一元一次方程基本数量关系式
- 格式:doc
- 大小:183.00 KB
- 文档页数:17
七年上一元一次方程1、行程行程的基本公式:速度×= 路程常见的等量关系(1) 相遇一般公式:× 速度和= 相遇路程一、由意得例:甲、乙两地相距 1500千米,两汽同从两地相向而行,其中吉普每小行 60 千米,是客速度的 1.5 倍。
注意数学用,如:等于,⋯⋯与⋯⋯相等,一共有,剩余,是⋯⋯(1)几小后两相遇?(2)若吉普先开 40 分,那么客开出两相遇?的几倍,比⋯⋯多几等等。
例 1:一个数的1与 3 的差等于最大的一位数,求个数。
( 2)追及7一般公式:例 2:一个三位数,三个数位上的数字之和是17,百位上的数字比十出地不同,同出:×速度差 = 路程差(追及路程)位上的数大 7,个位上的数字是十位上的三倍,求个三位数。
出地相同,先后出: A× A速度= B× B速度例 3 :从正方形的皮上,截去一个2cm 的方形条,剩余的面是80cm2,,那么原来皮的是多少?例:小明家距离学校 1000米。
一天小明以80 米每分的速度去上学, 5二、前后不分后爸爸小明没文,开始以180米每分的速度去追小明,并在途中追上了他。
例1:在要将一个底面半径 3,高 12 的柱条重新熔成一个底面半径 9的柱,求熔后的柱高。
例 2:小一本,每天( 3)形跑道20 ,需要 12 天完,如果每天多 4分析意,分析两人路程差或者差,将形跑道直,需要多少天完?如果每天少两,需要几天完?相遇或者追及。
三、算公式例:甲乙两人在形跑道上跑步。
已知跑道一圈400 米,乙每例如面公式,公式等等。
3秒跑 6 米,甲的速度是乙的。
4四、数量关系( 1)若甲、乙两人在环形跑道上相距8 米处同时相向出发,经过几秒( 5)火车问题两人相遇?火车过桥总路程= 桥长 + 火车身长( 2)若甲在乙前 8 米处同时同向出发,那么经过多长时间两人首次相火车完全在桥上时的路程= 桥长 - 火车身长遇?火车过隧道总路程= 隧道长 + 火车身长火车完全在隧道里的路程= 隧道长 - 火车身长(4)顺流(风)逆流(风))以及上下坡问题例:一座桥长1000 米,一列火车从桥上通过,从上桥到离开桥公用1静水速度是指船在静水中的速度,也就是船自身的速度。
【典型例题】例1 将一批数据输入电脑,甲独做需要50分钟完成,乙独做需要30分钟完成,现在甲独做30分钟,剩下的部分由甲、乙合做,问甲、乙两人合做的时间是多少?解析:首先设甲乙合作的时间是x分钟,根据题意可得等量关系:甲工作(30+x)分钟的工作量+乙工作x分钟的工作量=1,根据等量关系,列出方程,再解方程即可.设甲乙合作的时间是x分钟,由题意得:【方法突破】工程问题是典型的a=bc型数量关系,可以知二求一,三个基本量及其关系为:工作总量=工作效率×工作时间需要注意的是:工作总量往往在题目条件中并不会直接给出,我们可以设工作总量为单位1。
二、比赛计分问题【典型例题】例1某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。
已知某人有5道题未作,得了103分,则这个人选错了多少道题。
解:设这个人选对了x道题目,则选错了(45-x)道题,于是3x-(45-x)=1034x=148解得 x=37则 45-x=8答:这个人选错了8道题.例2某校高一年级有12个班.在学校组织的高一年级篮球比赛中,规定每两个班之间只进行一场比赛,每场比赛都要分出胜负,每班胜一场得2分,负一场得1分.某班要想在全部比赛中得18分,那么这个班的胜负场数应分别是多少?因为共有12个班,且规定每两个班之间只进行一场比赛,所以这个班应该比赛11场,设胜了x场,那么负了(11-x)场,根据得分为18分可列方程求解.【解析】设胜了x场,那么负了(11-x)场.2x+1•(11-x)=18x=711-7=4那么这个班的胜负场数应分别是7和4.【方法突破】比赛积分问题的关键是要了解比赛的积分规则,规则不同,积分方式不同,常见的数量关系有:每队的胜场数+负场数+平场数=这个队比赛场次;得分总数+失分总数=总积分;失分常用负数表示,有些时候平场不计分,另外如果设场数或者题数为x,那么x最后的取值必须为正整数。
一元一次方程(行程问题)考点1、相遇问题:【基础知识回顾】相遇问题是行程问题的一种典型应用题,也是相向运动的问题.无论是走路,行车还是物体的移动,总是要涉及到三个量--------路程、速度、时间。
相遇问题的核心就是速度和。
路程、速度、时间三者之间的数量关系,不仅可以表示成:路程= 速度×时间,还可以变形成下两个关系式:速度= 路程÷时间, 时间= 路程÷速度.一般的相遇问题: 甲从A地到B地,乙从B地到A地,然后两人在A地到B地之的某处相遇,实质上是甲,乙两人一起走了AB这段路程,如果两人同时出发,那有:(1) 甲走的路程+乙走的路程= 全程(2) 全程= (甲的速度+乙的速度) ×相遇时间= 速度和×相遇时间相遇问题的基本题型1、同时出发(两段)2、不同时出发(三段)相遇问题的等量关系S甲+S乙=S总(全程)S先+S甲+S乙=S总(全程)【典型例题】1、电气机车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速度比电气机车的5倍还快20千米/时,半小时后两车相遇,两车的速度各是多少?[变式训练]1、甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?考点2、追及问题【基础知识回顾】两个速度不同的人或车,慢的先行(领先)一段,然后快的去追,经过一段时间快的追上慢的。
这样的问题一般称为追及问题。
有时,快的与慢的从同一地点同时出发,同向而行,经过一段时间快的领先一段路程,我们也把它看作追及问题,因为这两种情况都满足速度差×时间=追及(或领先的)路程。
追及问题的核心就是速度差。
追及问题追及问题的基本题型1、不同地点同时出发2、同一地点不同时出发追及问题的等量关系1、追及时快者行驶的路程-慢者行驶的路程=相距的路程2、追及时快者行驶的路程=慢者行驶的路程或慢者所用时间=快者所用时间+多用时间追击问题的等量关系:1)同时不同地:慢者行的距离+两者之间的距离=快者行的距离2)同地不同时:甲行距离=乙行距离或慢者所用时间=快者所用时间+多用时间【典型例题】1. 跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?[变式训练]1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为________________.2、某人从家里骑自行车到学校。
第13讲一元一次方程(3)—行程问题专题【知识点清单】1、解行程问题中所用到的基本数量关系:路程= ×时间;速度=路程÷;时间=÷速度。
2、行程问题的四种基本类型:★(1)相遇问题★(2)追及问题(3)航行问题(4)火车过桥问题(1)相遇问题中的等量关系:甲的行程 + = 甲、乙起始间的全程;×相遇时间=路程和。
S甲+S乙=C环形(2)追及问题的等量关系:追及时间× =追及路程,S快者―S慢者=(3)、航行问题:V顺水=V静水+V水流; V逆水=V静水―V水流;V顺风=V无风+V风速; V逆风=V无风―V风速;(4)、火车过桥问题:【典例精讲】考点1: 相遇问题【例1】(1)甲、乙两站之间的路程为450千米,一列慢车从甲站开出,每小时行驶65千米,一列快车从乙站开出,每小时行驶85千米,两车同时开出相向而行,_________小时后相遇。
(2)甲、乙两人骑着自行车同时从相距65千米的两地相向而行,2小时相遇,若甲比乙每小时多骑2.5千米,则乙的速度是_________。
【例2】甲乙两人同时从A地前往相距为1252千米的B地,甲骑自行车,乙步行,甲的速度比乙的速度的2倍快2千米/时,甲先到达B地后,立即由B地返回,在途中遇到乙,这时距他们出发时间为3小时,求两人的速度。
变式议练:1、上午8点,李华和张涛两同学分别从A、B两地同时出发,相向而行,已知李华的速度每小时比张涛快2千米,上午十点两人还距36千米,到中午十二点时,两人又相距36千米,试求:A、B两地的距离。
2、A、B两地相距450千米,甲乙两车分别从A、B两地同时出发,相向而行,已知甲车速度为120千米/时,乙车速度为80千米/时,经过t小时两车相距50千米,求t的值是?考点2: 追及问题【例3】开心填一填(1)A、B两地间的路程为450千米,一列慢车从A地出发,每小时行驶60千米,一列快车从B地出发,每小时行驶90千米,若两车同时开出,相向而行,_________小时相遇;若慢车先开1小时,快车在同地同向开出,快车经过了_______小时可追上慢车。
一元一次方程十六种常见题型一.和差倍分的问题问题的特点:已知两个量之间存在合倍差关系,可以求这两个量的多少。
基本方法:以和倍差中的一种关系设未知数并表示其他量,选用余下的关系列出方程。
1.一个数的2倍与10的和等于18,设这个数为x,可列方程_______。
一个数的二分之一与3的差等于2,设这个数为x,可列方程_______。
一个数的3倍比10大2,设这个数为x,可列方程_______。
2.一个机床厂今年第一季度生产机床180台,比去年同期的二倍多36台,去年一季度产量多少台设去年一季度产量为x台,可列方程_______。
3.一群老人去赶集,集上买了一堆梨,一人1个多一个,一人2个少2个,几位老人几个梨4.某学校组织10名优秀学生春游,预计费用若干元,后来又来了2名同学,原来的费用不变,这样每人可以少摊3元,则原来每人需要付费多少元5.七年级二班有45人报名参加了文学社或字画社,已知参加文学社的人数比参加字画社的人数多5人,两个社都参加的有20人,问参加字画社的有多少人XXX.等积变形问题此类问题的关键在“等积”上,是等量干系的地点,必须掌握常见多少图形的面积、体积公式。
“等积变形”是以形状改变而体积不变成前提。
1.把内径为200mm,高为500mm的圆柱形铁桶,装满水后慢慢地向内径为160mm,高为400mm的空木桶装满水后,铁桶内水位下降了多少2.要锻造一个直径为8cm高为4cm的圆柱形毛坯,至少应截取直径为4cm的圆钢多少cm。
