人教版2020高中物理 第二章 气体 理想气体的状态方程习题 教科版选修3-3
- 格式:doc
- 大小:404.86 KB
- 文档页数:8
3理想气体的状态方程记一记理想气体的状态方程知识体系一个模型——理想气体一个方程——理想气体的状态方程三个特例——p1V1T1=p2V2T2⎩⎪⎨⎪⎧T1=T2时,p1V1=p2V2V1=V2时,p1T1=p2T2p1=p2时,V1T1=V2T2辨一辨1.理想气体也不能严格地遵守气体实验定律.(×)2.实际气体在温度不太低、压强不太大的情况下,可看成理想气体.(√)3.一定质量的理想气体,当压强不变而温度由100 ℃上升到200 ℃时,其体积增大为原来的2倍.(×)4.气体由状态1变到状态2时,一定满足方程p1V1T1=p2V2T2.(×)5.一定质量的理想气体体积增大到原来的4倍,可能是因为压强减半且热力学温度加倍.(√)想一想什么样的气体才是理想气体?理想气体的特点是什么?提示:在任何温度、任何压强下都严格遵从实验定律的气体;特点:①严格遵守气体实验定律及理想气体状态方程,是一种理想化模型.②理想气体分子本身的大小与分子间的距离相比可忽略不计,分子不占空间,可视为质点.③理想气体分子除碰撞外,无相互作用的引力和斥力.④理想气体分子无分子势能的变化,内能等于所有分子热运动的动能之和,只和温度有关.思考感悟:练一练=1.有一定质量的理想气体,如果要使它的密度减小,可能的办法是( )A .保持气体体积一定,升高温度B .保持气体的压强和温度一定,增大体积C .保持气体的温度一定,增大压强D .保持气体的压强一定,升高温度解析:由ρ=m /V 可知,ρ减小,V 增大,又由pV T =C 可知A 、B 、C 三项错,D 项对.答案:D2.对于一定质量的理想气体,下列状态变化中可能的实现是( )A .使气体体积增加而同时温度降低B .使气体温度升高,体积不变、压强减小C .使气体温度不变,而压强、体积同时增大D .使气体温度升高,压强减小、体积减小解析:由理想气体状态方程pV T =恒量得A 项中只要压强减小就有可能,故A 项正确;而B 项中体积不变,温度与压强应同时变大或同时变小,故B 项错;C 项中温度不变,压强与体积成反比,故不能同时增大,故C 项错;D 项中温度升高,压强减小,体积减小,导致pV T 减小,故D 项错误.答案:A3.一定质量的理想气体,经历一膨胀过程,这一过程可以用图上的直线ABC 来表示,在A 、B 、C 三个状态上,气体的温度T A 、T B 、T C 相比较,大小关系为( )A .TB =T A =T CB .T A >T B >T CC .T B >T A =T CD .T B <T A =T C解析:由图中各状态的压强和体积的值可知:p A · V A =p C ·V C <p B ·V B ,因为pV T =恒量,可知T A =T C <T B .答案:C4.如图所示,1、2、3为p -V 图中一定量理想气体的三种状态,该理想气体由状态1经过程1→3→2到达状态2.试利用气体实验定律证明:p 1V 1T 1=p 2V 2T 2. 证明:由题图可知1→3是气体等压过程,据盖—吕萨克定律有:V 1T 1=V 2T3→2是等容过程,据查理定律有:p 1T =p 2T 2联立解得p 1V 1T 1=p 2V 2T 2.要点一对理想气体的理解1.(多选)关于理想气体,下列说法中正确的是()A.严格遵守玻意耳定律、盖—吕萨克定律和查理定律的气体称为理想气体B.理想气体客观上是不存在的,它只是实际气体在一定程度上的近似C.和质点的概念一样,理想气体是一种理想化的模型D.一定质量的理想气体,内能增大,其温度可能不变解析:理想气体是一种理想化模型,是对实际气体的科学抽象;温度不太低、压强不太大的情况下可以把实际气体近似视为理想气体;理想气体在任何温度、任何压强下都遵从气体实验定律,A、B、C三项正确;理想气体的内能只与温度有关,温度升高,内能增大,温度降低,内能减小,D项错误.