全主元高斯消去法
- 格式:docx
- 大小:12.29 KB
- 文档页数:2
齐次线性方程组有非零解的条件
齐次线性方程组有非零解的条件是:
利用全选主元高斯消去法求解Ax=b(A是n阶矩阵,b是列向量),当A
的行列式det A != 0时,齐次线性方程组Ax = b才有非零解。
如果
满足这个条件,则齐次线性方程组Ax = b就有非零解。
具体来说,首先要明确的是,只有行列式det A 不等于0的矩阵A,才能用高斯消去法求出非零解。
如果行列式 det A 等于 0,那么A
就不可逆,齐次线性方程组将一直没有解。
因此,为了使齐次线性方
程组有非零解,必须确保行列式det A != 0。
除了行列式det A 的条件外,齐次线性方程组有非零解还要满足
另一个条件,即矩阵A 和列向量b的维数必须相同,即n=m(m为列向
量b的维数,n为A的阶数)。
另外,要求各个方程的右边的b的分量
都不全为0。
从上面的分析可知,齐次线性方程组有非零解的条件是:
(1)行列式det A 不等于0;
(2)矩阵A和列向量b的维数必须相同,即n=m;
(3)各个方程的右边的b的分量都不全为0。
此外,还要确保齐次线性方程组的系数矩阵A在最终得到非零解后,它能满足A×x=b。
如果不满足,那么齐次线性方程组就无法求出
非零解。
而如果满足,那么就可以用全选主元高斯消去法求出非零解,从而解决齐次线性方程组 Ax = b 的有非零解问题。
全主元高斯消去法发展过程1.引言1.1 概述在数学领域中,线性方程组求解一直是一个重要的问题。
而高斯消去法是一种常用的线性方程组求解方法之一,它的基本原理是通过一系列的行变换将线性方程组化为阶梯形方程组,从而容易求解。
然而,传统的高斯消去法存在一些问题。
在某些情况下,选择的主元元素可能会导致运算过程中出现除零错误,进而使得整个计算过程失效。
为了解决这个问题,全主元高斯消去法应运而生。
全主元高斯消去法在选择主元元素时不仅会考虑当前列的元素,而是会同时考虑当前行和当前列的元素。
这种全面考虑的方式能够确保选取到一个非零元素作为主元,避免了除零错误的发生,提高了计算的稳定性和精度。
全主元高斯消去法的提出是对传统高斯消去法的一种改进和完善。
它不仅解决了传统高斯消去法中可能出现的除零错误问题,还能够更好地应对一些特殊情况,如矩阵中存在大量零元素时,能够减少运算量和计算时间。
全主元高斯消去法的发展过程经历了数学学者们的不断努力与探索。
通过引入新的思想和算法,全主元高斯消去法在求解线性方程组的过程中展现出了更好的效果和稳定性。
综上所述,全主元高斯消去法是对传统高斯消去法的一种改进和完善,它解决了传统方法中的除零错误问题,并能够更好地应对特殊情况,具有更高的计算稳定性和精度。
在接下来的正文中,我们将详细介绍全主元高斯消去法的基本原理和提出过程,以及其在实际应用中的前景。
1.2 文章结构本文将按照以下方式组织和呈现全主元高斯消去法的发展过程。
首先,我们将在引言部分对整篇文章进行概述,介绍全主元高斯消去法的基本原理和目的。
这将帮助读者初步了解文章的主题和内容。
接下来,在正文部分的第2.1节中,我们将详细介绍高斯消去法的基本原理。
通过解释高斯消去法的基本步骤和计算过程,读者将对该方法的工作原理有一个清晰的认识。
紧接着,在正文部分的第2.2节中,我们将着重介绍全主元高斯消去法的提出及其特点。
全主元高斯消去法在传统高斯消去法的基础上进行了改进,使得解方程组的过程更加稳定和准确。
计算方法实验报告1课题名称用列主元高斯消去法和列主元三角分解法解线性方程目的和意义高斯消去法是一个古老的求解线性方程组的方法,但由它改进得到的选主元的高斯消去法则是目前计算机上常用的解低阶稠密矩阵方程组的有效方法;用高斯消去法解线性方程组的基本思想时用矩阵行的初等变换将系数矩阵A 约化为具有简单形式的矩阵上三角矩阵、单位矩阵等,而三角形方程组则可以直接回带求解 用高斯消去法解线性方程组b Ax =其中A ∈Rn ×n 的计算量为:乘除法运算步骤为32(1)(1)(21)(1)(1)262233n n n n n n n n n n nMD n ----+=+++=+-,加减运算步骤为(1)(21)(1)(1)(1)(25)6226n n n n n n n n n n AS -----+=++=;相比之下,传统的克莱姆法则则较为繁琐,如求解20阶线性方程组,克莱姆法则大约要19510⨯次乘法,而用高斯消去法只需要3060次乘除法;在高斯消去法运算的过程中,如果出现absAi,i 等于零或过小的情况,则会导致矩阵元素数量级严重增长和舍入误差的扩散,使得最后的计算结果不可靠,所以目前计算机上常用的解低阶稠密矩阵方程的快速有效的方法时列主元高斯消去法,从而使计算结果更加精确; 2、列主元三角分解法高斯消去法的消去过程,实质上是将A 分解为两个三角矩阵的乘积A=LU,并求解Ly=b 的过程;回带过程就是求解上三角方程组Ux=y;所以在实际的运算中,矩阵L 和U 可以直接计算出,而不需要任何中间步骤,从而在计算过程中将高斯消去法的步骤进行了进一步的简略,大大提高了运算速度,这就是三角分解法采用选主元的方式与列主元高斯消去法一样,也是为了避免除数过小,从而保证了计算的精确度计算公式1、 列主元高斯消去法设有线性方程组Ax=b,其中设A 为非奇异矩阵;方程组的增广矩阵为第1步k=1:首先在A 的第一列中选取绝对值最大的元素1l a ,作为第一步的主元素:111211212222112[,]n n n l n nn n a a a a b a a a b a a a b ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦a b然后交换A,b 的第1行与第l 行元素,再进行消元计算;设列主元素消去法已经完成第1步到第k -1步的按列选主元,交换两行,消元计算得到与原方程组等价的方程组 Akx=bk第k 步计算如下:对于k=1,2,…,n -11按列选主元:即确定t 使 2如果t ≠k,则交换A,b 第t 行与第k 行元素; 3消元计算消元乘数mik 满足:4回代求解2、 列主元三角分解法 对方程组的增广矩阵 经过k -1步分解后,可变成如下形式:111max 0l i i n a a ≤≤=≠(1)(1)(1)(1)(1)1112111(2)(2)(2)(2)22222()(()1)()()()()()1,1()(,)()[,][,] k k k k nk k nk n k k k k k kk kn k k k k n k k k n nn a a a a b a a a b a a b a b b a a a +++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A b A b ()()max 0k k tk ik k i na a ≤≤=≠,(1,,)ik ik ik kka a m i k n a ←=-=+, (,1,,), (1,,)ij ij ik kji i ik k a a m a i j k n b b m b i k n ←+=+⎧⎨←+=+⎩⎪⎪⎩⎪⎪⎨⎧--=-←←∑+=)1,,2,1(,)(1n n i a x a b x a b x ii n i j j ij i i nnn n [,]A A b =11121,11111222,122221,11,1,1,211,11,2121,112,112,1k k k k k k k j n k k j n k k k i i i k n n kk kj kn k ik ij in i nknjk k k j k n n nnk k n a a a b A a u u u u u u y l l l l l l ll l l l u u u u u y u u u u y a a b a a b l a -------------⎡→⎣⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎦第k 步分解,为了避免用绝对值很小的数kku 作除数,引进量1111 (,1,,;1,2,,) ()/ (1,2,,;1,2,,)k kj kj km mj m k ik ik im mk kkm u a l u j k k n k n l a l u u i k k n k n -=-=⎧=-=+=⎪⎪⎨⎪=-=++=⎪⎩∑∑11(,1,,)k i ik im mk m s a l u i k k n -==-=+∑,于是有kk u =ks ;如果 ,则将矩阵的第t 