2实验3半加器,全加器
- 格式:doc
- 大小:956.50 KB
- 文档页数:4
班级姓名学号实验二组合电路设计一、实验目的(1)验证组合逻辑电路的功能(2)掌握组合逻辑电路的分析方法(3)掌握用SSI小规模集成器件设计组合逻辑电路的方法(4)了解组合逻辑电路集中竞争冒险的分析和消除方法二、实验设备数字电路实验箱,数字万用表,74LS00, 74LS86三、实验原理1 •组合逻辑概念通常逻辑电路可分为组合逻辑电路和时序逻辑电路两大类。
组合逻辑电路又称组合电路,组合电路的输出只决定于当时的外部输入情况,与电路的过去状态无关。
因此,组合电路的特点是无“记忆性”。
在组成上组合电路的特点是由各种门电路连接而成,而且连接中没有反馈线存在。
所以各种功能的门电路就是简单的组合逻辑电路。
组合电路的输入信号和输出信号往往不只一个,其功能描述方法通常有函数表达式、真值表,卡诺图和逻辑图等几种。
实验中用到的74LS00和74LS86的引脚图如图所示。
00 四2输入与非门4B 4A 4Y 3B 3A 3Y1A 1B 1Y 2A 2B 2Y GND2•组合电路的分析方法。
组合逻辑电路分析的任务是:对给定的电路求其逻辑功能,即求出该电路的输出与输入之间的关系,通常是用逻辑式或真值表来描述,有时也加上必须的文字说明。
分析一般分为(1)由逻辑图写出输出端的逻辑表达式,简历输入和输出之间的关系。
(2)列出真值表。
(3)根据对真值表的分析,确定电路功能。
3•组合逻辑电路的设计方法。
组合逻辑电路设计的任务是:由给定的功能要求,设计出相应的逻辑电路。
一般设计的逻辑电路的过程如图(1)通过对给定问题的分心,获得真值表。
在分析中要特别注意实际问题如何抽象为几个输入变量和几个输出变量直接的逻辑关系问题,其输出变量之间是否存在约束关系,从而过得真值表或简化真值表。
(2)通过卡诺图化简或逻辑代数化简得出最简与或表达式,必要时进行逻辑式的变更,最后画出逻辑图。
(3)根据最简逻辑表达式得到逻辑电路图。
四•实验内容。
1•分析,测试半加器的逻辑功能。
eda实验报告全加器EDA实验报告:全加器一、引言在数字电路设计中,全加器是一种基本的组合逻辑电路,用于实现两个二进制数的加法运算。
全加器的设计和性能对于数字电路的正确性和效率至关重要。
本实验报告将介绍全加器的原理、设计方法以及实验结果。
二、全加器的原理全加器是由两个半加器和一个额外的输入引脚组成的。
它可以实现三个二进制输入数的相加运算,并输出相应的和与进位。
1. 半加器半加器是一个简单的组合逻辑电路,用于实现两个二进制数的相加运算。
它有两个输入引脚A和B,分别代表两个二进制数的对应位,一个和输出引脚S和一个进位输出引脚C。
半加器的真值表如下所示:A B S C0 0 0 00 1 1 01 0 1 01 1 0 1可以看出,和输出引脚S等于A和B的异或运算结果,进位输出引脚C等于A 和B的与运算结果。
2. 全加器全加器是由两个半加器和一个额外的输入引脚组成的。
它有三个输入引脚A、B 和Cin,分别代表两个二进制数的对应位以及上一位的进位,两个输出引脚S 和Cout,分别代表相加结果的和以及当前位的进位。
全加器的真值表如下所示:A B Cin S Cout0 0 0 0 00 0 1 1 00 1 0 1 00 1 1 0 11 0 0 1 01 0 1 0 11 1 0 0 11 1 1 1 1可以看出,和输出引脚S等于A、B和Cin的异或运算结果,进位输出引脚Cout等于A、B和Cin的与运算结果与A和B的或运算结果的与运算结果。
三、全加器的设计方法全加器的设计可以使用逻辑门电路实现。
常用的逻辑门包括与门、或门、非门和异或门。
根据全加器的真值表,可以使用这些逻辑门组合来实现全加器。
1. 使用逻辑门实现半加器半加器可以使用异或门和与门来实现。
异或门用于计算和输出引脚S,与门用于计算和输出引脚C。
2. 使用逻辑门实现全加器全加器可以使用两个半加器和一个或门来实现。