答案:ABC2.(多选)关于理想气体,下列说法正确的是()A.温度极低的气体也是理想气体B.压强极大的气体也遵从气体实验定律C.理想气体是对实际气体的抽象化模型D.理想气体实际并不存在解析:气体实验定律是在压强不太大、温度不太低的情况下得出的,温度极低、压强极大的气体在微观上分子间距离变小,趋向于液体,故答案为C、D两项.答案:CD要点二对理想气体状态方程的理解和应用3.(多选)一定质量的理想气体,初始状态为p、V、T,经过一系列状态变化后,压强仍为p,则下列过程中可以实现的是() A.先等温膨胀,再等容降温B.先等温压缩,再等容降温C.先等容升温,再等温压缩D.先等容降温,再等温压缩解析:根据理想气体状态方程pVT=C,若经过等温膨胀,则T不变,V增加,p减小,再等容降温,则V不变,T降低,p减小,最后压强p肯定不是原来值,A项错,同理可以确定C项也错,正确为B、D两项.答案:BD4.一定质量的气体,从初态(p0、V0、T0)先经等压变化使温度上升到32T0,再经等容变化使压强减小到12p0,则气体最后状态为()A.12p0、V0、32T0 B.12p0、32V0、34T0C.12p0、V0、34T0 D.12p0、32V0、T0解析:在等压过程中,V∝T,有V0T0=V33T02,V3=32V0,再经过一个等容过程,有:p032T0=p02T3,T3=34T0,所以B项正确.答案:B5.如图所示,一定质量的空气被水银封闭在静置于竖直平面的U形玻璃管内,右管上端开口且足够长,右管内水银面比左管内水银面高h,能使h变小的原因是()A.环境温度升高B.大气压强升高C.沿管壁向右管内加水银D.U形玻璃管自由下落解析:对于左端封闭气体,温度升高,由理想气体状态方程可知:气体发生膨胀,h增大,故A项错.大气压升高,气体压强将增大,体积减小,h减小,故B项对.向右管加水银,气体压强增大,内、外压强差增大,h将增大,所以C项错.当管自由下落时,水银不再产生压强,气体压强减小,h变大,故D项错.答案:B6.一水银气压计中混进了空气,因而在27 ℃、外界大气压为758 mmHg时,这个水银气压计的读数为738 mmHg,此时管中水银面距管顶80 mm.当温度降至-3 ℃时,这个气压计的读数为743 mmHg,求此时的实际大气压值为多少?解析:画出该题初、末状态的示意图分别写出被封闭气体的初、末状态的状态参量p1=758 mmHg-738 mmHg=20 mmHgV1=(80 mm)·S(S是管的横截面积)T1=(273+27) K=300 Kp2=p-743 mmHgV2=(738+80) mm·S-743(mm)·S=75(mm)·ST2=(273-3)K=270 K将数据代入理想气体状态方程p1V1 T1=p2V2 T2解得p=762.2 mmHg.答案:762.2 mmHg要点三理想气体变化的图象7.在下图中,不能反映理想气体经历了等温变化→等容变化→等压变化,又回到原来状态的图是()解析:根据p -V ,p -T 、V -T 图象的意义可以判断,其中D 项显示的理想气体经历了等温变化→等压变化→等容变化,与题意不符.答案:D8.图中A 、B 两点代表一定质量理想气体的两个不同的状态,状态A 的温度为T A ,状态B 的温度为T B ;由图可知( )A. T B =2T AB. T B =4T AC. T B =6T AD. T B =8T A 解析:对于A 、B 两个状态应用理想气体状态方程p A V A T A =p B V B T B可得:T B T A =p B V B p A V A =3×42×1=6,即T B =6T A ,C 项正确. 答案:C基础达标1.