。
2、启动困难,机械损伤严重主通风机若采用直接启动,启动时间长,启动电流大,对电动机的绝缘有着较大的威胁,严重时甚至烧坏电动机。
而电机在启动过程中所产生的机械冲击现象使风机产生较大的机械应力,会严重影响到电动机、风机及其它机械的使用寿命。
3、自动化程度低主通风机依靠人工调节风机叶片或挡风板角度调节风量,不具备风量的自动实时调节功能,自动化程度低,检测点少。
在故障状态下,不能及时和风机联动,将对矿井正常生产造成严重影响。
为了矿井的安全生产和降低生产成本,提升该煤矿的自动化水品,对主扇风机进行改造具有非常重要的意义。
根据用户现场情况及现代工业自控技术的发展趋势,系统配置方案为智能低压变频调速控制设备。
10KV矿业风机变频改造技术方案矿业风机是在矿山等环境中用于通风、降温和排烟的重要设备,其功率一般较大,使用频率高。
然而传统的矿业风机存在能源消耗高、运行效率低、电力系统负载大等问题,因此对其进行变频改造是提高矿业风机能效的重要手段。
1.变频器选型:根据矿业风机的功率、转速范围和负载特性,选择适合的变频器。
通过准确的负载特性参数对变频器进行调整,以实现最佳效果。
2.变频器安装:变频器的安装位置需尽可能靠近电动机,减少线路损耗。
同时,要合理布置变频器的通风与散热装置,保证其正常运行。
3.系统设计:针对不同的矿业风机工况,设计合理的变频系统。
通过合理的系统设计,可以实现对矿业风机的精确控制,提高其运行效率。
4.安全控制:增加可靠的安全保护装置,如风机转速监测装置、电流监测装置等,确保矿业风机在异常情况下及时停机,保护人员和设备的安全。
5.能耗监测:通过安装能耗监测装置,实时监测矿业风机的功耗,了解其能效表现,及时发现并解决能耗过高的问题。
6.智能化管理:引入智能化管理系统,对矿业风机进行在线监测和远程控制。
通过数据分析和预测,优化风机运行策略,提高其能效,并及时发现和排除故障。
通过以上的技术方案,可以有效改善传统矿业风机的能效问题,降低能源消耗,提高风机的运行效率,减轻电力系统负载。
这样不仅可以减少能源消耗,还可以节约运营成本,提高矿山的经济效益。
同时,通过智能化管理系统的引入,还可以实现对矿业风机的智能监测和控制,提高设备的稳定性和安全性。
总的来说,10KV矿业风机变频改造技术方案可以为矿业风机的节能减排和运行效率提升提供有效的解决方案,对于推动矿山的可持续发展具有重要意义。
#1-#4号机组一次风机变频技改方案批准:审核:安监部:生技部:发电部:维护部:编制:发电部、维护部、生技部二〇一〇年八月二十日1至4号机组一次风机变频技改方案前言为推进华电集团公司节能技改工作,确保集团公司“十一五”节能减排目标的实现,贵州大方发电有限公司根据集团公司统一部署,拟对公司1至4号机组6KV一次风机进行变频改造。
二、改造后系统结构及运行方式2.1 系统结构构成大方公司1至4号机组一次风机采用国电南京自动化股份有限公司ASD6000S-1120型高压变频设备。
设备接入方案采用“一拖一自动旁路(见图1)”即单套变频器带一台一次风机电机运行的方式。
图1 1至4号炉一次风机变频设备接入方案2.2设备名称命名1DL: 1号炉一次风机A /B变频进线开关(61YCA1/61YCB1);2DL: 1号炉一次风机A /B 变频出现开关(61YCA2/61YCB2);3DL: 1号炉一次风机A /B 工频开关(61YCA3/61YCB3).2.3设备运行方式变频设备具备远方监控和操作功能,在集控室DCS上可实现变频器的开/闭环运行选择,每台风机之间能实现工频/变频自动切换。
正常情况下电机在变频调速状态下运行,电机负载挡板置于全开状态,变频器检修或故障状态下可实现自动电机工频旁路运行。
2.4变频改造后,基本操作流程2.4.1变频器初始状态:变频器现场调试完毕;柜门已关;变频器220V AC控制电源已供;6kv进线断路器工作状态;进线、出线、旁路断路器打到变频状态;2.4.2变频器合220V AC控制电源、合UPS、合输出空开后,在进线断路器和出线断路器都合闸的情况下,系统自检通过后,变频器发上电允许信号,允许合高压电。