两个半加器分别用于计算和输出引脚S和C1,或门用于计算和输出引脚Cout。
组合逻辑电路是数字电路中的一种重要类型,主要用于实现逻辑运算和计算功能。
其中,半加器和全加器是组合逻辑电路的两种基本结构,通过它们可以实现数字加法运算。
本文将详细介绍组合逻辑电路的相关知识,包括半加器、全加器以及逻辑运算的原理和应用。
一、半加器半加器是一种简单的数字电路,用于对两个输入进行加法运算,并输出其和及进位。
其结构由两个输入端(A、B)、两个输出端(S、C)组成,其中S表示和,C表示进位。
半加器的真值表如下:A B S C0 0 0 00 1 1 01 0 1 01 1 0 1从真值表可以看出,半加器只能实现单位加法运算,并不能处理进位的问题。
当需要进行多位数的加法运算时,就需要使用全加器来实现。
二、全加器全加器是用于多位数加法运算的重要逻辑电路,它能够处理两个输入以及上一位的进位,并输出本位的和以及进位。
全加器由三个输入端(A、B、Cin)和两个输出端(S、Cout)组成,其中Cin表示上一位的进位,S表示和,Cout表示进位。
全加器的真值表如下:A B Cin S Cout0 0 0 0 00 0 1 1 00 1 0 1 00 1 1 0 11 0 0 1 01 0 1 0 11 1 0 0 11 1 1 1 1通过全加器的应用,可以实现多位数的加法运算,并能够处理进位的问题,是数字电路中的重要组成部分。
三、逻辑运算除了实现加法运算外,组合逻辑电路还可用于实现逻辑运算,包括与、或、非、异或等运算。
这些逻辑运算能够帮助数字电路实现复杂的逻辑功能,例如比较、判断、选择等。
逻辑运算的应用十分广泛,不仅在计算机系统中大量使用,而且在通信、控制、测量等领域也有着重要的作用。
四、组合逻辑电路的应用组合逻辑电路在数字电路中有着广泛的应用,其不仅可以实现加法运算和逻辑运算,还可以用于构建各种数字系统,包括计数器、时序逻辑电路、状态机、多媒体处理器等。
组合逻辑电路还在通信、控制、仪器仪表等领域得到了广泛的应用,为现代科技的发展提供了重要支持。
电子通信与软件工程系2013-2014学年第2学期《数字电路与逻辑设计实验》实验报告--------------------------------------------------------------------------------------------------------------------- 班级:姓名:学号:成绩:同组成员:姓名:学号:---------------------------------------------------------------------------------------------------------------------一、实验名称:组合逻辑电路(半加器全加器及逻辑运算)二、实验目的:1、掌握组合逻辑电路的功能调试2、验证半加器和全加器的逻辑功能。
3、学会二进制数的运算规律。
三、实验内容:1.组合逻辑电路功能测试。
(1).用2片74LS00组成图4.1所示逻辑电路。
为便于接线和检查.在图中要注明芯片编号及各引脚对应的编号。
(2).图中A、B、C接电平开关,YI,Y2接发光管电平显示.(3)。
按表4。
1要求,改变A、B、C的状态填表并写出Y1,Y2逻辑表达式.(4).将运算结果与实验比较.2.测试用异或门(74LS86)和与非门组成的半加器的逻辑功能.根据半加器的逻辑表达式可知.半加器Y是A、B的异或,而进位Z是A、B相与,故半加器可用一个集成异或门和二个与非门组成如图4.2.(1).在学习机上用异或门和与门接成以上电路.接电平开关S.Y、Z接电平显示.(2).按表4.2要求改变A、B状态,填表.3.测试全加器的逻辑功能。
(1).写出图4.3电路的逻辑表达式。