三.相遇问题(相向而行):1这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。
对应公式:路程=速度×时间快者路程+慢者路程=总路程慢者速度+快者速度)×相遇时间=相遇路程1.甲、乙两车从相距264千米的A、B两地同时动身相向而行,甲速是乙速的倍,4小时相遇,求乙速2.甲、乙两站相距600千米,快车从甲地动身,每小时行40千米,快车从乙地动身,每小时行60千米,若快车先行50分钟,快车再开出,又行一段时间后碰到快车,求快车开出多少小时两车相遇3.A、B两地相距75千米,一辆汽车以50千米/时的速度从A地动身,另一辆汽车以40千米/时速度从B 地动身,两车同时动身,相向而行,经过几小时两车相距30千米四.追及问题(同向而行):这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。
初一数学上册一元一次方程技巧与试题列方程解应用题的方法及步骤:(1)审题:要明确已知什么,未知什么及其相互关系,并用x 表示题中的一个合理未知数。
(2)根据题意找出能够表示应用题全部含义的一个相等关系。
(关键一步)(3)根据相等关系,正确列出方程,即所列的方程应满足等号两边的量要相等;方程两边的代数式的单位要相同。
(4)解方程:求出未知数的值。
(5)检验后明确地、完整地写出答案。
检验应是:检验所求出的解既能使方程成立,又能使应用题有意义。
2.应用题的类型和每个类型所用到的基本数量关系:(1)等积类应用题的基本关系式:变形前的体积(容积)=变形后的体积(容积)。
(2)调配类应用题的特点是:调配前的数量关系,调配后又有一种新的数量关系。
(3)利息类应用题的基本关系式:本金×利率=利息,本金+利息=本息。
(4)商品利润率问题:商品的利润率,商品利润=商品售价-商品进价。
(5)工程类应用题中的工作量并不是具体数量,因而常常把工作总量看作整体1,其中,工作效率=工作总量÷工作时间。
(6)行程类应用题基本关系:路程=速度×时间。
相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程。
追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离。
环形跑道题:①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。
②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时的总路程为环形跑道一圈的长度。
飞行问题、基本等量关系:①顺风速度=无风速度+风速②逆风速度=无风速度-风速航行问题,基本等量关系:①顺水速度=静水速度+水速②逆水速度=静水速度-水速(7)比例类应用题:若甲、乙的比为2:3,可设甲为2x,乙为3x。
(8)数字类应用题基本关系:若一个三位数,百位数字为a,十位数字为b,个位数字为c,则这三位数为:。
1学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?2变题学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多2人,应调往甲、乙两处各多少人?分析设应调往甲处x人,题目中涉及的有关数量及其关系可以用下表表示:3某中学组织同学们春游,如果每辆车座45人,有15人没座位,如果每辆车座60人,那么空出一辆车,其余车刚好座满,问有几辆车,有多少同学?4某车间一共有59个工人,已知每个工人平均每天可以加工甲种零件15个,或乙种零件12个,或丙种零件8个,问如何安排每天的生产,才能使每天的产品配套?(3个甲种零件,2个乙种零件,1个丙种零件为一套)5 一张方桌由一张桌面和四根桌腿做成,已知一立方米木料可做桌面50个或桌腿300根,现在5立方米木料,恰好能做桌子多少张?6某班有50名学生,在一次数学考试中,女生的及格率为80%,男生的及格率为75%,全班的及格率为78%,问这个班的男女生各有多少人?7一份试卷共有25道题,每道题都给出了4个答案,其中只有一个正确答案,每道题选对得4分,不选或错选倒扣1分,如果一个学生得90分,那么他做对了多少道题。
一、常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数二、小学数学图形计算公式1、正方形(C:周长S:面积a:边长)周长=边长×4 C=4a 面积=边长×边长S=a×a2、正方体(V:体积a:棱长)表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3、长方形(C:周长S:面积a:边长)周长=(长+宽)×2 C=2(a+b) 面积=长×宽S=ab4、长方体(V:体积s:面积a:长b: 宽h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高V=abh5、三角形(s:面积a:底h:高)面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积a:底h:高)面积=底×高s=ah7、梯形(s:面积a:上底b:下底h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形(S:面积C:周长лd=直径r=半径)(1)周长=直径×л=2×л×半径C=лd=2лr (2)面积=半径×半径×л9、圆柱体(v:体积h:高s:底面积r:底面半径c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积h:高s:底面积r:底面半径)体积=底面积×高÷311、和差问题的公式:(和+差)÷2=大数(和-差)÷2=小数12、和倍问题: 和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)13、差倍问题:差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)14、相遇问题相遇路程=速度和×相遇时间;相遇时间=相遇路程÷速度和;速度和=相遇路程÷相遇时间15、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量16、利润与折扣问题利润=售出价-成本;利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比;利息=本金×利率×时间;税后利息=本金×利率×时间×(1-20%) 三、常用单位换算长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算:1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算:1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算:1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算:1元=10角1角=10分1元=100分时间单位换算:1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒基本概念第一章数和数的运算一概念(一)整数1 整数的意义:自然数和0都是整数。
;.1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=和6、一个加数=和-另一个加数7、被减数-减数=差8、减数=被减数-差9、被减数=减数+差 10、因数×因数=积11、一个因数=积÷另一个因数 12、被除数÷除数=商 13、除数=被除数÷商 14、被除数=商×除数15、有余数的除法:被除数=商×除数+余数16、一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。
例:90÷5÷6=90÷(5×6) 1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米1平方分米=100平方厘米二、几何公式1.正方形正方形的周长=边长×4 公式:C=4a 正方形的面积=边长×边长 公式:S=a×a正方体的体积=边长×边长×边长 公式:V=a×a×a 2.长方形长方形的周长=(长+宽)×2 公式:C=(a+b)×2 长方形的面积=长×宽 公式:S=a×b 长方体的体积=长×宽×高 公式:V=a×b×h 3.三角形三角形的面积=底×高÷2 公式:S= a×h÷2 4.平行四边形平行四边形的面积=底×高 公式:S= a×h 5.梯形梯形的面积=(上底+下底)×高÷2 公式:S=(a+b)h÷2 6.圆直径=半径×2 公式:d=2r 半径=直径÷2 公式:r= d÷2'.;. 圆的周长=圆周率×直径公式:c=πd =2πr 圆的面积=半径×半径×π公式:S=πrr7.圆柱圆柱的侧面积=底面的周长×高公式:S=ch=πdh=2πrh圆柱的表面积=底面的周长×高+两头的圆的面积公式:S=ch+2s=ch+2πr2圆柱的总体积=底面积×高公式:V=Sh8.圆锥圆锥的总体积=底面积×高×1/3公式:V=1/3Sh9.三角形内角和=180度三、算数概念1.加法交换律:两数相加交换加数的位置,和不变。
七年级数学——一元一次方程应用题解决有实际背景问题用方程解决应注意以下几点:(1)用列方程的方法解决实际问题的一般思路是分析数量关系列出方程。
(2)列方程的实质是用两种不同的方法来表示同一个量,建立等式。
(3)列方程解应用问题一般步骤是设未知数,列方程,解出方程的解,利用方程的解回答实际问题(4)实际问题中的数量关系比较隐蔽,关键是审题,弄清问题的背景,分析清楚数量关系,特别是找出能够作为列方程依据的相等关系。
(5)针对不同问题抓住基本量找出等量关系。
一、行程问题:(相遇追及)基本量:路程(s)=速度(v)×时间(t)顺水速=静水速+水速逆水速=静水速-水速练习题:例:甲乙两人骑自行车,同时从相距65km 的两地相向而行,甲的速度是17.5km/h,乙的速度是15km/h,经过几个小时两人相距32.5km。