2.4.3 DCS合6kV进线断路器,变频器充电自检,通过后变频器向DCS发送“启动允许”信号,DCS给变频器发“远程启动”信号和“转速给定”信号,变频器启动。
变频器运行后,向DCS 发送“变频运行”信号,并反馈当前频率和输出电流。
冀中股份章村矿风机水泵变频系统改造方案项目名称:章村矿风机水泵变频节电改造项目实施:北京聚融亨能源投资有限公司联系电话:建议日期:2010年6月29日目录一、应用变频器的目的…………………………………………………二、现场情况及节电效益分析………………………………………………三、节能效益分析……………………………………………………………四、系统技术方案……………………………………………………………五、变频技术参数…………………………………………………………六、变频器的基本性能和保护性能……………………………………….七、供货范围及主要元器件清单………………………………………….八、技术服务……………………………………………………………….九、公司简介……………………………………………………………….十、结束语………………………………………………………………….引言随着电力电子技术、计算机技术、自动控制技术的迅速发展,带动了交流传动技术日新月异的进步。
目前,电气传动技术正面临着一场历史性的革命,即交流调速取代直流调速,及计算机数字控制技术取代模拟控制技术已成为发展趋势。
电机交流调速技术是当今节电、改善工艺流程以及提高产品质量和改善环境、推动技术进步的一种主要手段。
变频调速以其优异的调速、起动和制动性能、高效率、高功率因数和节电效果,广泛的适用范围及其它许多优点而被国内外公认为是最有发展前途的调速方式。
一、应用变频器的目的1、应用变频器的必要性现场中的风机、水泵等高能耗设备,其输出功率不能随生产负荷变化而变化,只有通过改变风门、档板的开度来调整,这导致负载运行效率较低,并且有大量能量浪费在截流损失中。
为了提高生产效率、降低能耗以及系统的综合可靠性,风机、水泵的驱动系统拟采用全数字交流变频器实施控制。
变频调速系统是直接串联于电源与电机之间的变频调速设备,以其现场改造、安装方便以及安全、良好的运行性能正快速的替代其它调速产品,全面的进入到水泥、钢铁、化工、煤炭等行业的节能改造项目中。
风机变频节能改造案例一、森兰变频恒压供风系统节能原理1、恒压供风变频调速系统原理说明:图中风机是输出环节,转速由变频器控制,实现变风量恒压控制。
变频器接受PID调节器的信号对风机进行速度控制,控制器综合给定信号与反馈信号后,经PID调节,向变频器输出运转频率指令。
压力传感器监测风口压力,并将其转换为控制其可接受的模拟信号,进行调节。
2、系统工作原理变频调速恒压供风控制终极通过调节风机转速实现的,风机是供风的执行单元。
通过调速能实现风压恒定是由风机特性决定的,风机特性见下图所示。
图中,横坐标为风机风量Q,纵坐标为压力P。
EA 为恒压线,n1、n2……nn是不同转速下的风量—压力特性。
可见,在转速n1下,假如控制阀门的开度使风量从QA减少到QB,压力将沿n1曲线到达B点,很显然减少风量的同时进步了压力。
假如转速由n1到n2,风量将QA减少到QC,而压力不变,由此可见,在一定范围,可以保持风压恒定的条件下,可以通过改变转速来调节风量,并且不改变风压。
这种特性表明,调节风机转速,改变出风压力,改变风量,使压力稳定在恒压线上,就可以完成恒压供风。
二、250KW风机变频节能改造方案及功能1、贵厂风机运行目前现状现有风机一台,配套电机为250KW一台,工作电压380V,电流460A,现采用阀门调节,控制供风风量、压力。
这种调节方式既不方便,又浪费大量的电能,很轻易造成阀门及风机的损坏。