(2).根据逻辑表达式列真值表.(3).根据真值表画逻辑函数S i 、Ci的卡诺图.(4).填写表4.3各点状态(5).按原理图选择与非门并接线进行测试,将测试结果记入表4.4,并与上表进行比较看逻辑功能是否一致.实验结果:表4.1Y1=A+B Y2=(A’·B)+(B’·C)表4.2表4.3表4.4Y=A’B+AB’Z=CX1=A’B+C’+AB X2=A’B’+AB+C X3=A’B+AB’+C’Si=A’B’C+A’BC’+AB’C+ABC Ci=AC+AB+BC实验总结:此实验中因本就缺少一块74LS00的芯片导致线路不完整,原本打算用74LS20来代替74LS00,但电路还是出现了问题,原以为是电路接线的问题,也重新接线过,但是情况毫无变化。
《数字电路》组合逻辑电路(半加器全加器及逻辑运算)实验一、实验目的1、掌握组合逻辑电路的功能测试。
2、验证半加器和全加器的逻辑功能。
3、学会二进制数的运算规律。
二、实验设备74LS00 二输入端四与非门 3片74LA86 二输入端四异或门 1片74LS54 四组输入与或非门 1片数字电子技术试验箱三、实验内容及步骤1、组合逻辑电路功能测试。
(1)用2片74LS00组成图5-1所示逻辑电路。
为便于接线和检查,在图中要注明芯片编号及各引脚对应的编号。
(2)图中A、B、C接电平开关(K1、K2、K3),Y1、Y2接发光管(L1、L2)电平显示。
(3)按表5-3要求,改变A、B、C的状态,填表并写出Y1、Y2逻辑表达式。
(4)将运算结果与理论值比较。
图5-1表5-3=A+A’BY1Y=A’B+B’C22、测试用异或门(74LS86)和与非门组成的半加器的逻辑功能。
根据半加器的逻辑表达式可知,半加器Y是A、B的异或,而进位Z是A、B 相与,故半加器可用一个集成异或门和二个与非门组成,如图5-2。
(1)在实验仪上用异或门和与非门接成以上电路。
A、B接电平开关K1、K2;Y、Z接电平显示(L1、L2)。
(2)按表5-4要求改变A、B状态,填表。
图5-2 表5-43、测试全加器的逻辑功能。
(1)写出图5-3电路的逻辑表达式。
(2)根据逻辑表达式列真值表。
(表5-5)(3)根据真值表画逻辑函数Si 、Ci的卡诺图。
图5-3(4)填写表5-5各点状态。
表5-5四、实验心得组合逻辑电路在逻辑功能上的特点是任意时刻的输出仅仅取决于该时刻的输入,与电路原来的状态无关。
组合逻辑电路是指在任何时刻,输出状态只决定于同一时刻各输入状态的组合,而与电路以前状态无关,而与其他时间的状态无关。
分析方法:1、根据逻辑电路写出逻辑表达式。
2、逻辑表达式化简。
3、根据逻辑表达式画出真值表。
与逻辑表示只有在决定事物结果的全部条件具备时,结果才发生。
EDA实验报告电气0801 0701080126 陆松一.实验名称:半加器&全加器二.原理:半加器:实现两个一位二进制数加法运算的电路称为半加器。
若将A、B分别作为一位二进制数,S表示A、B相加的“和”,C是相加产生的“进位”,半加器的真值表如表所示半加器逻辑图及其逻辑符号:全加器:对两个一位二进制数及来自低位的“进位”进行相加,产生本位“和”及向高位“进位”的逻辑电路称为全加器。
由此可知,全加器有三个输入端,二个输出端,其真值表如表8-15所示。
其中Ai、Bi分别是被加数、加数,Ci–1是低位进位,Si为本位全加和,Ci为本位向高位的进位。
三.原理图/程序:MAX+plus II中半加器原理图VHDL程序:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY HALF_ADDER ISPORT(A,B:IN STD_LOGIC;S,CO:OUT STD_LOGIC);END HALF_ADDER;ARCHITECTURE HALF_ADDER OF HALF_ADDER IS COMPONENT HALF_ADDERPORT(A,B:IN STD_LOGIC;S,CO:OUT STD_LOGIC);END