1.某班学生以每小时4.5km的速度步行到某地活动2h后学校派一辆摩托车以27km/h的速度追赶队伍,问摩托车多少小时能够追上?2.一艘船从甲码头到乙码头顺流行驶,用了2小时,从乙码头返回甲码头逆流行驶,用了2.5小时,已知水流的速度是3km/h,求船在静水中的平均速度。
3.运动场跑道一圈长400m,小健练习骑自行车平均每分钟骑350m,小康练习跑步平均每分钟跑250m,两人从同一处同时反向出发,经过多少时间首次相遇,又经过多少时间再相遇?二、工程问题基本量:工作总量=工作效率×工作时间(一般地:将工作总量看作1)例:一件工作甲单独做用30天完成,乙单独做用10天完成,丙单独做用15天完成,现甲、丙先做2天后,甲离去丙单独做7天后,乙又参加进来,问还需要几天才能完成?1.一项工程甲队单独做10天完成,乙队单独做12天完成,丙队单独做15天完成,现三队合作若干天后,甲调出做其它工作,剩余工作由乙、丙两队在用5天完成,问这项工程甲队工作了多少天?2.一项工作甲独做需9天完成,乙独做需12天完成,丙独做需15天完成,若甲、丙先做3天后,甲因故离开,由乙接替甲工作,求完成这项工作乙的工作时间。
专题07 一元一次方程的应用(12大考点) 专题讲练一元一次方程的应用题属于人教版七年级上期期末必考题,需要完全掌握各个类型的应用题,该专题将应用题分为分段计费、行程问题、工程问题、方案优化选择、商品销售问题、比赛积分问题、日历问题(数字问题)、配套问题、调配问题、和差倍分问题(比例问题)、几何图形问题、动态问题等共进行方法总结与经典题型进行分类。
1、知识储备2、经典基础题考点1. 分段计费问题考点2. 行程问题考点3. 工程问题考点4. 方案优化问题考点5. 商品销售问题考点6. 比赛积分问题考点7. 配套问题考点8. 调配问题考点9. 数字与日历问题考点10.和、差、倍、分(比例)问题考点11. 几何问题(等积问题)考点12. 动态问题3、优选提升题1.用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题¾¾¾®分析抽象方程¾¾¾®求解检验解答.由此可得解决此类题的一般步骤为:审、设、列、解、检验、答. 2 .建立书写模型常见的数量关系1)公式形数量关系:生活中许多数学应用情景涉及如周长、面积、体积等公式。
在解决这类问题时,必须通过情景中的信息,准确联想有关的公式,利用有关公式直接建立等式方程。
长方形面积=长×宽长方形周长=2(长+宽) 正方形面积=边长×边长正方形周长=4边长2)约定型数量关系:利息问题,利润问题,质量分数问题,比例尺问题等涉及的数量关系,像数学中的公式,但常常又不算数学公式。
我们称这类关系为约定型数量关系。
3)基本数量关系:在简单应用情景中,与其他数量关系没有什么差别,但在较复杂的应用情景中,应用方法就不同了。
我么把这类数量关系称为基本数量关系。
单价×数量=总价速度×时间=路程工作效率×时间=总工作量等。
3.分析数量关系的常用方法1)直译法分析数量关系:将题中关键性的数量关系的语句译成含有未知数的代数式,并找出没有公国的等量关系,翻译成含有未知数的等式。
一元一次方程方程应用题总结归类列方程解应用题,是初中数学的重要内容之一;许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;下面老师就从以下几个方面分门别类的对常见的数学问题加以阐述,希望对同学们有所帮助.一行程问题:基本量、基本数量关系:路程=速度×时间,顺水速=静水速+水速,逆水速=静水速-水速,寻找相等关系的方法:抓住两码头之间的距离不变,水流速度,船在静水中的速度不变的特点来考虑;1相向问题,寻找相等关系的方法:甲走的路程+乙走的路程=两地距离2追击问题:寻找相等关系的方法:第一,同地不同时出发:前者走的路程=追者走的路程;第二,同时不同地出发:前者走的路程+两地距离=追者所走的路程3航行问题:4飞行问题:1、火车提速后由天津到上海的时间缩短了,若天津到上海的路程为1326km,提速前火车的平均速度为xkm/h,提速后火车的平均速度为ykm/h,x、y应满足的关系式为:2、甲、乙骑自行车同时从相距65千米的两地相向而行,2小时相遇.甲比乙每小时多骑千米,求乙的时速各是多少3、一列客车长200米,一列货车长280米,在平行的轨道上相向行驶,从相遇到车尾离开经过18秒,客车与货车的速度比是5∶3,问两车每秒各行驶多少米4、一架飞机在两城之间飞行,风速为24千米 /小时 ,顺风飞行需2小时50分,逆风飞行需要3小时;1求无风时飞机的飞行速度2求两城之间的距离;5、一条环行跑道长400米,甲每分钟行550米,乙每分钟行250米.1甲、乙两人同时同地反向出发,问多少分钟后他们再相遇2甲、乙两人同时同地同向出发,问多少分钟后他们再相遇6、甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里;1慢车先开出1小时,快车再开;两车相向而行;问快车开出多少小时后两车相遇2两车同时开出,相背而行多少小时后两车相距600公里3两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里4两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车5慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车1、一列火车长150米,每秒钟行19米;全车通过长800米的大桥,需要多少时间2、一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从车头进入隧道到车尾离开隧道共需要多少秒3、一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟;求这列火车的速度是每秒多少米车长多少米4、一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒.这列火车的速度和车身长各是多少5、一列火车长119米,它以每秒15米的速度行驶,小华以每秒2米的速度从对面走来,经过几秒钟后火车从小华身边通过6、一列火车长700米,以每分钟400米的速度通过一座长900米的大桥.从车上桥到车尾离要多少分钟7、一座铁路桥全长1200米,一列火车开过大桥需花费75秒;火车开过路旁电杆,只要花费15秒,那么火车全长是多少米8、铁路沿线的电杆间隔是40米,某旅客在运行的火车中,从看到第一根电线杆到看到第51根电线杆正好是2分钟,火车每小时行多少千米9、已知快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向而行,当快车车尾接慢车车头时,称快车穿过慢车,则快车穿过慢车的时间是多少秒10、两列火车,一列长120米,每秒行20米;另一列长160米,每秒行15米,两车相向而行,从车头相遇到车尾离开需要几秒钟11、马路上有一辆车身为15米的公共汽车,由东向西行驶,车速为每小时18千米,马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑.某一时刻,汽车追上甲,6秒钟后汽车离开了甲;半分钟之后汽车遇到迎面跑来的乙;又过了2秒钟,汽车离开了乙.问再过多少秒后,甲、乙两人相遇12、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米;两车在距中点32千米处相遇;东西两地相距多少千米13、小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米14、一辆汽车和一辆摩托车同时从甲乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米;当摩托车行到两地中点处,与汽车相距75千米;甲乙两地相距多少千米15、小轿车每小时行60千米,比客车每小时多行5千米,两车同时从甲乙两地相向而行,在距中点20千米处相遇,求甲乙两地之间的路程;16、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地17、学校运来一批树苗,五1班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵;如果这批树苗平均分给五1班的同学去植,平均每人植多少棵18、甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米;中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙;求东西两村相距多少千米19、甲乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米;甲到达B地后立即返回A地,在离B地千米处相遇;A、B两地之间相距多少千米20、小平和小红同时从学校出发步行去小平家,小平每分钟比小红多走20米;30分钟后小平到家,到家后立即沿原路返回,在离家350米处遇到小红;小红每分钟走多少米21、甲乙二人上午7时同时从A地去B地,甲每小时比乙快8千米;上午11时到达B地后立即返回,在距离B地24千米处相遇;求A、B两地相距多少千米22、甲乙两队学生从相距18千米的两地同时出发,相向而行;一个同学骑自行车以每小时14千米的速度,在两队之间不停地往返联络;甲队每小时行5千米,乙队每小时行4千米;两队相遇时,骑自行车的同学共行多少千米23、长100米的列车,以每秒20米的速度通过了一条座长500米的桥;列车通过这座桥要用多少秒24、一列货车要通过一条1800米长的大桥;已知从货车车头上桥到车尾离开桥共用120秒,货车完全在桥上的时间为80秒,这列货车长多少米25、两码头相距360千米,一艘汽艇顺水航行完全程要9小时,逆水航行完全程要12小时;这艘船在静水中的速度是多少千米这条河水流速度是多少千米26、甲、乙两个码头相距336千米;一艘船从乙码头逆水而上,行了14小时到达甲码头;已知船速是水速的13倍,这艘船从甲码头返回乙码头需要多少小时27、在400米的环形跑道上,甲乙两人同时起跑,如果同向跑3分20秒相遇,如果背向跑25秒相遇,已知甲比乙跑得快,求甲乙两人的速度各是多少28、一列客车车身上190米,每秒运行24米;在这列客车前面有一列长230米的货车,每秒运行18米,两列车在并行的两条轨道上运行;客车从后面追上并完全超过货车要用多少秒29、甲乙两人去同一地点办事,甲每小时走5千米,乙每小时走6千米,甲有急事先出发1小时后,乙才出发,经过几小时后能追上甲二工程问题:基本量、基本数量关系:把总工作量看作单位“1”工作量=工作效率×工作时间;相等关系:各部分工作量之和等于11.