我公司经过多年对化工、轮胎行业的水泵、风机等设备的节能改造,积累了丰富的经验,具有雄厚的技术实力。
2、改造方案现采用一台280KW森兰变频器控制一台250KW风机。
3、系统功能A.风压任意设定,风压稳定且无波动B.软启动软停机,对电网无冲击,无需电力增容C.延长风机机械寿命D.缺相,欠压,过流,过载,过热及堵转保护E.节约电能,投资回收快三、供风风机运用变频节能分析1、现行实际运行功率(I实=350A)P运=√3UICOSω=√3×380×350×0.85=196kwW=196×320×24=1505280kwh注:按一年320天运行计算2、转速自动控制节能A理论基础因风机属于典型的平方转矩负载类型,所以其功率(轴功率),转矩(压力),转速(风量)满足以下关系(相似定理):P电=P轴=QHQ’/Q=N’/N则Q’=QN’/NP’/P=(N’/N)3则P’=P(N’/N)3异步电机的转速公式n=60f(1-s)/p式中:N、Q、H、P——风机的额定转速,风量,轴功率N’、Q’、H’、P’——调速后风机的额定转速,水量,轴功率B效益分析根据贵厂的负荷情况(风门开度为80%)及我公司的经验,估计贵厂实际运行的转速为额定转速的0.7~0.94倍,即频率在35HZ~47HZ 之间变化。
烧结风机的变频改造传统的观念认为烧结主抽风机功率大、改造难度大、周期长、风险高,同时改造需长时间停机,对整个生产工艺将造成巨大影响。
为此我们组织生产单位、设计单位、施工单位、供货单位召开分析会,将方案多次酝酿修改,要求必须在不影响生产,保证原系统稳定运行的前题下,本着安全、可靠、优质、经济的原则对烧结主抽风机进行变频改造。
通过大家群策群力,周密计划,最终制定可实施的详细的改造方案。
1、变频器的基本工作原理变频器是将固定不变的工频交流电变换为电压或频率可变的交流电的装置。
它的控制方式有以下几种。
图2-2.变频器示意图A、VVVF的控制方式交流电动机的感应电势E=4.44NfФm。
忽略定子绕组的阻抗,定子电压U≈E=4.44NfФm。
当改变频率f调速时,如电压U不变,则会影响磁通。
例如,当电机供电频率降低时,若保持电机的端电压不变,那末电机中的Фm将增大。
由于电机设计时的磁通选为接近饱和值,Фm的增大将导致电机铁心饱和。
铁心饱和后将造成电机中流过很大的励磁电流,增加铜耗和铁耗。
而当供电频率增加,电机将出现欠励磁。
因为T=CmI2′ cosφ2(Cm为电机结构决定的转矩系数,I2′为转子电流折算值,cosφ2为转子功率因数),磁通的减小将会引起电机输出转矩的下降。
因此,在改变电机的频率时,应对电机的电压或电势同时进行控制,即变压变频(VVVF)。
压频比恒定(保持Φ不变)常以定子电压Ux 与频率f1保持同步变化来近似代替反电动势Ex 与频率f 的同步变化。
V/F 控制的调速系统,电动机定子的频率、电压及电流均是以平均值来考虑的,所以被控制的转矩也是平均值。
V/f 协调控制可近似保持稳态磁通恒定,方法简单,可进行电机的开环速度控制。
主要问题是低速性能较差。
因为低速时,异步电动机定子电阻压降所占比重增加,已不能忽略,不能认为U ≈E ,这时V/f 协调控制已不能保持恒定。
由于V/f 协调控制是依据稳态关系得出,因而动态性能较差。
河南地方煤炭集团季布煤业有限公司
主
通
风
机
变
频
改
造
技
术
方
案
季布煤业主通风机变频改造技术方案
一、季布煤业公司风机现状:
季布煤业公司现用主扇风机为BU54-16×75×2KW风机,运行电压380V,运行电流80A。
风叶角度正向。
现有设备主要有:1台低压配电柜、4台自耦降压启动柜、1台风机监测仪及各类传感器。
二、存在在主要问题:
1、冲击电流大
通风机电机启动方式为自耦变压器降压起动方式,起动电流是其额定电流的3~5倍,在如此大的电流冲击下,接触器、电机的使用寿命大大下降。