COMPONENT;BEGINS<='0' WHEN A='0' AND B='0' ELSE'1'WHEN A='0' AND B='1' ELSE'1' WHEN A='1' AND B='0' ELSE'0' WHEN A='1' AND B='1';CO<='0' WHEN A='0' AND B='0' ELSE'0' WHEN A='0' AND B='1' ELSE'0' WHEN A='1' AND B='0' ELSE'1' WHEN A='1' AND B='1';END HALF_ADDER;MAX+plus II中全加器原理图VHDL程序:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY FULL_SUBER ISPORT(A,B,CIN:IN STD_LOGIC;CO,S:OUT STD_LOGIC);END FULL_SUBER;ARCHITECTURE FULL OF FULL_SUBER IS COMPONENT HALF_SUBERPORT(A,B:IN STD_LOGIC;S,CO:OUT STD_LOGIC);END COMPONENT;SIGNAL S1,S2,S3:STD_LOGIC;BEGINU0:HALF_SUBER PORT MAP(A,B,S2,S1);U1:HALF_SUBER PORT MAP(S2,CIN,S,S3);CO<=S1 OR S3;END FULL;四.实验步骤:步骤1:为本项工程设计建立文件夹,文件夹不能为中文名。
实验3.5半加器和全加器、实验目的:1. 学会用电子仿真软件Multisim7进行半加器和全加器仿真实验。
2 •学会用逻辑分析仪观察全加器波形:3. 分析二进制数的运算规律。
4. 掌握组合电路的分析和设计方法。
5. 验证全加器的逻辑功能。
、实验准备:组合电路的分析方法是根据所给的逻辑电路,写出其输入与输出之间的逻辑关系(逻辑函数表达式或真值表),从而评定该电路的逻辑功能的方法。
一般是首先对给定的逻辑电路,按逻辑门的连接方法,逐一写出相应的逻辑表达式,然后写出输出函数表达式,这样写出的逻辑函数表达式可能不是最简的,所以还应该利用逻辑代数的公式或者卡诺图进行简化。
再根据逻辑函数表达式写出它的真值表,最后根据真值表分析出函数的逻辑功能。
例如:要分析如图3.5.1所示电路的逻辑功能。
图3.5.11. 写输出函数丫的逻辑表达式:W 二AAB ABB ......................................... 3.5.1X =WWC WCC ....................................... 3.5.2丫= XXD XDD ........................................ 3.5.32. 进行化简:W = AAB ABB 二AB AB ................................................................... 3.5.4X =WC Wc 二 ABC ABC ABC ABC ............................................... 5.5 …..3.Y =XD X D 二A BCD ABCD ABCD ABCD逻辑图是一个检奇电路。
输入变量的取值中,有奇数个 1则有输出,否则 无输出。
组合电路的设计目的就是根据实际的逻辑问题,通过写出它的真值表和逻辑 函数表达式,最终找到实现这个逻辑电路的器件,将它们组成最简单的逻辑电路。
实验二组合逻辑电路实验一、实验目的1、掌握组合逻辑电路的分析方法2、验证半加器、全加器、半减器、全减器、奇偶校验器、原码/反码转换器逻辑功能。
二、设备及器件1、智能实验台2、万用表 1块3、74LSOO 四二输入与非门 3片4、74LS86 四二输入异或门 1片三、实验内容与步骤1、分析半加器的逻辑功能(1)用两片74LSOO按图2-1接线。