一件工程,甲独做10天完工,乙独做15天完工,二人合做几天完工2.一批零件,王师傅单独做要15小时完成,李师傅单独做要20小时完成,两人合做,几小时能加工完这批零件的错误!3.4.一项工作,甲单独做要10天完成,乙单独做要15天完成;甲、乙合做几天可以完成这项工作的80%5.一项工程,甲独做要12天完成,乙独做要18天完成,二人合做多少天可以完成这件工程的2/36.一项工程,甲独做要18天,乙独做要15天,二人合做6天后,其余的由乙独做,还要几天做完7.修一条路,甲单独修需16天,乙单独修需24天,如果乙先修了9天,然后甲、乙二人合修,还要几天8.一项工程,甲单独做16天可以完成,乙单独做12天可以完成;现在由乙先做3天,剩下的由甲来做,还需要多少天能完成这项工程9.一项工程,甲独做要12天,乙独做要16天,丙独做要20天,如果甲先做了3天,丙又做了5天,其余的由乙去做,还要几天10. 一批货物,由大、小卡车同时运送,6小时可运完,如果用大卡车单独运,10小时可运完;用小卡车单独运,要几小时运完11. 小王和小张同时打一份稿件,5小时打了这份这稿件的65;如果由小王单独打,10小时可以打完;求如果由小张单独打,几小时可以打完;12. 一项工程,甲队独做15天完成,乙队独做12天完成;现在甲、乙合作4天后,剩下的工程由丙队8天完成;如果这项工程由丙队独做,需几天完成13. 甲和乙两队合修一条公路,完成任务时,甲队修了这条公路的158;如果乙队单独完成要24天,甲队单独做几天完成14. 一项工程,甲独做要10天,乙独做要15天,丙独做要20天;三人合做期间,甲因病请假,工程6天完工,问甲请了几天病假15. 一袋米,甲、乙、丙三人一起吃,8天吃完,甲一人24天吃完,乙一人36天吃完,问丙一人几天吃完16. 一条公路长1500米,单独修好甲要15天,乙要10天,两队合修需几天才能完成浙江江山市17. 师徒共同完成一件工作,徒弟独做20天完成,比师傅多用4天完成,如果师徒合作需几天完成18. 一项工程,由甲工程队修建,需要20天完成;由乙工程队修建,需要的天数是甲工程队的倍才能完成;两队合修共需要多少天完成19.20. 一件工作,甲单独完成需要8天,乙的工作效率是甲的2倍,两人同时合作,几天能完成这件工作21. 一项工程,甲队独做要20天完成,乙队独做要5天能完成全工程的61;现由两队合做,多少天可以完成22.23.24. 修一条水渠,甲队3天可以修全长的101,乙队单独修20天可以修完,如果两队合修,多少天可以修完25.26.27. 一件工作,甲队独做每天能完成这件工作的201,乙队单独完成这件工作需要12天,如果两面三刀队合作完成这件工作的201,需要多少天 28.29. 一件工作,甲单独做需要12天,乙的工作效率是甲的43,两个合做,几天能完成这件工作的54 30. 31. 一套家具,由一个老工人做40天完成,由一个徒工做80天完成;现由2个老工人和4个徒工同时合做,几天可以完成32. 一个水池上有两个进水管,单开甲管,10小时可把空池注满,单开乙管,15小时可把空池注满;现先开甲管,2小时后把乙管也打开,再过几小时池内蓄有3/4的水33.原是空池34.25、一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程26、要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工4小时,完成了任务.已知甲每小时比乙多加工2个零件,求甲、乙每小时各加工多少个零件.三.分配问题:这类问题要搞清人数的变化,常见题型有:1既有调入又有调出;2只有调入没有调出,调入部分变化,其余不变;3只有调出没有调入,调出部分变化,其余不变;1、机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套2、、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母3、、在甲处劳动的有27人,在乙处劳动的有19人.现在另调20人去支援,使在甲处的人数为在乙处的人数的2倍,应调往甲、乙两处各多少人4、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1 200个或螺母2 000个,一个螺钉要配两个螺母.为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母某水利工地派 48 人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走5、某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数6、某牛奶加工厂有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获利500元,制成酸奶销售,每吨可获利1200元,制成奶片销售,每吨可获利2000元;该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片每天可加工1吨,受人员限制,两种加工方式不可同时进行,受气温限制,这批牛奶必须在4天内全部销售或加工完毕,为此,该厂设计出了两种可行方案:方案一:尽可能多的制成奶片,其余的直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成; 你认为那种方式获利最多为什么四、浓度问题以盐水为例,像盐这样能溶于水或其他液体中的纯净物质叫做溶质;像水这样能溶解物质的纯净液体叫做溶剂;溶质与溶剂的混合物叫做溶液,溶质在溶液中所占的百分比叫做浓度,又叫做百分比浓度;浓度问题常见的数量关系式有:溶液的重量=溶质的重量+溶剂的重量浓度=溶质重量÷溶液重量×100%溶液的重量=溶质重量÷浓度溶质重量=溶液重量×浓度1、含盐6%的盐水900克,要使其含盐量加大到10%,需要加盐多少克2、把浓度为25%的盐水30千克,加水冲淡为15%的盐水,问需要加水多少千克3、有浓度为%的盐水210克,为了制成浓度为%的盐水,从中要蒸发掉多少克水4、5、一瓶100克的酒精溶液加入80克水后,稀释成浓度为40%的新溶液,原溶液的浓度是多少5、甲、乙两种酒精浓度分别为70%和55%,现在要配制浓度为65%的酒精3000克,应当从这两种酒精中各取多少克6、一杯纯牛奶,喝去25%再加满水,又喝去25%,再加满水后,牛奶的浓度是多少7、三个容积相同的瓶子里装满了酒精溶液,酒精与水的比分别为2:1,3:1,4:1,当把三种酒精溶液混合后,酒精与水的比是多少1:甲、乙、丙三人到银行存款,甲存入的款数比乙多错误!,乙存入的款数比丙多错误!,问甲存入的款数比丙多几分之几2:小明从甲地到乙地需要2天,第一天走了全程地错误!多72千米,第二天所走的路程等于第一天所走路程地错误!,求甲乙两地的距离;3:兄弟四人合修一条路,结果老大修了另外三人的一半,老二修了另外三人的错误!,老三修了另外三人总数的错误!,老四修了91米,问:这条路长多少米4:一本书,已经看了130页,剩下的准备8天看完,如果每天看的页数相等,3天看的页数恰好为全书的错误!,这本书共有多少页5:书店售一种挂历,每售出一种棵获利18元,售出一部分后每本降价10元出售,全部售完已知减价出售的本数是原价出售挂历本数的错误!,书店售完这种挂历共获利2870元,问:书店共售出这种挂历多少本6:甲乙两个水杯,甲杯有水1千克,乙杯是空的,第一次将甲杯水的错误!倒入乙杯,第二次将乙杯水的水的错误!倒回甲杯里,第三次将甲杯里的水的错误!倒回乙杯里,第四次将乙杯里水的错误!倒回甲杯,照这样来回倒下去,一直倒了1999次以后,甲杯里还剩下水多少克7:哥哥有250张邮票,弟弟有200张邮票,哥哥的邮票比弟弟的邮票多几分之几弟弟邮票比哥哥少几分之几2.一瓶容器盛满药液10升,第一次倒出若干升,用水加满,第二次倒出同样的升数,这时容器剩下药液升那么第一次倒出升数多少;五、利息问题⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率;利息的20%付利息税⑵利息=本金×利率×期数本息和=本金+利息利息税=利息×税率20%1、某同学把250元钱存入银行,整存整取,存期为半年;半年后共得本息和元,求银行半年期的年利率是多少不计利息税2.李叔叔于2000年1月1日在银行存了活期储蓄1000元,如果每月的利率是%,存款三个月时,可得到利息多少元本金和利息一共多少元3、叔叔今年存入银行10万元,定期二年,年利率% ,二年后到期,扣除利息税5% ,得到的利息能买一台6000元的电脑吗4、小华妈妈是一名光荣的中国共产党员,按党章规定,工资收入在400-600元的,每月党费应缴纳工资总额的%,在600-800元的应缴纳1%,在800-1000元的,应缴纳%,在1000以上的应缴纳2%,小华妈妈的工资为2400元,她这一年应缴纳党费多少元5、银行定期壹年存款的年利率为%,某人存入一年后本息元,问存入银行的本金是多少元六. 