求解网络最大流问题的标号算法
- 格式:pptx
- 大小:675.50 KB
- 文档页数:16
例题最大流的标号法精品文档例题最大流的标号法例2用标号法求下图所示的公路交通网络的最大流量 (要求写出标号过程并说明得到的的确是最大流),其中,弧旁的数字是(c「f Q。
.⑴首先,给V s标上(0, )(2)检查V s,给V s为起点的未饱和弧的未标号的终点V2标号(V s, l(V2)),其中l(V2)min [l(V s),C s2 f s2】min[ ,15 7] 8其它点不符合标号条件。
⑶检查V2,给V2为终点的非零流弧的未标号的起点V3标号(V2, |(V3)),其中l(V3)min[g), f32】min[ 8,4] 4其它点不符合标号条件。
(4)检查v3,给v3为起点的未饱和弧的未标号的终点v4、v6标号(V4, l (V4)) > ( v6,l(V6))其中,l(V4)min[?3)234 £34] min[4,5 4] 1l(V6)min [l(V3),C36 f36] min [4,5 1] 4其它点不符合标号条件。
⑸检查v6,给v6为起点的未饱和弧的未标号的终点v t标号(v t, l (v t))其中,l(V t) mi n[l(V6), C6t f&] mi n[4,10 5] 4其它点不符合标号条件。
由于V t已标号,反向搜索可得增广链{(V s,V2),(V3,V2),(V3,V6),(V6,Vj},在该增广链的前相弧(v s, v2), (v3, v6), (v6,v t)上增加l (v t) 4,在后向弧(v3, v2)上减去精品文档l(V t) 4,其它弧上的流量不变,则可得一流量v(f ) 20的新的可行流如下图重新开始标号:⑹首先,给V s标上(0, )(7)检查V s,给V s为起点的未饱和弧的未标号的终点V2标号(V s, l(V2)),其中l(V2) min [l(V s),C s2 f s2】 min[ ,15 11] 4其它点不符合标号条件。
最大流问题标号法例题详解最大流问题标号法例题详解本文以一道标号法求解最大流问题的例题胶加以详细讲解,帮助读者了解其原理及运算步骤。
题目如下:给定一个网络结构如下:s (源点) 0----1----2----3----4---- t (汇点)a 25 10 12 15 20其中 s 是源点,t是汇点,aij(i,j=0,1,2,3,4)是每条弧的容量,求整个网络的最大流量。
解:1、设置标号:在最大流问题中,为了求解最大流,最常用的方法是标号法。
首先,要设置各结点标号,因为本题中有5个结点,s源点的标号为0,t汇点标号为4,其他结点即1,2,3依次标号,标号的设定不仅便于求解,而且可以在初始化的时候使用。
2、初始化标号:初始化标号即将各结点初始化为两个空集合{},即各结点的访问和未访问标号都是空集合,即无访问的结点标号为{},访问过的结点标号也为{}。
3、依据标号法,从源点(s=0)计算,得出每条弧的剩余容量Cij,具体推导如下:源点0 1 2 3 41 0 25 10 12 152 0 0 10 7 103 0 0 0 8 104 0 0 0 0 20其中:Cij=aij-fij (i,j=0,1,2,3,4)其中,aij 为每条弧的容量,fij 为每条弧的流量,在初始情况下,fij=0,故Cij=aij。
4、找增广路径:从源点s开始,用深度优先搜索法查找从s到t的增广路径,具体步骤如下:设置一个数组P[i]用以记录路径,P[i]表示从s到i节点所经过的上一个结点,先从源点s开始,P[0]=-1,然后查找s出发可以到达的结点,若Cij>0,则有路可达,将P[j]=i(j为s出发可达的结点),接着查找j出发可以到达的结点(该结点未被访问过)若Cjk>0,则有路可达,把P[k]=j,以此类推,直到找到P[t]=-1,即从s到t 的一条增广路径找到,这条增广路径的路径上的容量称为Cmin,它是该增广路径上各结点之间的容量最小值。
最优化方法上机实验3求网络最大流及最小费用最大流问题的Ford-Fulkerson标号算法上机时间:2014.01.07实验日期: 2014年1月7日••••••••••••••••••【唯美句子】走累的时候,我就到升国旗哪里的一角台阶坐下,双手抚膝,再闭眼,让心灵受到阳光的洗涤。