74LSOO芯片14脚接+5V,7脚接地。
图 2-1(2)写出该电路的逻辑表达式,列真值表(3)按表2-1的要求改变A、B输入,观测相应的S、C值并填入表2-1中。
(4)比较表2-1与理论分析列出的真值表,验证半加器的逻辑功能。
表2-12、分析全加器的逻辑功能(1)用三片74LSOO按图2-2接好线,74LSOO芯片14脚接+5V,7脚接地。
图2-2(2)分析该线路,写出Sn、Cn的逻辑表达式,列出其真值表。
(3)利用开关改变An、Bn、Cn-1的输入状态,借助指示灯或万用表观测Sn、Cn的值填入表2-2中。
(4)将表2-2的值与理论分析列出的真值表加以比较,验证全加器的逻辑功能。
3、分析半减器的逻辑功能(1)用两片74LSOO按图2-3接好线,74LSOO芯片14脚接+5V,7脚接地。
图 2-3(2)分析该线路,写出D、C的逻辑表达式,列出真值表。
(3)按表2-3改变开关A、B状态,观测D、C的值并填入表2-3中。
(4)将表2-3与理论分析列出的真值表进行比较,验证半减器的逻辑功能。
表 2.34、分析全减器的逻辑功能(1)用一片74LS86和两片74LSOO按图2-4接线。
各片的14脚接+5V,7脚接地。
图 2-4(2)分析该线路,写出Dn、Cn的逻辑表达式,列出真值表。
(3)按表2-4改变An、Bn、Cn-1的开关状态,借助万用表或指示灯观测输出Dn、Cn的状态并填入表2-4中。
(4)对比表2-4和理论分析列出的真值表,验证全减器的逻辑功能。
表 2-45、分析四位奇偶校验器的逻辑功能(1)用74LS86按图2-5接好线。
《数字电子技术B》实验报告班级:姓名学号:实验二组合逻辑电路(半加器、全加器)一、实验目的1.掌握组合逻辑电路的功能测试。
2.验证半加器和全加器的逻辑功能。
3.学会二进制数的运算规律。
二、实验仪器及材料74LS00 二输入端四与非门 3片74LS86 二输入端四异或门 1 片74LS54 四组输入与或非门 1片三、实验内容(如果有可能,附上仿真图)1.组合逻辑电路功能测试。
(1).用2片74LS00组成图2.1所示逻辑电路。
为便于接线和检查,在图中要注明芯片编号及各引脚对应的编号。
(2).图中A、B、C接电平开关,Y1,Y2接发光管电平显示。
(3).接表2.1要求,改变A、B、C的状态填表并写出Y1,Y2逻辑表达式。
(4).将运算结果与实验比较。
表2.1Y1=A+B Y2=(A’*B)+(B’*C)2.测试用异或门(74LS86)和与非门组成的半加器的逻辑功能。
根据半加器的逻辑表达式可知,半加器Y是A、B的异或,而进位Z是A、B相与,故半加器可有一个集成异或门和二个与非门组成如图2.2。
图2.2(1).在实验仪上用异或门和与门接成以上电路。
A、B接电平开关K,Y,Z接电平显示。
(2).按表2.2要求改变A、B状态,填表。
表2.23.(1).写出图2.3电路的逻辑表达式。
(2).根据逻辑表达式列真值表。
表2.3(5)按原理图选择与非门并接线进行测试,将测试结果记入表2.4,并与上表进行比较看逻辑功能是否一致。
4. 测试用异或、与或和非门组成的全加器的逻辑功能。
全加器可以用两个半加器和两个与门一个或门组成,在实验中,常用一块双异或门、一个与或非门和一个与非门实现。
(1).画出用异或门、与或非门和非门实现全加器的逻辑电路图,写出逻辑表达式。
(2).找出异或门、与或非门和与门器件按自己画出的图接线。
接线时注意与或非门中不用的与门输入端接地。
(3).当输入端A i、B i及C i-1为下列情况时,用万用表测量S i和C i的电位并将其转为逻辑状态填入下表。
班级姓名学号
实验二组合电路设计
一、实验目旳
(1)验证组合逻辑电路旳功能
(2)掌握组合逻辑电路旳分析措施
(3)掌握用SSI小规模集成器件设计组合逻辑电路旳措施
(4)理解组合逻辑电路集中竞争冒险旳分析和消除措施