利润问题1销售问题中常出现的量有:进价、售价、标价、利润等2有关关系式:商品利润=商品售价—商品进价=商品标价×折扣率—商品进价商品利润率=商品利润/商品进价商品售价=商品标价×折扣率1、一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少2、某商品的进价是500元,标价是750元,商店要求以利润低于5%的售价打折出售,售货员最低可以打折出售此商品3、某书店出售一种优惠卡,花100元买这种卡后,可打6折,不买卡可打8折,你怎样选择购物方式;4、某种商品的零售价为每件900元,为了适应市场竟争,商店按零售价的九折降价并让利40元销售,仍可获利10%;则进价为每件多少元5、东方商场把进价为1890元的某商品按标价的8折出售,仍获利10%,则该商品的标价为多少6、某种商品的进价是1000元,售价为1500元, 由于销售情况不好,商店决定降价出售,但又要保证利润不低于5%,那么商店最多降多少元出售此商品;7、某商品的进价是150元,售价是180元;求此商品的利润率8、商店对某种商品作调价,按原价的八五折出售,此时商品的利润率是9%, 此商品的进价为500元;求商品的原价9、某商品的进价为200元,标价为300元,折价销售时的利润率为5%,此商品是按几折销售的10、某商品标价是1955元,按此标价的九折出售,利润率为15%;求此商品的进价是多少七、数字问题1要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9则这个三位数表示为:100a+10b+c;2数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2N表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示;1、一个两位数,十位上的数字比个位上的数字大1,十位与个位上的数字和是这个两位数的1/6,这两个数是多少2、一个两位数字之和为11,如果原数加45,得的数恰是原两位数字交换后的两位数,求原来这个两位数;3、一个两位数,十位上的数字比个位上的数字的2倍大3,把这两位数的位置对调后组成的两位数比原数小45,求原来这个两位数;4、一个三位数,基个位上的数字相加之和为9,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字小1,求这个三位数;5、三个连续自然数,它们的和为108,求这三个数;6、有一个两位数,十位上的数字比个位上的数字大2,若把这个两位数的十位与个位对调,所得的两位数比原数小18,求原来的两位数;7、一个两位数,十位数字比个位数字少3,两个数字之和等于这两位数的1/4;求这个两位数;8、一个三位数,三个数位上的数字和是15,百位上的数比十位上的数多5,个位上的数字是十位上的数字的3倍,求这个三位数;9、一个两位数的个位与十位数字的和为15,如果把十位数字与个位数字对调,则所得新数比原数小27,则原来的两位数是多少10、已知三个连续奇数的和比它们相间的两个偶数的和多15,求这三个连续奇数;11、一个三位数,三个数位上的数字和为13,百位上的数字比十位上的数少3,个位上的数字是十位上的数字的2倍,求这三位数;12、有一个两位数,十位上的数比个位上的数大2,若把这个两位数的十位与个位对调所得的两位数比原数小18,求原来的两位数;13、三个连续偶数的和比其中最小的一个大14,求这三个连续偶数的积;14、一个两位数,十位上的数比个位上的数小1,十位与个位上的数的和是这个两位数的1/5,求这个两位数;15、甲、乙、丙三辆汽车所运货物的吨数比是6:5:4,已知三辆汽车共运货物120吨,求这三丙汽车各运多少吨货物16、甲、乙、丙三个粮仓共存粮80吨,已知甲、乙两仓存粮数之比是1:2;乙、丙两仓存粮数这比是1:,求甲、乙、丙三仓各存粮多少吨17、甲、乙、丙三村集资140万元办学,经协商甲、乙、丙三村的投资额度比例是5:2:3,问他们各应提交多少元18、三个连续整数之和是81,这三个整数分别是:_______ 、_______、_______连续三个偶数之和是276,这三个数分别是:_______、_______、_______ 三个数之比是5:6:7,他们的和是198,则这三个数分别是:_______、_______、_______19、已知三个连续奇数的和比它们相间的两个偶数的和多15,求这三个连续奇数;20、一个两位数,个位数字比十位数字的2倍大3,如果把个位数字与十位数字对调,则所得两位数比原两位数大45;求这个两位数;21、甲、乙、丙三辆汽车所运货物的吨数是6:5:4,已知三辆汽车共运货物120吨,求这三辆汽车各运货物多少吨22、要拌制一种建筑用的沙桨,生石灰、水泥、黄沙的质量比为2:1:4,现在要拌制这种沙桨1400千克,需生石灰、水泥、黄沙各多少23、一个两位数,十位数字比个位数字少3,两个数字之和等于这个两位数的1/4,求这个两位数;24、有一个三位数,其各数位的数字之和是16,十位数字是个位数字与百位数字的和,若把百位数字与个位数字对调,那么新数比原数大594,求原数;25、一个四位数,千位数字是1,若把1移到个位上去,则所得的新四位数字是原来的5倍少14,求这个四位数;26、一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数27、一个两位数,十位上的数与个位上的数字之和为11,如果十位上的数字与个位上的数字对调,则所得的新数比原来大63,求原来两位数;八、和倍问题:基本相等关系:增长量=原有量×增长率,现有量=原有量+增长量或现有量=原有量-降低量寻找相等关系的方法:抓住关键性词语:共、多、少、倍、几分之几以及原有量、先有量之间的关系推导出相等关系;1、根据2001年3月28日新华社公布的第五次人口普查统计数据,截止到2000年11月1日0时,全国每10万人中具有小学文化程度的人口为35701人,比1990年7月1日减少了%,1990年6月底每10万人中约有多少人具有小学文化程度2、某商场甲、乙两个柜组十二月份营业额共64万元;一月份甲增长了20%,。
一元一次方程知识点总结归纳45444于包含关系,方程是等式的一种特殊形式。
方程中含有未知数,需要通过解方程来求得未知数的值,使得方程成立。
解方程的过程就是求出未知数的值,使得方程两边相等。
解方程的方法有很多种,包括平移法、消元法、代入法等。
在解方程的过程中,需要注意等式的性质,如等式两边同时加减同一个数、同时乘除同一个数等。
同时也需要注意方程的根的范围,有时候方程可能没有实数根,只有复数根。
总之,掌握好方程的基本概念和解方程的方法,是数学研究中的重要基础,也是实际问题中解决未知数的值的关键。
等式不一定含有未知数,但是一定有不可逆性的关系。
一元一次方程的解是使方程中等号左右两边相等的未知数,这个未知数所代表的具体数值就是方程的解。
解方程是求解方程的解的过程,可以通过变形来实现。
要检验一个数是否是方程的解,只需要将这个数代入方程中,如果等式两边的值相等,那么这个数就是方程的解。
一个方程可能有无解、一个解或多个解。
等式的基本性质是解方程的依据,解方程是得到方程解的过程。
在应用题中,寻找等量关系是解题的关键,可以通过关键词、不同角度的表示、基本公式和不变量等方法来确定等量关系。
解一元一次方程可以通过将方程的解代入方程,得到关于待定字母的方程来实现。
一元一次方程是只含有一个未知数,未知数次数为1,等号两边都是整式的方程。
其标准形式为ax+b=0(a、b为已知数,a≠0)。
要夯实基础,需要掌握一元一次方程的定义、标准形式和解法等基本知识。
二.移项移项是解一元一次方程的基本方法之一,其定义为把等式一边的某项变号后移到另一边。
例如,解方程3x-2=2x+5时,我们可以在方程的两边先加2,再减去2x,得到3x-2+2-2x=2x+5+2-2x,即变形为x=7.在移项的过程中,我们需要注意以下几点:①移项的原理就是等式的性质1.②移项所移动的是方程中的项,并且是从方程的一边移到另一边,而不是方程的一边交换两个项的位置。
()平均数问题:平均数是等分除法地发展.解题关键:在于确定总数量和与之相对应地总份数.算术平均数:已知几个不相等地同类量和与之相对应地份数,求平均每份是多少.数量关系式:数量之和÷数量地个数算术平均数.加权平均数:已知两个以上若干份地平均数,求总平均数是多少.数量关系式(部分平均数×权数)地总和÷(权数地和)加权平均数.差额平均数:是把各个大于或小于标准数地部分之和被总份数均分,求地是标准数与各数相差之和地平均数.数量关系式:(大数-小数)÷小数应得数最大数与各数之差地和÷总份数最大数应给数最大数与个数之差地和÷总份数最小数应得数.例:一辆汽车以每小时千米地速度从甲地开往乙地,又以每小时千米地速度从乙地开往甲地.求这辆车地平均速度. 文档收集自网络,仅用于个人学习分析:求汽车地平均速度同样可以利用公式.此题可以把甲地到乙地地路程设为“ ”,则汽车行驶地总路程为“ ”,从甲地到乙地地速度为,所用地时间为,汽车从乙地到甲地速度为千米,所用地时间是,汽车共行地时间为,汽车地平均速度为÷(千米)文档收集自网络,仅用于个人学习()归一问题已知相互关联地两个量,其中一种量改变,另一种量也随之而改变,其变化地规律是相同地,这种问题称之为归一问题. 文档收集自网络,仅用于个人学习根据求“单一量”地步骤地多少,归一问题可以分为一次归一问题,两次归一问题.根据求单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题.一次归一问题,用一步运算就能求出“单一量”地归一问题.又称“单归一.”两次归一问题,用两步运算就能求出“单一量”地归一问题.又称“双归一.”正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果地归一问题. 反归一问题:用等分除法求出“单一量”之后,再用除法计算结果地归一问题. 解题关键:从已知地一组对应量中用等分除法求出一份地数量(单一量),然后以它为标准,根据题目地要求算出结果.文档收集自网络,仅用于个人学习数量关系式:单一量×份数总数量(正归一)总数量÷单一量份数(反归一)例一个织布工人,在七月份织布米,照这样计算,织布米,需要多少天?分析:必须先求出平均每天织布多少米,就是单一量. ÷(÷)(天)()归总问题:是已知单位数量和计量单位数量地个数,以及不同地单位数量(或单位数量地个数),通过求总数量求得单位数量地个数(或单位数量). 