懒洋洋的幸福。
顶 3 收藏 2•【唯美句子】一个人踮着脚尖,在窄窄的跑道白线上走,走到很远的地方又走回来。
阳光很好,温暖,柔和。
漫天的安静。
顶7 收藏7•【唯美句子】清风飘然,秋水缓淌。
一丝云起,一片叶落,剔透生命的空灵。
轻轻用手触摸,就点碎了河面的脸。
落叶舞步婀娜不肯去,是眷恋,是装点?瞬间回眸,点亮了生命精彩。
顶11 收藏9•【唯美句子】几只从南方归来的燕子,轻盈的飞来飞去,“几处早莺争暖树,谁家新燕啄春泥,”其乐融融的山林气息,与世无争的世外桃源,让人心旷神怡。
顶0 收藏 2•【唯美句子】流年清浅,岁月轮转,或许是冬天太过漫长,当一夜春风吹开万里柳时,心情也似乎开朗了许多,在一个风轻云淡的早晨,踏着初春的阳光,漫步在碧柳垂青的小河边,看小河的流水因为解开了冰冻而欢快的流淌,清澈见底的的河水,可以数得清河底的鹅软石,偶尔掠过水面的水鸟,让小河荡起一层层的涟漪。
河岸换上绿色的新装,刚刚睡醒的各种各样的花花草草,悄悄的露出了嫩芽,这儿一丛,那儿一簇,好像是交头接耳的议论着些什么,又好象是在偷偷地说着悄悄话。
顶 3 收藏 4•【唯美句子】喜欢海子写的面朝大海春暖花开,不仅仅是因为我喜欢看海,还喜欢诗人笔下的意境,每当夜深人静时,放一曲纯音乐,品一盏茶,在脑海中搜寻诗中的恬淡闲适。
在春暖花开时,身着一身素衣,站在清风拂柳,蝶舞翩跹的百花丛中,轻吹一叶竖笛,放眼碧波万里,海鸥,沙滩,还有扬帆在落日下的古船,在心旷神怡中,做一帘红尘的幽梦。
顶0 收藏 2•【唯美句子】繁华如三千东流水,你只在乎闲云野鹤般的采菊东篱、身心自由,置身置灵魂于旷野,高声吟唱着属于自己的歌,悠悠然永远地成为一个真真正正的淡泊名利、鄙弃功名利禄的隐者。
最⼤流问题的⼏种经典解法综述⼀、什么是最⼤流问题假设现在有⼀个地下⽔管道⽹络,有m根管道,n个管道交叉点,现在⾃来⽔⼚位于其中⼀个点,向⽹络中输⽔,隔壁⽼王在另外⼀个点接⽔,已知由于管道修建的年代不同,有的管道能承受的⽔流量较⼤,有的较⼩,现在求在⾃来⽔⼚输⼊的⽔不限的情况下,隔壁⽼王能接到的⽔的最⼤值?为解决该问题,可以将输⽔⽹络抽象成⼀个联通的有向图,每根管道是⼀条边,交叉点为⼀个结点,从u流向v的管道能承受的最⼤流量称为容量,设为cap[u][v],⽽该管道实际流过的流量设为flow[u][v],⾃来⽔⼚称为源点s,隔壁⽼王家称为汇点t,则该问题求的是最终流⼊汇点的总流量flow的最⼤值。
⼆、思路分析关于最⼤流问题的解法⼤致分为两类:增⼴路算法和预流推进算法。
增⼴路算法的特点是代码量⼩,适⽤范围⼴,因此⼴受欢迎;⽽预流推进算法代码量⽐较⼤,经常达到200+⾏,但运⾏效率略⾼,如果腹⿊的出题⼈要卡掉⼤多数⼈的code,那么预流推进则成为唯⼀的选择。
( ⊙ o ⊙ )咳咳。
先来看下增⼴路算法:为了便于理解,先引⼊⼀个引理:最⼤流最⼩割定理。
在⼀个连通图中,如果删掉若⼲条边,使图不联通,则称这些边为此图的⼀个割集。
在这些割集中流量和最⼩的⼀个称为最⼩割。
最⼤流最⼩割定理:⼀个图的最⼤流等于最⼩割。
⼤开脑洞⼀下,发现此结论显⽽易见,故略去证明(其实严格的证明反⽽不太好写,但是很容易看出结论是对的,是吧)。
这便是增⼴路算法的理论基础。
在图上从s到t引⼀条路径,给路径输⼊流flow,如果此flow使得该路径上某条边容量饱和,则称此路径为⼀条增⼴路。
增⼴路算法的基本思路是在图中不断找增⼴路并累加在flow中,直到找不到增⼴路为⽌,此时的flow即是最⼤流。
可以看出,此算法其实就是在构造最⼩割。
增⼴路算法⽽预流推进算法的思路⽐较奇葩(没找到⽐较好的图,只能⾃⾏脑补⼀下了。
= =#):先将s相连的边流⾄饱和,这种边饱和的结点称为活动点,将这些活动点加⼊队列,每次从中取出⼀个点u,如果存在⼀个相邻点v是⾮活动点,则顺着边u->v 推流,直到u变为⾮活动点。
求解最大流问题的算法和模型最大流问题是图论中的一个基本问题,涉及到网络流的计算和优化。
在实际应用中,最大流问题的求解涉及到诸多算法和模型,如增广路径算法、Ford-Fulkerson算法、Dinic算法、最小割定理等。
本文将从这些方面进行论述。