二、实验设备
数字电路实验箱,数字万用表,74LS00,74LS86
三、实验原理
1.组合逻辑概念
一般逻辑电路可分为组合逻辑电路和时序逻辑电路两大类。
组合逻辑电路又称组合电路,组合电路旳输出只决定于当时旳外部输入状况,与电路旳过去状态无关。
因此,组合电路旳特点是无“记忆性”。
在构成上组合电路旳特点是由多种门电路连接而成,并且连接中没有反馈线存在。
因此多种功能旳门电路就是简朴旳组合逻辑电路。
组合电路旳输入信号和输出信号往往不只一种,其功能描述措施一般有函数体现式、真值表,卡诺图和逻辑图等几种。
实验中用到旳74LS00和74LS86旳引脚图如图所示。
00 四2输入与非门
Vcc4B4A4Y3B3A3Y
1A1B1Y2A2B2Y GND
2.组合电路旳分析措施。
组合逻辑电路分析旳任务是:对给定旳电路求其逻辑功能,即求出该电路旳输出与输入之间旳关系,一般是用逻辑式或真值表来描述,有时也加上必须旳文字阐明。
分析一般分为一下几种环节:
(1)由逻辑图写出输出端旳逻辑体现式,简历输入和输出之间旳关系。
(2)列出真值表。
(3)根据对真值表旳分析,拟定电路功能。
3.组合逻辑电路旳设计措施。
组合逻辑电路设计旳任务是:由给定旳功能规定,设计出相应旳逻辑电路。
一般设计旳逻辑电路旳过程如图:。
实验二组合逻辑电路(半加器全加器及逻辑运算)一、实验目的1. 掌握组合逻辑电路的功能测试。
2. 验证半加器和全加器的逻辑功能。
3. 学会二进制数的运算规律。
二、实验仪器及材料(1)TPE-D3数字电路实验箱。
(2)器件:74LS00 二输入端四与非门3片74LS86 二输入端四异或门1片74LS54 四组输入与或非门1片三、预习要求1.预习组合逻辑电路的分析方法。
2.预习用与非门和异或门构成的半加器、全加器的工作原理。
3.预习二进制数的运算。
+四、实验内容1.组合逻辑电路功能测试。
图2.1 Y1= ; Y2=(1) 用2片74lS00组成图2.1所示逻辑电路。
为便于接线和检查,在图中要注明芯片编号及各引脚对应的编号。
(2) 图中A、B、C接电平开关,Y1,Y2接发光管电平显示。
(3) 按表2.1要求,改变A、B、C的状态填表并写出Y1,Y2逻辑表达式。
(4) 将运算结果与实验比较。
表2.1输入输出A B C Y1 Y20 0 0 1 1 1 1 0 0111111112.测试用异或门(74LS86)和与非门组成的半加器的逻辑功能。
根据半加器的逻辑表达式可知.半加器Y是A、B的异或,而进位Z是A、B相与,故半加器可用一个集成异或门和二个与非门组成如图2.2。
(1).在学习机上用异或门和与门接成以上电路。
A、B 图2.2接电平开关S,Y、Z接电平显示。
(2).按表2.2要求改变A、B状态,填表。
表2.2输入端 A 0 1 0 1B 0 0 1 1输出端YZ3.测试全加器的逻辑功能。
(1).写出图2.3电路的逻辑表达式。
(2).根据逻辑表达式列真值表。
(3).根据真值表画逻辑函数S i C i的卡诺图。
(4).添写表2.3各点状态。
图2.3表2.3A iB iC i-1Y Z X1X2X3S i Ci0 0 00 1 01 0 01 1 00 0 10 1 11 0 11 1 1(5) .按原理图选择与非门并接线进行测试,将测试结果记入表2.4,并与上表进行比较看逻辑功能是否一致。
实验四组合逻辑电路的设计及半加器、全加器一、实验目的1.掌握组合逻辑电路的设计与测试方法2.掌握半加器、全加器的工作原理。
二、实验原理和电路1、组合逻辑电路的设计使用中、小规模集成电路来设计组合电路是最常见的逻辑电路。
设计组合电路的一般步骤如图图1.4.1 组合逻辑电路设计流程图根据设计任务的要求建立输入、输出变量,并列出真值表。
然后用逻辑代数或卡诺图化简法求出简化的逻辑表达式。
并按实际选用逻辑门的类型修改逻辑表达式。
根据简化后的逻辑表达式,画出逻辑图,用标准器件构成逻辑电路。