关于一定质量的理想气体发生状态变化时,其状态参量p 、V 、T 的变化情况不可能的是( )A .p 、V 、T 都减小B .V 减小,p 和T 增大C.p和V增大,T减小D.p增大,V和T减小解析:由理想气体状态方程pVT=C可知,p和V增大,则pV增大,T应增大.C项不可能.答案:C2.(多选)理想气体的状态方程可以写成pVT=C,对于常量C,下列说法正确的是()A.对质量相同的任何气体都相同B.对质量相同的同种气体都相同C.对质量不同的不同气体可能相同D.对质量不同的不同气体一定不同解析:理想气体的状态方程的适用条件就是一定质量的理想气体,说明常量C仅与气体的种类和质量有关,实际上也就是只与气体的物质的量有关.对质量相同的同种气体当然常量是相同的,而对质量不同的不同气体,只要物质的量是相同的,那么常量C也是可以相同的.答案:BC3.(多选)对一定质量的理想气体,下列说法正确的是() A.体积不变,压强增大时,气体分子的平均动能一定增大B.温度不变,压强减小时,气体的密度一定减小C.压强不变,温度降低时,气体的密度一定减小D.温度升高,压强和体积可能都不变解析:由pVT=C(常量)可知,V不变、p增大时T增大,故A项正确;T增大时,p与V至少有一个要发生变化,故D错误;把V=mρ代入pVT=C得pmρT=C,由此式可知,T不变时,ρ随p的减小而减小,故B项正确;p不变时,ρ随T的减小而增大,故C 项错误.答案:AB4.(多选)关于理想气体的状态变化,下列说法中正确的是()A.一定质量的理想气体,当压强不变而温度由100 ℃上升到200 ℃时,其体积增大为原来的2倍B .一定质量的理想气体由状态1变到状态2时,一定满足方程p 1V 1T 1=p 2V 2T 2C .一定质量的理想气体体积增大到原来的4倍,可能是压强减半,热力学温度加倍D .一定质量的理想气体压强增大到原来的4倍,可能是体积加倍,热力学温度减半解析:理想气体状态方程p 1V 1T 1=p 2V 2T 2中的温度是热力学温度,不是摄氏温度,A 项错误,B 项正确;由理想气体状态方程及各量的比例关系即可判断C 项正确,D 项错误.答案:BC5.光滑绝热的轻质活塞把密封的圆筒容器分成A 、B 两部分,这两部分充有温度相同的气体,平衡时V A :V B =1:2,现将A 中气体温度加热到127 ℃,B 中气体温度降低到27 ℃,待重新平衡后,这两部分气体体积的比V A ′:V B ′为( )A .1:1B .2:3C .3:4D .2:1解析:对A 部分气体有:p A V A T A =p A ′V ′A T A ′① 对B 部分气体有:p B V B T B =p B ′V B ′T B ′② 因为p A =p B ,p A ′=p B ′,T A =T B ,所以由①②得V A V B =V A ′T B ′V B ′T A ′,所以V A ′V B ′=V A T A ′V B T B ′=1×4002×300=23答案:B6.如图所示,内壁光滑的汽缸和活塞都是绝热的,缸内被封闭的理想气体原来体积为V ,压强为p ,若用力将活塞向右压,使封闭的气体体积变为V 2,缸内被封闭气体的( )A .压强等于2pB .压强大于2pC .压强小于2pD .分子势能增大了解析:汽缸绝热,压缩气体,其温度必然升高,由理想气体状态方程pV T =C (恒量)可知,T 增大,体积变为V 2,则压强大于2p ,故B 项正确,A 、C 两项错,理想气体分子无势能的变化,D 项错.答案:B7.