行与第k 行元素互换,将i,j 位置的新元素仍记为jjl 或jja ,然后再做第k 步分解,这时列主元高斯消去法程序流程图max t ik i n s s ≤≤= ()/ 1,2,,)1 (1,2,,),kk k k t iki k ik u s s s l s s i k k n l i k k n ===++≤=++即交换前的,(且列主元高斯消去法Matlab主程序function x=gauss1A,b,c %列主元法高斯消去法解线性方程Ax=bif lengthA~=lengthb %判断输入的方程组是否有误disp'输入方程有误'return;enddisp'原方程为AX=b:' %显示方程组Abdisp'------------------------'n=lengthA;for k=1:n-1 %找列主元p,q=maxabsAk:n,k; %找出第k列中的最大值,其下标为p,qq=q+k-1; %q在Ak:n,k中的行号转换为在A中的行号if absp<cdisp'列元素太小,detA≈0';break;elseif q>ktemp1=Ak,:; %列主元所在行不是当前行,将当前行与列主Ak,:=Aq,:; 元所在行交换包括bAq,:=temp1;temp2=bk,:;bk,:=bq,:;bq,:=temp2;end%消元for i=k+1:nmi,k=Ai,k/Ak,k; %Ak,k将Ai,k消为0所乘系数Ai,k:n=Ai,k:n-mi,kAk,k:n; %第i行消元处理bi=bi-mi,kbk; %b消元处理endenddisp'消元后所得到的上三角阵是'A %显示消元后的系数矩阵bn=bn/An,n; %回代求解for i=n-1:-1:1bi=bi-sumAi,i+1:nbi+1:n/Ai,i;endclear x;disp'AX=b的解x是' x=b;调用函数解题列主元三角分解法程序流程图列主元三角分解法Matlab主程序①自己编的程序:function x=PLUA,b,eps %定义函数列主元三角分解法函数if lengthA~=lengthb %判断输入的方程组是否有误disp'输入方程有误'return;enddisp'原方程为AX=b:' %显示方程组Abdisp'------------------------'n=lengthA;A=A b; %将A与b合并,得到增广矩阵for r=1:nif r==1for i=1:nc d=maxabsA:,1; %选取最大列向量,并做行交换if c<=eps %最大值小于e,主元太小,程序结束break;elseendd=d+1-1;p=A1,:;A1,:=Ad,:;Ad,:=p;A1,i=A1,i;endA1,2:n=A1,2:n;A2:n,1=A2:n,1/A1,1; %求u1,ielseur,r=Ar,r-Ar,1:r-1A1:r-1,r; %按照方程求取ur,iif absur,r<=eps %如果ur,r小于e,则交换行p=Ar,:;Ar,:=Ar+1,:;Ar+1,:=p;elseendfor i=r:nAr,i=Ar,i-Ar,1:r-1A1:r-1,i; %根据公式求解,并把结果存在矩阵A中endfor i=r+1:nAi,r=Ai,r-Ai,1:r-1A1:r-1,r/Ar,r; %根据公式求解,并把结果存在矩阵A中endendendy1=A1,n+1;for i=2:nh=0;for k=1:i-1h=h+Ai,kyk;endyi=Ai,n+1-h; %根据公式求解yiendxn=yn/An,n;for i=n-1:-1:1h=0;for k=i+1:nh=h+Ai,kxk;endxi=yi-h/Ai,i; %根据公式求解xiendAdisp'AX=b的解x是'x=x'; %输出方程的解②可直接得到P,L,U并解出方程解的的程序查阅资料得子函数PLU1,其作用是将矩阵A分解成L乘以U的形式;PLU2为调用PLU1解题的程序,是自己编的Ⅰ.function l,u,p=PLU1A %定义子函数,其功能为列主元三角分解系数矩阵A m,n=sizeA; %判断系数矩阵是否为方阵if m~=nerror'矩阵不是方阵'returnendif detA==0 %判断系数矩阵能否被三角分解error'矩阵不能被三角分解'endu=A;p=eyem;l=eyem; %将系数矩阵三角分解,分别求出P,L,Ufor i=1:mfor j=i:mtj=uj,i;for k=1:i-1tj=tj-uj,kuk,i;endenda=i;b=absti;for j=i+1:mif b<abstjb=abstj;a=j;endendif a~=ifor j=1:mc=ui,j;ui,j=ua,j;ua,j=c;endfor j=1:mc=pi,j;pi,j=pa,j;pa,j=c;endc=ta;ta=ti;ti=c;endui,i=ti;for j=i+1:muj,i=tj/ti;endfor j=i+1:mfor k=1:i-1ui,j=ui,j-ui,kuk,j;endendendl=trilu,-1+eyem;u=triuu,0Ⅱ.function x=PLU2A,b %定义列主元三角分解法的函数l,u,p=PLU1A %调用PLU分解系数矩阵A m=lengthA; %由于A左乘p,故b也要左乘p v=b;for q=1:mbq=sumpq,1:mv1:m,1;endb1=b1 %求解方程Ly=b for i=2:1:mbi=bi-sumli,1:i-1b1:i-1;endbm=bm/um,m; %求解方程Ux=y for i=m-1:-1:1bi=bi-sumui,i+1:mbi+1:m/ui,i;endclear x;disp'AX=b的解x是' x=b;调用函数解题①②编程疑难这是第一次用matlab编程,对matlab的语句还不是非常熟悉,因此在编程过程中,出现了许多错误提示;并且此次编程的两种方法对矩阵的运算也比较复杂;问题主要集中在循环控制中,循环次数多了一次或者缺少了一次,导致数据错误,一些基本的编程语句在语法上也会由于生疏而产生许多问题,但是语句的错误由于系统会提示,比较容易进行修改,数据计算过程中的一些逻辑错误,比如循环变量的控制,这些系统不会提示错误,需要我们细心去发现错误,不断修正,调试;。
高斯消元法详细步骤嘿,朋友们!今天咱来唠唠高斯消元法,这可是个厉害的玩意儿呢!咱先来说说啥是高斯消元法。
你就想象啊,咱面前有一堆方程,就像一团乱麻,而高斯消元法呢,就是那把能把这团乱麻理顺的神奇梳子。
那它咋用呢?第一步,咱得把方程组整整齐齐地摆出来,就像士兵列队一样。
然后呢,开始找那个最关键的“带头大哥”,也就是一个系数比较特别的方程。
接下来,咱就开始操作啦!通过各种计算,把其他方程里的某个未知数给消掉。
这就好比打仗的时候,把敌人的一个据点给拔掉。
比如说,咱有两个方程,一个是 2x + 3y = 5,另一个是 4x + 5y = 7。
咱就可以通过一定的计算,让第二个方程里的 x 或者 y 的系数变成和第一个方程里对应的系数成倍数关系,然后进行相减或者相加,这不就把一个未知数给干掉啦!再然后呢,咱就得到了一个新的方程组,这个方程组比原来的可简单多啦!接着重复上面的操作,直到最后只剩下一个未知数,那咱不就轻松解出来啦!你想想,这多有意思啊!就像玩游戏闯关一样,一步步地把难题给攻克了。
要是你还不太明白,咱举个具体例子。
比如方程组:3x + 2y = 8,2x - y = 3。
咱先把第二个方程两边都乘以 2,变成 4x - 2y = 6,然后和第一个方程相加,这不就把 y 给消掉啦,得到 7x = 14,那 x 不就等于2 嘛。
再把 x = 2 带回到原来的方程里,就能求出 y 啦。
高斯消元法可不只是在数学课本里有用哦,在很多实际问题里都能派上大用场呢!比如说工程计算啦,科学研究啦。
所以啊,可别小瞧了这高斯消元法,它就像一把万能钥匙,能帮咱打开很多知识大门呢!咱可得好好掌握它,让它为咱服务呀!怎么样,是不是觉得挺神奇的?快去试试吧!。
列主元高斯消去法发展过程
高斯消去法是一种用于解线性方程组的经典方法。
它的发展过程可以追溯到古希腊时期,但真正的发展始于19世纪。
1. 古希腊时期:古希腊数学家欧几里得在其著作《几何原本》中首次提出了用于解线性方程组的方法。
他主要使用了几何的方法,通过图形的相交性质来解决方程组。
2. 16世纪:法国数学家维埃塔在其著作《代数》中提出了基本的高斯消去法思想。
他发现可以通过一系列的行变换将线性方程组转化为更简单的形式,从而得到方程组的解。