最后,用实验来验证设计的正确性。
1.半加器根据组合电路设计方法,首先列出半加器的真值表,见表写出半加器的逻辑表达式S=AB+AB=A⊕BC=AB若用“与非门”来实现,即为半加器的逻辑电路图如图在实验过程中,我们可以选异或门74LS86及与门74LS08实现半加器的逻辑功能;也可用全与非门如74LS00反相器74LS04组成半加器。
(a)用异或门组成的半加器 (b )用与非门组成的半加器图1.4.2 半加器逻辑电路图2.全加器用上述两个半加器可组成全加器,原理如图图 表1.4.2 全加器逻辑功能表表1.4.1 半加器逻辑功能三、实验内容及步骤1.测试用异或门(74LS86)和与非门组成的半加器的逻辑功能。
根据半加器的逻辑表达式可知,相加的和Y 是A 、B 的异或,而进位Z 是A 、B 相与,故半加器可用一个集成异或门和二个与非门组成如图图1.4.4 用一个集成异或门和二个与非门组成半加器⑴ 在实验仪上用异或门和与门接成以上电路。
A 、B 接逻辑开关,Y 、Z 接发光二极管显示。
⑵ 按表,将相加的和Y 和进位Z 的状态填入下表中。
表1.4.3⑴写出图i C i = ⑵根据逻辑表达式列真值表,并完成表1.4.4,实验证之。
⑶根据真值表画逻辑函数SiCi 的卡诺图。
完成图1.4.6图 1.4.5图 1.4.6⑸试设计用异或门、与门、或门组成的全加器的逻辑功能并接线进行测试,将测试结果记入表,与上表进行比较看逻辑功能是否一致。
实验报告
课程数字电路实验名称组合逻辑电路实验分析第 1 页
专业: 班级: < > 学号_____________ 姓名
实验日期:2015 年3 月27日报告成绩
实验三组合逻辑电路实验分析
一、实验目的
1.掌握组合逻辑电路的分析方法与测试方法。
2.掌握各集成芯片的引脚功能与各电路的正确连接。
二、实验设备与器材
1、数字电路实验箱
2、双踪示波器
3、万用表
4、CD4011×3(或74LS00×3)
5、CD4030或74LS86一片
三、实验内容
组合逻辑电路的分析是根据所给的逻辑电路,按逻辑门的连接方式,逐一写出相应的逻辑表达式,列出真值表,并画出卡诺图,判断能否简化。
( a ) ( b )
图(1) 74LS00和CD4011芯片引脚排列图
( 1 ) 写出测试半加器的逻辑表达式
( 2 ) 分析与非门组成的半加器的逻辑表达式
图2 (a) 图2 (b)
图2(a)是74LS00, 图2( b )是CD4011芯片与非门组合成的半加器电路
(3)根据表达式列出真值表,并画出卡诺图判断能否简化
表1
(4)根据图1,在实验箱选定两个14P插座,插好两片CD4011并接好联机,A、B两输入接至逻辑开关的输出插口。
S、C分别接至逻辑电平显示输出插口。
按下表2的要求进行逻辑状态的测试并将结果填入表中,同时与上面真值表进行比较,两者是否一致。
3、分析、测试用与非门、异或门组成的半加器逻辑电路
异或门CD4030和与非门74LS00组成的半加器逻辑电路如图3所示,根据半加器的逻辑表达式可知,半加器的和S是A、B的异或,而进位C是A、B的相与,故半加器可用一个集成异或门和二个与非门组成。
测试方法同上述3项,将测试结果填入自拟表格中,并验证逻辑功能。
图3 、(a ) CC4030异或门引脚排列图( b ) 异或门组成的半加器逻辑电路
4、分析、测试用与非门组成的全加器逻辑电路
(1)写出测试全加器的逻辑表达式
(2)要求用与非门CD4011或74LS00连接线组成的全加器逻辑电路如图3所示,将测试结果填入表3.
(3) 据全加器的逻辑表达式:
据逻辑表达式将测试结果与真值表比较逻辑状态是否正确.
图( 4 ) 由74LS400与非门组成的全加器逻辑电路图
四、实验步骤:
(1)根据逻辑图推导出,最简的逻辑表达式。
(2)据逻辑表达式;列真值表。
分析其逻辑功能。
(3)用标准器连接电路图;测试结果与值表状态验证是否正确。
五、实验总结。