文档收集自网络,仅用于个人学习特点:两种相关联地量,其中一种量变化,另一种量也跟着变化,不过变化地规律相反,和反比例算法彼此相通.数量关系式:单位数量×单位个数÷另一个单位数量另一个单位数量单位数量×单位个数÷另一个单位数量另一个单位数量.例修一条水渠,原计划每天修米,天修完.实际天修完,每天修了多少米?分析:因为要求出每天修地长度,就必须先求出水渠地长度.所以也把这类应用题叫做“归总问题”.不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量. ×÷(米)文档收集自网络,仅用于个人学习()和差问题:已知大小两个数地和,以及他们地差,求这两个数各是多少地应用题叫做和差问题.解题关键:是把大小两个数地和转化成两个大数地和(或两个小数地和),然后再求另一个数.解题规律:(和+差)÷大数大数-差小数(和-差)÷小数和-小数大数例某加工厂甲班和乙班共有工人人,因工作需要临时从乙班调人到甲班工作,这时乙班比甲班人数少人,求原来甲班和乙班各有多少人?文档收集自网络,仅用于个人学习分析:从乙班调人到甲班,对于总数没有变化,现在把乙数转化成个乙班,即-,由此得到现在地乙班是(-)÷(人),乙班在调出人之前应该为(人),甲班为-(人)文档收集自网络,仅用于个人学习()和倍问题:已知两个数地和及它们之间地倍数关系,求两个数各是多少地应用题,叫做和倍问题.解题关键:找准标准数(即倍数)一般说来,题中说是“谁”地几倍,把谁就确定为标准数.求出倍数和之后,再求出标准地数量是多少.根据另一个数(也可能是几个数)与标准数地倍数关系,再去求另一个数(或几个数)地数量. 文档收集自网络,仅用于个人学习解题规律:和÷倍数和标准数标准数×倍数另一个数例:汽车运输场有大小货车辆,大货车比小货车地倍多辆,运输场有大货车和小汽车各有多少辆?文档收集自网络,仅用于个人学习分析:大货车比小货车地倍还多辆,这辆也在总数辆内,为了使总数与()倍对应,总车辆数应()辆. 文档收集自网络,仅用于个人学习列式为()÷()(辆),×(辆)()差倍问题:已知两个数地差,及两个数地倍数关系,求两个数各是多少地应用题.解题规律:两个数地差÷(倍数-)标准数标准数×倍数另一个数.例甲乙两根绳子,甲绳长米,乙绳长米,两根绳剪去同样地长度,结果甲所剩地长度是乙绳长地倍,甲乙两绳所剩长度各多少米?各减去多少米?文档收集自网络,仅用于个人学习分析:两根绳子剪去相同地一段,长度差没变,甲绳所剩地长度是乙绳地倍,实比乙绳多()倍,以乙绳地长度为标准数.列式()÷()(米)…乙绳剩下地长度,×(米)…甲绳剩下地长度,(米)…剪去地长度. 文档收集自网络,仅用于个人学习()行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题.解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间地关系,再根据这类问题地规律解答. 文档收集自网络,仅用于个人学习解题关键及规律:同时同地相背而行:路程速度和×时间.同时相向而行:相遇时间速度和×时间同时同向而行(速度慢地在前,快地在后):追及时间路程速度差.同时同地同向而行(速度慢地在后,快地在前):路程速度差×时间.例甲在乙地后面千米,两人同时同向而行,甲每小时行千米,乙每小时行千米,甲几小时追上乙?文档收集自网络,仅用于个人学习分析:甲每小时比乙多行()千米,也就是甲每小时可以追近乙()千米,这是速度差.已知甲在乙地后面千米(追击路程),千米里包含着几个()千米,也就是追击所需要地时间.列式÷()(小时)文档收集自网络,仅用于个人学习()流水问题:一般是研究船在“流水”中航行地问题.它是行程问题中比较特殊地一种类型,它也是一种和差问题.它地特点主要是考虑水速在逆行和顺行中地不同作用. 文档收集自网络,仅用于个人学习船速:船在静水中航行地速度.水速:水流动地速度.顺水速度:船顺流航行地速度.逆水速度:船逆流航行地速度.顺速船速+水速逆速船速-水速解题关键:因为顺流速度是船速与水速地和,逆流速度是船速与水速地差,所以流水问题当作和差问题解答. 解题时要以水流为线索. 文档收集自网络,仅用于个人学习解题规律:船行速度(顺水速度逆流速度)÷流水速度(顺流速度逆流速度)÷路程顺流速度×顺流航行所需时间路程逆流速度×逆流航行所需时间例一只轮船从甲地开往乙地顺水而行,每小时行千米,到乙地后,又逆水航行,回到甲地.逆水比顺水多行小时,已知水速每小时千米.求甲乙两地相距多少千米?文档收集自网络,仅用于个人学习分析:此题必须先知道顺水地速度和顺水所需要地时间,或者逆水速度和逆水地时间.已知顺水速度和水流速度,因此不难算出逆水地速度,但顺水所用地时间,逆水所用地时间不知道,只知道顺水比逆水少用小时,抓住这一点,就可以就能算出顺水从甲地到乙地地所用地时间,这样就能算出甲乙两地地路程.列式为×(千米)×(千米)÷(×)(小时)×(千米). 文档收集自网络,仅用于个人学习()还原问题:已知某未知数,经过一定地四则运算后所得地结果,求这个未知数地应用题,我们叫做还原问题. 文档收集自网络,仅用于个人学习解题关键:要弄清每一步变化与未知数地关系.解题规律:从最后结果出发,采用与原题中相反地运算(逆运算)方法,逐步推导出原数.根据原题地运算顺序列出数量关系,然后采用逆运算地方法计算推导出原数.解答还原问题时注意观察运算地顺序.若需要先算加减法,后算乘除法时别忘记写括号.例某小学三年级四个班共有学生人,如果四班调人到三班,三班调人到二班,二班调人到一班,一班调人到四班,则四个班地人数相等,四个班原有学生多少人?文档收集自网络,仅用于个人学习分析:当四个班人数相等时,应为÷,以四班为例,它调给三班人,又从一班调入人,所以四班原有地人数减去再加上等于平均数.四班原有人数列式为÷(人)文档收集自网络,仅用于个人学习一班原有人数列式为÷(人);二班原有人数列式为÷(人)三班原有人数列式为÷(人). 文档收集自网络,仅用于个人学习()植树问题:这类应用题是以“植树”为内容.凡是研究总路程、株距、段数、棵树四种数量关系地应用题,叫做植树问题. 文档收集自网络,仅用于个人学习解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算. 文档收集自网络,仅用于个人学习解题规律:沿线段植树棵树段数棵树总路程÷株距株距总路程÷(棵树)总路程株距×(棵树)沿周长植树棵树总路程÷株距株距总路程÷棵树总路程株距×棵树例沿公路一旁埋电线杆根,每相邻地两根地间距是米.后来全部改装,只埋了根.求改装后每相邻两根地间距. 文档收集自网络,仅用于个人学习分析:本题是沿线段埋电线杆,要把电线杆地根数减掉一.列式为×()÷()(米)文档收集自网络,仅用于个人学习()盈亏问题:是在等分除法地基础上发展起来地. 他地特点是把一定数量地物品,平均分配给一定数量地人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足地数量,求物品适量和参加分配人数地问题,叫做盈亏问题. 文档收集自网络,仅用于个人学习解题关键:盈亏问题地解法要点是先求两次分配中分配者没份所得物品数量地差,再求两次分配中各次共分物品地差(也称总差额),用前一个差去除后一个差,就得到分配者地数,进而再求得物品数. 文档收集自网络,仅用于个人学习解题规律:总差额÷每人差额人数总差额地求法可以分为以下四种情况:第一次多余,第二次不足,总差额多余不足第一次正好,第二次多余或不足,总差额多余或不足第一次多余,第二次也多余,总差额大多余小多余第一次不足,第二次也不足,总差额大不足小不足例参加美术小组地同学,每个人分地相同地支数地色笔,如果小组人,则多支,如果小组有人,色笔多余支.求每人分得几支?共有多少支色铅笔?文档收集自网络,仅用于个人学习分析:每个同学分到地色笔相等.这个活动小组有人,比人多人,而色笔多出了()支,个人多出支,一个人分得支.列式为()÷()(支)×(支). 文档收集自网络,仅用于个人学习()年龄问题:将差为一定值地两个数作为题中地一个条件,这种应用题被称为“年龄问题”.解题关键:年龄问题与和差、和倍、差倍问题类似,主要特点是随着时间地变化,年岁不断增长,但大小两个不同年龄地差是不会改变地,因此,年龄问题是一种“差不变”地问题,解题时,要善于利用差不变地特点. 文档收集自网络,仅用于个人学习例父亲岁,儿子岁.问几年前父亲地年龄是儿子地倍?分析:父子地年龄差为(岁).由于几年前父亲年龄是儿子地倍,可知父子年龄地倍数差是()倍.这样可以算出几年前父子地年龄,从而可以求出几年前父亲地年龄是儿子地倍.列式为:()÷()(年)文档收集自网络,仅用于个人学习()鸡兔问题:已知“鸡兔”地总头数和总腿数.求“鸡”和“兔”各多少只地一类应用题.通常称为“鸡兔问题”又称鸡兔同笼问题文档收集自网络,仅用于个人学习解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现地腿数差,可推算出某一种地头数. 文档收集自网络,仅用于个人学习解题规律:(总腿数-鸡腿数×总头数)÷一只鸡兔腿数地差兔子只数兔子只数(总腿数×总头数)÷如果假设全是兔子,可以有下面地式子:鸡地只数(×总头数总腿数)÷兔地头数总头数鸡地只数例鸡兔同笼共个头,条腿.问鸡兔各有多少只?兔子只数(×)÷(只)鸡地只数(只)。
