高一数学平面与平面垂直的性质1
- 格式:pdf
- 大小:850.85 KB
- 文档页数:7
立体几何综合复习一、直线与平面垂直1.定义如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直.记作:l⊥α.2.直线与平面垂直的判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.简记为:线线垂直⇒线面垂直数学描述:l⊥a,l⊥b,a⊂α,b⊂α,a b P=⇒l⊥α3.直线与平面垂直的性质定理垂直于同一个平面的两条直线平行.简记为:线面垂直⇒线线平行数学描述:abαα⊥⎫⎬⊥⎭⇒a b∥4.直线与平面所成的角(1)定义:一条直线和一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点叫做斜足.过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的锐角..,叫做这条直线和这个平面所成的角.(2)规定:一条直线垂直于平面,我们说它们所成的角等于90;一条直线和平面平行,或在平面内,我们说它们所成的角等于0.因此,直线与平面所成的角.........α.的范围是....π[0,]2.5.常用结论(熟记)(1)若两条平行线中一条垂直于一个平面,则另一条也垂直于这个平面.(2)若一条直线垂直于一个平面,则这条直线垂直于这个平面内任何一条直线.(3)过空间任一点有且只有一条直线与已知平面垂直.(4)过空间任一点有且只有一个平面与已知直线垂直.二、平面与平面垂直1.定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.平面α与平面β垂直,记作αβ⊥.2.平面与平面垂直的判定定理文字语言一个平面过另一个平面的垂线,则这两个平面垂直.简记为:线面垂直⇒面面垂直图形语言符号语言l⊥α,lβ⊂⇒α⊥β作用判断两平面垂直3.平面与平面垂直的性质定理文字语言两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.简记为:面面垂直⇒线线平行图形语言=laaa lαβαββα⎫⎪⎪⇒⎬⊂⎪⎪⊥⎭⊥⊥4.二面角(1)二面角的定义:平面内的一条直线把平面分成两部分,这两部分通常称为半平面.从一条直线出发的两个半平面所组成的图形叫做二面角....这条直线叫做二面角的棱,这两个半平面叫做二面角的面.(2)二面角的平面角的定义:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的射线,则这两条射线构成的角叫做这个二面角的平面角.(3)二面角的范围:[0,π].三、垂直问题的转化关系考向一线面垂直的判定与性质典例1如图所示,和都是以为直角顶点的等腰直角三角形,且,下列说法中错误的是A.平面B.平面C.平面D.平面1.如图,在棱长为1的正方体1111ABCD A B C D -中,点E 、F 分别是棱BC 、1CC 的中点,P 是底面ABCD 上(含边界)一动点,且满足1A P EF ⊥,则线段1A P 长度的取值范围是A .51,⎡⎤⎢⎥⎣⎦B .53,2⎡⎤⎢⎥⎣⎦C .1,3⎡⎤⎣⎦D .2,3⎡⎤⎣⎦典例2 如图,在三棱柱中,各个侧面均是边长为的正方形,为线段的中点.()求证:平面; ()求证:直线平面;2.如图1所示,在Rt ABC △中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点,将ADE △沿DE 折起到1A DE △的位置,使A 1F ⊥CD ,如图2所示.(1)求证:1A F BE ⊥;(2)线段1A B 上是否存在点Q ,使1A C ⊥平面DEQ ?说明理由.考向二面面垂直的判定与性质判定面面垂直的常见策略:(1)利用定义(直二面角).(2)判定定理:可以通过直线与平面垂直来证明平面与平面垂直.(3)在运用面面垂直的性质定理时,若没有与交线垂直的直线,则一般需作辅助线,基本作法是过其中一个平面内一点作交线的垂线,这样就把面面垂直转化为线面垂直,进而转化为线线垂直.典例4 如图,直三棱柱中,分别是的中点,.(1)证明:平面;(2)证明:平面平面.考向三 线面角与二面角求直线与平面所成的角的方法: (1)求直线和平面所成角的步骤: ①寻找过斜线上一点与平面垂直的直线;②连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角; ③把该角归结在某个三角形中,通过解三角形,求出该角. (2)求线面角的技巧:在上述步骤中,其中作角是关键,而确定斜线在平面内的射影是作角的关键,几何图形的特征是找射影的依据,射影一般都是一些特殊的点,比如中心、垂心、重心等. 求二面角大小的步骤:简称为“一作二证三求”.作平面角时,一定要注意顶点的选择.