3. 18世纪:欧拉和克莱姆等数学家进一步发展了高斯消去法的思想。
他们提出了行列式的概念,并使用行列式来描述方程组的解的性质。
4. 19世纪:德国数学家高斯在其著作《线性方程论》中系统地阐述了高斯消去法的基本原理和方法。
他引入了主元的概念,即将方程组的系数矩阵化为上三角矩阵,从而简化了方程组的求解过程。
这被认为是高斯消去法的重要发展。
5. 20世纪:随着计算机的发展,高斯消去法的实际应用得到了广泛推广。
为了进一步提高计算效率,人们发展了一些优化技术,如列主元高斯消元法和高斯-约当消去法等。
高斯消去法的发展经历了数千年的演变过程。
从最初的几何方法到
现代的算法优化技术,高斯消去法在解决线性方程组的问题上发挥了重要作用。
2.3高斯列主元消去法解线性方程组一:问题的提出我们都知道,高斯列主元素消去法是计算机上常用来求解线性方程组的一种直接的方法。
就是在不考虑舍入误差的情况下,经过有限步的四则运算可以得到线性方程组的准确解的一类方法。
实际运算的时候因为只能有限小数去计算,因此只能得到近似值。
在实际运算的时候,我们很多时候也常用高斯消去法。
但是高斯消去法在计算机中运算的时候常会碰到两个问题。
1.一旦遇到某个主元等于0,消元过程便无法进行下去。
2.在长期使用中还发现,即使消元过程能进行下去,但是当某个主元的绝对值很小时,求解出的结果与真实结果相差甚远。
为了避免高斯消去法消元过程中出现的上述两个问题,一般采用所谓的选择主元法。
其中又可以分为列选主元和全面选主元两种方法。
目前计算机上常用的按列选主元的方法。
因此我在这里做的也是列选主元高斯消去法。
二、算法的基本思想大家知道,如果一个线性方程组的系数矩阵是上三角矩阵时,即这种方程组我们称之为上三角方程组,它是很容易求解的。
我们只要把方程组的最下面的一个方程求解出来,在把求得的解带入倒数第二个方程,求出第二个解,依次往上回代求解。
然而,现实中大多数线性方程组都不是上面所说的上三角方程组,所以我们有可以把不是上三角的方程通过一定的算法化成上三角方程组,由此我们可以很方便地求出方程组的解。
高斯消元法的目的就是把一般线性方程组简化成上三角方程组。
于是高斯消元法的基本思想是:通过逐次消元将所给的线性方程组化为上三角形方程组,继而通过回代过程求解线性方程组。
三、算法的描述1、设有n 元线性方程组如下:1111n n nn a a a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭K M OM L1n x x ⎛⎫ ⎪ ⎪ ⎪⎝⎭M =1n b b ⎛⎫ ⎪ ⎪ ⎪⎝⎭M 2、 第一步:如果a 11!=0, 令l i1= ai1/a11, I= 2,3,……,n用(-li1)乘第一个方程加到第i 个方程上,得同解方程组:a (1)11 a (1)12 . . . a (1)1nx 1 b (1)1a (1)21 a (1)22 . . . a (1)2n x 2b (1)2. . . . . . . = .a (1)n-11 a (1)n-12 . . a (1)n-1n x n-1b (1)n-1a (1)n1 a (1)n2 . . . a (1)nn x nb (1)n简记为:A (2) x = b (2)其中a (2)ij = a (1)ij – l i1 * a (1)1j , I ,j = 2,3,..,nb(2)I = b(1)I– l i1 * b(1)1 , I = 2,3,...,n第二步:如果a(2)22 != 0,令l i2= a(2)i2/a(2)22, I= 3,……,n依据同样的原理,对矩阵进行化间(省略),依次下去,直到完成!最后,得到上三角方程组:a(1)11a(1)12 . . . a(1)1n x1b(1)10 a(1)22 . . . a(1)2n x2b(1)2. . . . . . . = .0 0 . . a(n-1)n-1n x n-1b(n-1)n-10 0 . . . a(n)nn x n b(n)n简记为:A(n) x = b(n)最后从方程组的最后一个方程进行回代求解为:X n = b(n) / a(n)nnX i = ( b(k)k - a(k)kj x j ) / a(k)kk以上为高斯消去法的基本过程。