1. 增广路径算法增广路径算法是求解最大流问题的经典算法,其基本思想是不断地寻找增广路径,通过增加路径上的流量来增加整个网络的流量。
具体来说,首先通过深度优先搜索或广度优先搜索找到一条从源点到汇点的增广路径,然后确定路径上的最小流量d,将当前流量增加d,将反向边的流量减少d,同时计算当前网络的流量。
2. Ford-Fulkerson算法Ford-Fulkerson算法是一种经典的增广路径算法,其基本理念与增广路径算法相同,但采用不同的策略来确定增广路径。
具体来说,Ford-Fulkerson算法采用贪心策略,在每次迭代中选择路径上的最小容量,从而确定增加的流量。
此外,Ford-Fulkerson算法还引入了残量图的概念,用于计算增广路径的容量。
3. Dinic算法Dinic算法是一种高效的增广路径算法,其主要优点是采用了分层图的策略来确定增广路径,使得每次迭代的搜索范围大为缩小。
具体来说,Dinic算法首先利用BFS算法确定每个节点的分层,然后在分层图上通过DFS算法查找增广路径,在路径上增加流量,更新分层图,重复此过程直至求解最大流。
4. 最小割定理最小割定理是求解最大流问题的重要定理,其核心思想是将网络分成两个不相交部分,并将其最小的割称为最小割。
最小割定理指出,在任意网络中,最大流等于最小割。
因此,求解最大流可以转化为求最小割问题,即在网络中寻找一组最小割,使得所有的割中容量最小的一组割。
总之,求解最大流问题是图论中的一个重要问题,其求解涉及到诸多算法和模型,如增广路径算法、Ford-Fulkerson算法、Dinic 算法、最小割定理等。
在实际应用中,不同情况下可能需要采用不同的算法和模型来求解,需要灵活应用。
最大网速问题的数学模型摘要本题给出了各节点之间的网络流图,需求解它们之间的最大流,即最大网速,为了能有效地解决此问题,我们首先利用求解最大流的标号法对网络图中的可增广链进行逐一分析,并对该链上的流量进行调整,直到该图中没有可增广链后,求得节点1到节点6的最大网速为6兆,然后再通过MATLAB 编程实现对标号法求解的结果进行验证。
最后,又通过提高各节点之间的网速来达到提高从节点1到节点6网速的目的,得出了各链之间增加的具体流量。
即s v 到1v 的容量应增加到263x +,3v 到t v 的容量应增加到22x+,2v 到4v 与4v 到t v 的容量都应增加到72x+。
当然若2023x <<,即03x <<,则s v 到1v 的容量不变。
同理,若032x<<,即06x <<,则2v 到4v 与4v 到t v 的容量也不变。
关键词:网络最大流;可增广链;网络流图;MATLAB ;THE MAXIMUM SPEED ISSUSE MATHEMATICAL MODELABSTRACTThe title gives the network flow graph between nodes, the maximum flow demand solution between them, that is the maximum speed, in order to effectively address this problem, we first use labeling method for solving the maximum flow of the network diagram can be augmented by one chain analysis, and adjust the flow of the chain until after this figure does not augmented chain, and seek the maximum speed node 1 to node 6 is 6 trillion, and then realized through MATLAB programming the results were validated method to solve the label.Finally, and by increasing the speed to achieve between the nodes from node 1 to