典例5 正三棱柱111ABC A B C 的所有棱长都相等,D 是11A C 的中点,则直线AD 与平面1B DC 所成角的正弦值为 A .35 B .45 C .34D .55典例6 如图,直三棱柱111ABC A B C -的底面是边长为2的正三角形,,E F 分别是1,BC CC 的中点. (1)证明:平面AEF ⊥平面11B BCC ;(2)若直线1A C 与平面11A ABB 所成的角为45°,求三棱锥F AEC -的体积.4.如图,四边形为矩形,四边形为直角梯形,.(1)求证:; (2)求证:平面; (3)若二面角的大小为,求直线与平面所成的角.1.下列命题中不正确的是A.如果平面α⊥平面β,且直线l∥平面α,则直线l⊥平面βB.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ2.设a,b,c表示三条直线,α,β表示两个平面,则下列命题中不正确的是A.ccαβαβ⊥⎫⇒⊥⎬⎭∥B.a bb b cc aββ⊥⎫⎪⊂⇒⊥⎬⎪⎭是在内的射影C.b cb ccααα⎫⎪⊂⇒⎬⎪⊄⎭∥∥D.abb aαα⎫⇒⊥⎬⊥⎭∥3.如图,在三棱锥中,⊥底面,,则直线与平面所成角的大小为A .B .C .D .4.如图,三条相交于点P的线段P A,PB,PC两两垂直,P在平面ABC外,PH⊥平面ABC于H,则垂足H是△ABC的A.外心B.内心C.垂心D.重心5.如图,A,B,C,D为空间四点,在△ABC中,AB=2,AC=BC=,等边三角形ADB以AB为轴旋转,当平面ADB⊥平面ABC时,CD=A.B.2C.D.16.如图,已知六棱锥P-ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB,则下列结论正确的是A.PB⊥AD B.平面PAB⊥平面PBCC.直线BC∥平面PAE D.直线PD与平面ABC所成的角为45°7.《九章算术》卷五《商功》中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何?问题中“刍甍”指的是底面为矩形的屋脊状的几何体,如图1,该几何体可由图2中的八边形沿,向上折起,使得与重合而成,设网格纸上每个小正方形的边长为1,则此“刍甍”中与平面所成角的正弦值为A.B.C.D.8.如图,在矩形ABCD中,AB=2,AD=3,点E为AD的中点,现分别沿BE,CE将△ABE,△DCE翻折,使得点A,D 重合于点F,此时二面角E-BC-F的余弦值为(1)(2)A.34B.7C.23D.59.已知α,β是平面,m、n是直线,给出下列命题:①若m⊥α,m⊂β,则α⊥β;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③如果m⊂α,n⊄α,m,n是异面直线,那么n与α相交;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β.其中命题正确的是__________.10.如图,三棱锥,平面平面,若,则△的形状为__________.11.在四面体中,平面,,,,,为棱上一点,且平面平面,则__________.12.如图,在三棱锥P-ABC中,P A⊥底面ABC,∠BAC=90°,F是AC的中点,E是PC上的点,且EF⊥BC,则PEEC________.中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当13.如图所示,在四棱锥P ABCDDM⊥________时,平面MBD⊥平面PCD.14.四棱锥中,,且平面是棱的中点.(1)证明:平面;(2)求三棱锥的体积.。
两个平面垂直判定定理
两个平面垂直判定定理是解析几何中的基本原理,它可以用来判断两个平面是否垂直。
下面我将以人类的视角,用简练的语言来描述这个定理。
我们先来了解一下什么是平面。
平面是一个无限扩展的二维空间,可以用一个平面上的点和法向量来唯一确定。
垂直是指两个物体或者事物之间的夹角为90度,即呈直角。
而两个平面的垂直判定定理告诉我们,如果两个平面的法向量相互垂直,那么这两个平面就是垂直的。
具体来说,设有两个平面A和B,它们的法向量分别为n1和n2。
如果向量n1和向量n2的点积为0,即n1·n2=0,那么平面A和平面B就是垂直的。
这是因为两个向量的点积等于它们的模长乘积再乘以它们的夹角的余弦值,而当夹角为90度时,余弦值为0。
这个定理在解析几何中有着广泛的应用。
例如,在空间几何中,我们可以通过两个平面的法向量来判断它们是否垂直。
在物理学中,我们可以利用这个定理来解决力的合成和分解问题。
在工程学中,我们可以利用这个定理来设计建筑物的结构。
总结起来,两个平面垂直判定定理告诉我们,如果两个平面的法向量相互垂直,那么这两个平面就是垂直的。
这个定理在解析几何中有着重要的应用,可以帮助我们解决各种问题。
希望通过这篇文章
的描述,读者能够更好地理解和应用这个定理。