电力系统继电保护 ——阻抗继电器的实现方法、距离保护的整定计算与对距离保护的评价
- 格式:ppt
- 大小:10.34 MB
- 文档页数:37
继电保护距离保护整定计算继电保护是电力系统中的重要组成部分,主要用于检测电力系统中的故障,并迅速切除故障点,保证系统的安全运行。
其中,距离保护是一种常用的继电保护方式,通过测量电力系统中故障点到保护装置的距离来判断故障位置。
距离保护的整定计算是指根据电力系统的特性和运行条件,确定距离保护装置的各项参数的过程。
本文将介绍距离保护的整定计算方法。
首先,距离保护的整定计算可分为三个主要步骤:计算工作电压(或计算电流)、选择灵敏系数和计算保护带。
1.计算工作电压(或计算电流)距离保护的整定计算首先需要确定故障发生时的工作电压(或电流)。
工作电压是指电力系统运行时的电压值,一般可通过系统的额定电压和实际运行条件进行计算得到。
工作电流是指系统运行时的故障电流值,常用于短路保护的整定。
可以根据电力系统的短路电流和负载电流等参数来进行计算。
2.选择灵敏系数距离保护的灵敏系数是判断保护动作的重要参数,常用的灵敏系数有定值和变值两种。
定值灵敏系数是指保护装置所设置的固定值,一般根据系统特性和运行情况来选择。
变值灵敏系数是根据电力系统的特性和运行条件动态调整的,一般由保护装置自动计算和调整。
3.计算保护带距离保护的保护带是通过测量电力系统中故障点到保护装置的距离来判断故障位置的,常用的保护带有定值带、偏移带和方向带三种。
定值带是指根据系统的额定电压和故障电流等参数设置的固定带,偏移带是在定值带的基础上根据系统特性调整的带,方向带是根据故障方向确定的判断带。
距离保护的整定计算还需要考虑电力系统的特性和运行条件。
例如,线路长度、线路参数、短路容量、负载情况等都会对整定参数产生影响。
一般来说,线路越长、短路容量越大,整定参数应设置为较大的值;线路越短、短路容量越小,整定参数应设置为较小的值。
此外,还需要考虑到灵敏系数的选择和保护装置的可靠性等因素。
总之,继电保护距离保护的整定计算是根据电力系统的特性和运行条件,确定距离保护装置的各项参数的过程。
电力系统继电保护——距离保护的基本原理阻抗继电器及其动作特性电力系统继电保护——距离保护的基本原理、阻抗继电器及其动作特性电力系统的稳定运行对于维护供电的连续性和可靠性至关重要。
为确保电力系统的正常运行,继电保护系统是不可或缺的一部分。
本文将深入探讨距离保护的基本原理,特别是阻抗继电器及其动作特性。
**1. 电力系统继电保护概述**电力系统继电保护是一种自动化系统,旨在检测电力系统中的异常情况,如短路、过负荷、地线故障等,然后采取相应措施,如切断电源,以保护电力系统和设备免受损害。
其中,距离保护是一种常见的继电保护方法,其核心原理是测量电力系统中的电流和电压,并根据这些测量值来判断电力线路上是否存在故障。
**2. 距离保护的基本原理**距离保护是一种基于电压和电流的继电保护方式,它利用阻抗测量来判断电力线路上的故障位置。
其基本原理可以概括如下:- 阻抗测量:距离保护系统测量电力线路上的电压和电流,然后计算线路的阻抗。
阻抗是电力线路的电阻和电抗的复合参数,它可以用来表示线路的特性。
- 阻抗比较:距离保护系统将实际测得的线路阻抗与预设的阻抗限值进行比较。
如果实际阻抗超出了限值范围,系统将判断存在故障,并触发保护动作。
- 动作速度:距离保护系统需要在故障发生后迅速做出反应,以防止损害扩大。
因此,它通常被设计成一种高速保护装置。
**3. 阻抗继电器的作用**阻抗继电器是距离保护系统的核心组成部分。
它是一种电器装置,用于测量电力线路上的阻抗,并根据测量结果来判断是否存在故障。
阻抗继电器具有以下作用:- 阻抗测量:阻抗继电器测量线路的复合阻抗,通常以百分比阻抗的形式表示。
这些测量值将用于后续的分析。
- 阻抗比较:阻抗继电器将测量到的阻抗值与预设的阻抗限制进行比较。
如果测量值超出了限值范围,继电器将判定为故障并触发保护动作。
- 保护动作:阻抗继电器可以执行各种保护动作,如切断电源、发出警报或记录事件数据。
这些动作有助于保护电力系统和相关设备。
《电力系统继电保护》课程教学大纲一、课程简介课程名称:电力系统继电保护英文名称:Principles of Power System Protection课程代码:0110355 课程类别:专业课学分:4 总学时:52(52理论+12实验)先修课程:电路、电子技术、电机学、电力系统分析课程概要:《电力系统继电保护》是理论与实践并重的一门课程,是从事电力系统工作的人员必须掌握的一门专业课程,主要介绍电力系统继电保护的构成原理、运行特性及分析方法。
其目的和任务是使学生掌握电力系统继电保护的基本原理、整定计算及其运行分析方法,为学生毕业后从事电力系统及相关领域的设计制造、运行维护和科学研究工作打下理论及实践基础.二、教学目的及要求本课程的教学目的是:本课程是在分析复杂的电力系统故障状态的前提下讲述保护构成原理、配置及动作行为的,并配以一定的实验。
故而是一门理论与实践并重的学科。
使学生深刻理解继电保护在电力系统中所担负的任务,并通过本课程学习,掌握电力系统继电保护的基本原理,基本概念,考虑和解决问题的基本方法及基本实验技能,为毕业后从事本专业范围内的各项工作奠定专业基础。
通过本课程的学习要求同学们掌握电力系统的基本知识;通过课程教学,使学生掌握电流保护、方向性电流保护、距离保护和差动保护等几种常用保护的基本工作原理、实现方法和应用范围、整定计算的基本原则和保护之间的配合关系;使学生了解电力系统各主要一次主设备(发电机、变电器、母线、送电线路)的故障类型,不正常运行状态及各自的保护方式;使学生了解各种继电器(电流、方向、阻抗)的构成原理、实现方法、动作特性和一般调试方法,熟悉常用继电保护的实验方法。
三、教学内容及学时分配第一章绪论(4学时)掌握电力系统继电保护的任务、基本原理、基本要求及发展概况。
重点:继电保护的任务、对继电保护的基本要求。
难点:继电保护的选择性和灵敏性。
第二章互感器及变换(6学时)掌握电流互感器、电压互感器的工作原理、注意事项、动作特性及三种接线方式;变换器和对称分量滤过器的工作原理、整定计算原则,根据电流、电压的特点及制定保护方案.第三章电网的电流电压保护 (8学时)掌握电流继电器的工作原理、无时限电流速断保护及带时限电流速断保护的工作原理、定时限过流保护、电压、电流联锁速断保护、晶体管电流保护装置、三段式电流保护装置、反时限过电流保护整定计算原则及接线方式、动作特性及接线方式。