方程含有未知数的等式叫做方程.只含有一个未知数(元),含未知数的项的次数是1,等号两边都是整式的方程叫做一元一次方程.方程ax+b=0(其中x是未知数,a,b是已知数,并且a≠0)叫做一元一次方程的标准形式.使方程左、右两边相等的未知数的值,叫做方程的解(只含有一个未知数的方程的解,也叫方程的根).求方程的解的过程,叫做解方程.用等号“=”来表示相等数量关系的式子叫做等式.像m+n=n+m,x+2x=3x,3×3+1=5×2,3x+1=5y这等式样的式子,都是等式.我们可以用a =b 表示一般的等式.①如果a =b ,那么a ±c =b ±c ; ②如果a =b ,那么ac =bc ; 如果a =b ,那么ac =bc (c ≠0). 拓展:等式还具有下列性质 (1)对称性:如果a =b ,那么b =a .(2)传递性:如果a =b ,且b =c ,那么a =c ,这一性质也叫做等量代换.方程中的任何一项都可以改变符号后从方程的一边移到另一边的变形叫做移项.这个法则叫做移项法则,移项的根据是等式的性质.变形 名称具体 做法变形 依据注意 事项去分母在方程的两边同乘各分母的最小公倍数等式的性质(1)不要漏乘不含分母的项;(2)若分子是一个多项式,需加上括号变形名称具体做法变形依据注意事项去括号先去小括号,再去中括号,最后去大括号去括号法则、分配律(1)不要漏乘括号里的项;(2)不要弄错符号移项把含有未知数的项移到方程的一边,其他各项都移到方程的另一边(记住移项要变号)等式的性质(1)移项要变号;(2)不要丢项合并同类项把方程化为ax=b(a≠0)的形式合并同类项法则(1)未知数及其指数不变,系数相加;(2)不要漏项系数化为1 在方程的两边都除以未知数的系数a,得到方程的解x=ba等式的性质切忌分子、分母位置颠倒这一过程一般包括审、设、列、解、检、答等步骤.提示:列方程解应用题的注意事项 步骤注意事项设未知数 (1)设未知数,一般是问什么就直接设什么; (2)若直接设未知数有难度,可间接设未知数;(3)设未知数时,必须写清楚未知数的单位名称,如“设火车的速度是x”是不正确的,应是“设火车的速度是x 千米/时”s 列方程(1)列方程的等量关系是否正确; (2)方程两边的量所用单位是否统一解答 求得方程的解必须检验,看是否符合题意,是否使实际问题有意义基本量、基本数量关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.(1)基本量、基本数量关系:大小两个年龄差不会变. (2)寻找相等关系的方法:一年一岁、人人如此.(1)基本量、基本数量关系:常见几何图形的体积公式.(2)寻找相等关系的方法:变形前后体积相等.(1)相向问题寻找相等关系的方法:甲走的路程+乙走的路程=两地距离.(2)追及问题寻找相等关系的方法有两种情况:第一,同地不同时出发:前者走的路程=追者走的路程;第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.(3)航行问题①基本量、基本数量关系:路程=速度×时间,顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度.②寻找相等关系的方法:抓住两码头之间距离不变、水流速度不变、船在静水中的速度不变的特点来考虑.寻找相等关系的方法:抓住劳动力调配后,从甲处人数与乙处人数间的关系去考虑.(1)基本量、基本数量关系:把总工作量看作单位“1”,工作量=工作效率×工作时间.(2)相等关系:各部分工作量之和等于1.(1)基本量、基本数量关系:商品利润=商品售价-商品进价,商品利润率=商品利润商品进价×100%.(2)寻找相等关系的方法:抓住价格升降对利润率的影响来考虑.(1)基本量、基本数量关系:设一个两位数的十位上的数字和个位上的数字分别为a 和b ,则这个两位数可以表示为10a +b . (2)寻找等量关系的方法:抓住数字间或新数、原数之间的关系,常需设间接未知数.(1)基本量、基本数量关系:甲∶乙∶丙=a ∶b ∶c . (2)相等关系:全部数量=各部分数量之和(设一份为x ).(1)基本量、基本数量关系:利息=本金×利率×期数.(2)寻找相等关系的方法:本息和=本金+利息=本金+本金×利率×期数.二元一次方程:含有两个未知数(x和y),并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.二元一次方程组:有两个未知数,含有每个未知数的项的次数都是1的两个整式方程组成的方程组叫做二元一次方程组.常见形式有以下几种:①两个二元一次方程合在一起组成的方程组;②一个一元一次方程和一个二元一次方程合在一起组成的方程组;③两个含有不同未知数的一元一次方程组成的方程组.使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.提示:①在二元一次方程中,给定其中一个未知数的值,就可以求出另一个未知数的值.②一般情况下,二元一次方程有无数个解,但并不是说任何一对数值就是它的解.二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.提示:①二元一次方程组的解是方程组中每个方程的解.②二元一次方程组的解一般情况下是唯一的,但是有的方程组有无数多个解或无解.如2224x y x y +=⎧⎨+=⎩,有无数多个解,252412x y x y +=⎧⎨+=⎩,无解.二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程.我们可以先求出一个未知数,然后再求另一个未知数.这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想.把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.其一般步骤如下: 步骤名称具体做法 目的 注意1变形用含一个未知数的式子表示另一个未知数变形为y =ax+b (或x =ay+b )的形式选系数简单的方程变形 2 代入把y =ax+b (或x =ay+b )代入另消去一个未知数,将二代入时要“只代不算”步骤 名称 具体做法 目的 注意一个没有变形的方程中元一次方程组转化为一元一次方程3 解解代入后的一元一次方程求出一个未知数去括号时不要漏乘,移项时要变号4回代把求得的未知数的值代入变形后的方程中 求出另一个未知数一般代入变形后的方程5写出解把两个未知数的值用大括号联立起来表示为,x y =⎧⎨=⎩的形式当二元一次方程组的两个方程中同一未知数的系数相等或互为相反数时,把这两个方程的两边分别相减或相加,就能消去这个未知数,得到一个一元一次方程.这种方法叫做加减消元法,简称加减法.其一般步骤如下:1 变形根据绝对值较小的未知数(同一个未知数)的系数的最小公倍数,用适当的数去乘方程的两边使两个方程中某一个未知数的系数相等或互为相反数①选准消元对象:当某个未知数的系数相等或互为相反数或有倍数关系时,选择消去该元较简单.②方程两边同乘某个数时不要漏乘2 加减当同一个未知数的系数相等时,将两个方程相减;当同一个未知数的系数互为相反数时,将两个方程相加消去一个未知数,将二元一次方程组转化为一元一次方程尽量避免出现未知数的系数为负数的情况3 解解消元后得到的一元一次方程求出一个未知数4 回代把求得的未知数的值代入方程组中的某个系数较简单的方程中求出另一个未知数求另一个未知数时选择系数较为简单的方程5 写出解 把两个未知数的值用大括号联立起来表示为,x y =⎧⎨=⎩的形式含有三个未知数,每个方程中含有未知数的项的次数都是1,并且一共有三个整式方程的方程组叫做三元一次方程组.①把方程组中的一个方程分别与另外两个方程组成两组,用代入法或加减法消去这两组中的同一个未知数,得到一个含有另外两个未知数的二元一次方程组;②解这个二元一次方程组;③将所求得的两个未知数的值代入原方程组中含有第三个未知数的方程中,求得第三个未知数的值,从而求出原方程组的解.列二元一次方程组解应用题的分析方法和解题步骤与列一元一次方程解应用题类似,一般可按如下步骤进行:.三、分式方程分母中含有未知数的方程叫做分式方程,如752x =-,22xx -=1等.解分式方程的一般步骤:“一化,二解,三检验”.增根注意:在去分母前,需确定分式方程的最简公分母,若分母是多项式,应先分解因式,再确定最简公分母.使最简公分母为0的根叫做分式方程的增根.(1)审:理解题意,弄清具体情境中的已知量与未知量以及它们之间的基本关系;(2)设:设未知数,用x (或其他字母)表示某个未知量,由该未知量与其他数量的关系,写出表示相关量的式子; (3)列:找出等量关系,列出分式方程; (4)解:解这个分式方程;(5)检:双重检验,先检验是否为增根,再检验是否符合题意; (6)答:写出答案.四、一元二次方程等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.ax 2+bx +c =0(a ≠0),其中ax 2是二次项,a 是二次项系数,bx 是一次项,b 是一次项系数,c 是常数项.使一元二次方程左右两边相等的未知数的值就是这个一元二次方程的解,也叫做一元二次方程的根.解一元二次方程常用的方法有直接开平方法、配方法、公式法和因式分解法.其中因式分解法是特殊解法,而配方法和由配方法推导出来的公式法是一般方法,一般方法对任何一元二次方程都适用.一般地,对于方程x 2=p .(1)当p >0时,根据平方根的意义,方程x 2=p 有两个不相等的实数根:x 1=√p ,x 2=−√p .(2)当p =0时,方程x 2=p 有两个相等的实数根x 1=x 2=0.(3)当p <0时,因为对任意实数x ,都有x 2≥0,所以方程x 2=p 无实数根.如果方程能化成x 2=p 或(mx +n )2=p (p ≥0)的形式,那么可得x =±√p 或mx +n =±√p .通过配成完全平方形式来解一元二次方程的方法,叫做配方法.配方的目的是降次,把一个一元二次方程转化成两个一元一次方程来解.用配方法解一元二次方程的一般步骤: (1)化二次项系数为1.(2)移项:使方程左边为二次项和一次项,右边为常数项. (3)配方:方程两边都加上一次项系数一半的平方.(4)直接开平方:如果右边是非负数,就可用直接开平方法求出方程的解.(1)求根公式:当Δ=b 2−4ac ≥0时,方程ax 2+bx +c =0(a ≠0)的实数根可写成x =24b b ac-±-的形式,这个式子叫做一元二次方程ax 2+bx +c =0(a ≠0)的求根公式.(2)公式法:把各系数直接代入公式,求出方程的根,这种解一元二次方程的方法叫做公式法.(3)用公式法解一元二次方程的步骤:提示:用公式法解一元二次方程的记忆口诀:要用公式解方程,首先化成一般式.调整系数随其后,使其成为最简比.确定系数a,b,c,计算方程判别式.判别式值与零比,有无实根便得知.若有实根套公式,若无实根要告之.