同时,起动时的机械冲击,容易对机械散件、轴承、、管道等造成破坏,从而增加维修量和备品、备件费用。
2、电能的严重浪费
主通风机一直处在较轻负载下运行。
在传统的技术条件下,由于电机的转速不可以调节,只能通过改变风机叶片或挡风板的角度进行风量调节。
因此造成能源浪费,增加生产成本。
所以就造成了电能的无端浪费!有悖于国家的节能减排政策。
3、启动困难,机械损伤严重
主通风机若采用直接启动,启动时间长,启动电流大,对电动机的绝缘有着较大的威胁,严重时甚至烧坏电动机。
而电机在启动过程中所产生的机械冲击现象使风机产生较大的机械应力,会严重影响到电动机、风机及其它机械的使用寿命。
4、自动化程度低
主通风机依靠人工调节风机叶片或挡风板角度调节风量,不具备风量的自动实时调节功能,自动化程度低,检测点少。
在故障状态下,不能及时和风机联动,将对矿井正常生产造成严重影响。
三、通风机变频改造技术特点:
1、通风机改造后采用变频启动和调速,具有启动电流小,调速方便,运行稳定以及节能等特点。
2、增加电源切换柜,双母线供电,通过智能切换开关可以实现双电源自动切换,切换时间不大于3S,保证通风机供电安全可靠,具有过载、短路、欠电压保护功功能。
3、控制系统具有过欠压、短路、堵转、过载、断相、接地、电机过热等多种保护功能。
4、PLC控制系统采用西门子S7-200可编程序控制器,配以多种检测控制组件完成了风机应有的各种工艺控制,实现风机的闭环控制及各种情况下的安全保护以及系统切换时的各种闭锁。
在风机变频电控操作和监控方面,控制柜提供了全面的操作按钮,操作更简单、方便,配备声光报警器。
并配备以太网模块为以后实现全矿井自动化作准备。
实现系统联锁、起、停控制、保护、通风机工作状态在线监测及数据通讯等功能。
5、变频器采用INVT GD200系列风机专用变频器,满足通风机负载各种运行工况的要求,根据风机运行工况,频率精度可以达到0.01HZ.启动力矩180%/HZ.
6、GD200变频器采用先进的降噪技术,有效实现低载波频率的低噪声运行,有效降低变频器输出中的高频谐波成分,保证变频器运行中,电网质量符合GB/T14549-1993;
7、变频器具有自动节能和自动稳压功能,电机在空载或轻载运行的过程中,GD200变频器会适当调整输出电压,达到空载或轻载运行时节能的目的。
当外界电压发生变化时,变频器的自动稳压功能能够保证输出电压基本不变。
四、采用自动化上位机监控功能
安全监控系统内监控系统可以采用计算机或触摸屏两种途径,优先使用上位计算机,上位机采用台湾研华高档工控机,组态软件采用组态王组态软件。
根据煤矿企业现场的实际情况以及风机在线监测系统所必需测量物理量的要求,监测以下数据(两台风机):
10 电机轴承温度 4
11 定子绕组温度 4
12 风机振幅 2 通过振动专用数据采集器
13 正反转、停止信号8 开关量
表1 测点统计表
下面是风机在线监测系统的拓补图.
上位机操作界面
➢系统主监控画面(可显示:电压、电流、输出频率、转速、电机绕阻温度、轴承温度、风机水平及垂直震动、系统累计运行
时间、风量、负压、瓦斯浓度等);
➢系统切换控制界面;
➢风机特性曲线实时显示界面(采用动态曲线可根据不同频率生成);
➢系统历史状态查询界面(可依据用户要求按年、月、日、时对系统运行状态进行查询)
➢报警显示界面(显示变频器、整流变压器、电机温度、风机温
度、风机震动、瓦斯浓度等)
系统管理
控制系统所有操作均需进行“用户登录”,“用户权限”采用分级式管理方式具体如下:
操作员级用户,可对风机系统进行常规的操作(如:起、停操作等)、运行状态监控、数据查询等,但该级用户在组态方式下无法对风机进行反风、退出监控系统、消除报警记录等特殊操作;
管理员级用户,可对风机系统进行除“反风操作”外的所有操作;反风专用密码,该密码仅限于在组态系统中对系统反风进行操作时使用
可实现远程操作控制。
季布煤业机电科
2014年3月29日。