increase the speed of the object 6, Drawn between the increase in the specific flow chain.In other words, to achieve the purpose of improving x trillion, then s v to 1v the capacity should be increased to 6+2x/3, 3v to t v the capacity should be increased to 2+x/2,2v to4v and 4v to t v the capacity should be increased to7+x/2.Of course, if 0<2x/3<2, that is 0<x<3, s v to1v the capacity to un changed. Similarly, if 0<x/2<3, that is 0<x<6, 2v to4v the capacity is the same and4v to t v.Keywords: network maximum flow; augmenting chain; network flow diagram; MATLAB;目录一问题的提出 (1)二模型假设 (1)三符号说明 (2)四问题的分析 (2)五模型的建立与求解 (2)5.1 模型的建立 (2)5.1.1 可行流 (3)5.1.2 割集 (3)5.1.3 最大流-最小割定理 (4)5.1.4 可增广链推论 (4)5.1.5 寻求最大流的方法 (4)5.1.6 可行流调整算法 (4)5.1.7 最大流的标号算法 (4)5.2 模型的求解 (5)六模型的优化 (13)6.1 网络最大流的算法拓展 (13)6.2 问题的优化求解 (14)模型评价 (16)参考文献 (17)附录 (18)一、问题的提出下图为一网络,节点1到节点2的宽带带宽为6兆,节点1到节点3的宽带带宽为2兆,节点2到节点4的宽带带宽为3兆,…节点4到节点6的宽带带宽为2兆,求节点1到节点6的最大网速。
典型算法与ACM题目解析(01)—寻找最大流的标号法上一篇:高精度实现+-×/,计算catalan数和大组合数下一篇:典型算法与ACM题目解析(02)—有向图的强连通分量作者:dzf 阅读次数:66 时间:2006-11-27 21:25:20 算法园地这种算法又叫Ford-Fulkerson算法,算法的核心思想是使用标号的方法不断寻找一个图上的可增广路径并且进行调整,直到找不到可增广路径为止,此时得到的可行流即是该网络的最大流。
算法导论上对这种算法的伪码表示如下FORD-FULKERSON(G, s, t)1 for each edge (u, v) E[G]2 do f[u, v] ← 03 f[v, u] ← 04 while there exists a path p from s to t in the residual netwo rk Gf5 do cf(p) ← min {cf(u, v) : (u, v) is in p}6 for each edge (u, v) in p7 do f[u, v] ← f[u, v] + cf(p)8 f[v, u] ← -f[u, v]Google Code Jam 2006提供的第一道练习题所用的算法就是以上所说的算法题目的大意是,给一个无向图和图上任意两点之间是否有通路,一个人从0点到1点总共最多有多少条不同的道路可选,要求一个点(0,1除外)最多只能有一条道路覆盖,要求最多有多少条满足这个条件的从0点到1点的道路。
由于题目给出的数据量太小,总点数只有12,估计搜索或枚举之类的方法应该可以通过,但是这道题最好的方法还是上面所说的求最大流的FF算法,如何将这个图转化成我们求最大流的图呢?我们常用的方法是拆点法。
将0,1之外的其它点全部都拆成两个,Xa和Xb,设到点某点Y有一条到X的路径,就设Yb->Xa的流量为1,同时设置Xa->Xb的流量为1,那么从X点流进的流量可能大于1,流出的流量也可能大于1,但是流经X点的流量最大为1,这也就保证了只有一条路经过X。