通过因式分解,使一元二次方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解一元二次方程的方法叫做因式分解法.因式分解法体现了将一元二次方程“降次”转化为一元一次方程来解的思想,运用这种方法的步骤:拓展:十字相乘法将ax 2+bx +c =0(a ≠0)配方成22b x a ⎛⎫+ ⎪⎝⎭=2244b aca -后,可以看出,只有当b 2−4ac ≥0时,方程才有实数根,这样b 2−4ac 的值就决定着一元二次方程根的情况.一般地,式子b 2−4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)根的判别式,通常用“Δ”表示它,即Δ=b 2−4ac .若一元二次方程ax 2+bx +c =0(a ≠0)有实数根,设这两个实数根分别为x 1,x 2,由求根公式得x 24b b ac-±-(b 2−4ac ≥0),令x 1=24b b ac-+-,x 224b b ac---.由此可得x 1+x 2=-b a,x 1x 2=c a.这一结论可表述为:一元二次方程两个根的和等于一次项系数与二次项系数的比的相反数,两个根的积等于常数项与二次项系数的比.此结论称为一元二次方程根与系数的关系.(1)验根:不解方程,利用一元二次方程根与系数的关系,可以检验两个数是不是一元二次方程的两根.(2)已知方程的一个根,求另一根及未知系数.(3)不解方程,利用一元二次方程根与系数的关系,求关于x 1,x 2的对称式的值.(4)已知方程的两根满足某种关系,确定方程中字母系数的值.列一元二次方程解应用题是列一元一次方程解应用题的拓展,两者的解题方法类似,但由于一元二次方程有两个实数解,所以要注意检验得出的方程的解是否符合实际意义.其步骤如下:(1)审:读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的等量关系.(2)设:选用适当的方式设未知数(直接设未知数或间接设未知数),不要漏写单位,用含未知数的代数式表示题目中涉及的量. (3)列:根据题目中的等量关系,用含未知数的代数式表示其他未知数,列出含未知数的等式.注意等号两边量的单位必须一致. (4)解:解所列方程,求出未知数的值.(5)验:一是检验得到的未知数的值是否为方程的解,二是检验方程的解是否符合题意.(6)答:怎么问就怎么答,注意不要漏写单位.。
1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x-x=50B. 80%×(1+45%)x - x = 50C. x-80%×(1+45%)x = 50D.80%×(1-45%)x - x = 504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。
(1)某户八月份用电84千瓦时,共交电费30.72元,求a.(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时?•应交电费是多少元?9.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?答案1.[分析]通过列表分析已知条件,找到等量关系式等量关系:商品利润率=商品利润/商品进价解:设标价是X 元,80%604060100x -= 解之:x=105 优惠价为),(8410510080%80元=⨯=x 2.[分析]探究题目中隐含的条件是关键,可直接设出成本为X 元等量关系:(利润=折扣后价格—进价)折扣后价格-进价=15解:设进价为X 元,80%X (1+40%)—X=15,X=125答:进价是125元。
3.B4.解:设至多打x 折,根据题意有1200800800x -×100%=5% 解得x=0.7=70% 答:至多打7折出售.5.解:设每台彩电的原售价为x 元,根据题意,有 10[x (1+40%)×80%-x]=2700,x=2250答:每台彩电的原售价为2250元.6.解:方案一:获利140×4500=630000(元)方案二:获利15×6×7500+(140-15×6)×1000=725000(元)方案三:设精加工x 吨,则粗加工(140-x )吨.依题意得140616x x -+=15 解得x=60获利60×7500+(140-60)×4500=810000(元)因为第三种获利最多,所以应选择方案三.7.解:(1)y1=0.2x+50,y2=0.4x.(2)由y1=y2得0.2x+50=0.4x,解得x=250.即当一个月内通话250分钟时,两种通话方式的费用相同.(3)由0.2x+50=120,解得x=350 由0.4x+50=120,得x=300因为350>300 故第一种通话方式比较合算.8.解:(1)由题意,得0.4a+(84-a)×0.40×70%=30.72 解得a=60(2)设九月份共用电x千瓦时,则0.40×60+(x-60)×0.40×70%=0.36x 解得x=90所以0.36×90=32.40(元)答:九月份共用电90千瓦时,应交电费32.40元.9.解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,设购A种电视机x台,则B种电视机y台.(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程1500x+2100(50-x)=90000 即5x+7(50-x)=300 2x=50 x=25 50-x=25②当选购A,C两种电视机时,C种电视机购(50-x)台,可得方程1500x+2500(50-x)=90000 3x+5(50-x)=1800 x=35 50-x=15③当购B,C两种电视机时,C种电视机为(50-y)台.可得方程2100y+2500(50-y)=90000 21y+25(50-y)=900,4y=350,不合题意由此可选择两种方案:一是购A ,B 两种电视机25台;二是购A 种电视机35台,C 种电视机15台.(2)若选择(1)中的方案①,可获利 150×25+250×15=8750(元) 若选择(1)中的方案②,可获利 150×35+250×15=9000(元)9000>8750 故为了获利最多,选择第二种方案.10.答案:0.005x+49 200011.[分析]等量关系:本息和=本金×(1+利率)解:设半年期的实际利率为X ,依题意得方程250(1+X )=252.7, 解得X=0.0108 所以年利率为0.0108×2=0.0216答:银行的年利率是21.6%12. [分析]这种比较几种方案哪种合理的题目,我们可以分别计算出每种教育储蓄的本金是多少,再进行比较。
解:(1)设存入一个6年的本金是X 元,依题意得方程X (1+6×2.88%)=20000,解得X=17053(2)设存入两个三年期开始的本金为Y 元,Y (1+2.7%×3)(1+2.7%×3)=20000,X=17115(3)设存入一年期本金为Z 元 ,Z (1+2.25%)6=20000,Z=17894所以存入一个6年期的本金最少。
13.解:设这种债券的年利率是x ,根据题意有4500+4500×2×x ×(1-20%)=4700, 解得x=0.03答:这种债券的年利率为0.03.14.C [点拨:根据题意列方程,得(10-8)×90%=10(1-x%)-8,解得x=2,故选C]15. 22000元16. [分析]甲独作10天完成,说明的他的工作效率是,101乙的工作效率是,81等量关系是:甲乙合作的效率×合作的时间=1解:设合作X 天完成, 依题意得方程9401)81101(==+x x 解得 答:两人合作940天完成 17. [分析]设工程总量为单位1,等量关系为:甲完成工作量+乙完成工作量=工作总量。
解:设乙还需x 天完成全部工程,设工作总量为单位1,由题意得,5365331123)121151(===+⨯+x x 解之得 答:乙还需536天才能完成全部工程。
18. [分析]等量关系为:甲注水量+乙注水量-丙排水量=1。
解:设打开丙管后x 小时可注满水池,由题意得,1342133019)2()8161(===-++x x x 解这个方程得 答:打开丙管后1342小时可注满水池。
19.解:设甲、乙一起做还需x 小时才能完成工作.根据题意,得16×12+(16+14)x=1 解这个方程,得x=115 115=2小时12分答:甲、乙一起做还需2小时12分才能完成工作.20.解:设这一天有x 名工人加工甲种零件,则这天加工甲种零件有5x 个,乙种零件有4(16-x )个. 根据题意,得16×5x+24×4(16-x )=1440 解得x=6 答:这一天有6名工人加工甲种零件.21. 设还需x 天。
3101)3(151121310111511213151101==+++⨯=⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛+x x x x 解得或 22.设第二个仓库存粮x x 吨,则第一个仓库存粮吨,根据题意得39030333020)203(75=⨯==+=-x x x x 解得23.解:设圆柱形水桶的高为x 毫米,依题意,得 π·(2002)2x=300×300×80 x ≈229.3答:圆柱形水桶的高约为229.3毫米.24.设乙的高为x mm,根据题意得 3001301305.2325150260=⨯⨯⨯=⨯⨯x x解得25. (1)分析:相遇问题,画图表示为:等量关系是:慢车走的路程+快车走的路程=480公里。
解:设快车开出x 小时后两车相遇,由题意得,140x+90(x+1)=480 解这个方程,230x=390,23161=x 答:快车开出23161小时两车相遇 分析:相背而行,画图表示为:等量关系是:两车所走的路程和+480公里=600公里。
解:设x 小时后两车相距600公里,由题意得,(140+90)x+480=600解这个方程,230x=120 ∴ x=2312 答:2312小时后两车相距600公里。
(3)分析:等量关系为:快车所走路程-慢车所走路程+480公里=600公里。