(多选)如图所示,一定质量的理想气体,从图示A 状态开始,经历了B 、C 状态,最后到D 状态,下列判断正确的是( )A .A →B 温度升高,压强不变B .B →C 体积不变,压强变大C .B →C 体积不变,压强不变D .C →D 体积变小,压强变大解析:由图象可知,在A →B 的过程中,气体温度升高、体积变大,且体积与温度成正比,由pV T =C ,气体压强不变,是等压过程,故A 项正确;由图象可知,在B →C 是等容过程,体积不变,而热力学温度降低,由pV T =C 可知,压强p 减小,故B 、C 两项错误;由图象可知,在C →D 是等温过程,体积减小,由pV T =C可知,压强p 增大,故D 项正确.答案:AD8.一气泡从30 m 深的海底升到海面,设水底温度是4 ℃,水面温度是15 ℃,那么气泡在海面的体积约是水底时的( )A .3倍B .4倍C .5倍D .12倍解析:根据理想气体状态方程:p 1V 1T 1=p 2V 2T 2,知V 2V 1=p 1T 2p 2T 1,其中T 1=(273+4) K =277 K ,T 2=(273+15) K =288 K ,故T 2T 1≈1,而p 2=p 0≈10ρ水 g ,p 1=p 0+p ≈40 ρ水 g ,即p 1p 2≈4,故V 2V 1≈4.故选B 项.答案:B9.(多选)如图所示,用活塞把一定质量的理想气体封闭在导热汽缸中,用水平外力F 作用于活塞杆,使活塞缓慢向右移动,由状态①变化到状态②.如果环境保持恒温,分别用p 、V 、T 表示该理想气体的压强、体积、温度.气体从状态①变化到状态②,此过程可用下图中哪几个图象表示( )解析:由题意知,由状态①到状态②过程中,温度不变,体积增大,根据pV T =C 可知压强将减小.对A 项图象进行分析,p -V图象是双曲线即等温线,且由状态①到状态②体积增大,压强减小,故A 项正确;对B 项图象进行分析,p -V 图象是直线,温度会发生变化,故B 项错误;对C 项图象进行分析,可知温度不变,但体积增大,故C 项错误;对D 项图象进行分析,可知温度不变,压强减小,D 项正确.答案:AD10.如图所示为伽利略设计的一种测温装置示意图,玻璃管的上端与导热良好的玻璃泡连通,下端插入水中,玻璃泡中封闭有一定量的空气.若玻璃管中水柱上升,则外界大气的变化可能是( )A .温度降低,压强增大B .温度升高,压强不变C .温度升高,压强减小D .温度不变,压强减小解析:由题意可知,封闭空气温度与大气温度相同,封闭空气体积随水柱的上升而减小,将封闭空气近似看作理想气体,根据理想气体状态方程pV T =常量,若温度降低,体积减小,则压强可能增大、不变或减小,A 项正确;若温度升高,体积减小,则压强一定增大,B 、C 两项错误;若温度不变,体积减小,则压强一定增大,D 项错误.答案:A11.某不封闭的房间容积为20 m 3,在温度为7 ℃、大气压强为9.8×104 Pa 时,室内空气质量为25 kg.当温度升高到27 ℃、大气压强为1.0×105 Pa 时,室内空气的质量是多少?(T =273 K +t )解析:假设气体质量不变,末态体积为V 2,由理想气体状态方程有:p 1V 1T 1=p 2V 2T 2, 解得V 2=p 1V 1T 2p 2T 1=9.8×104×20×3001.0×105×280=21.0 m 3. 因为V 2>V 1,即有部分气体从房间内流出,设剩余气体质量为m 2,由比例关系有:V 1V 2=m 2m 1,m 2=m 1V 1V 2=23.8 kg.答案:23.8 kg12.图甲为1 mol 氢气的状态变化过程的V -T 图象,已知状态A 的参量为p A =1 atm ,T A =273 K ,V A =22.4×10-3 m 3,取1 atm=105 Pa ,在图乙中画出与甲图对应的状态变化过程的p -V 图,写出计算过程并标明A 、B 、C 的位置.解析:据题意,从状态A 变化到状态C 的过程中,由理想气体状态方程可得:p A V A T A =p C V C T C ,p C =1 atm ,从A 变化到B 的过程中有:p A V A T A=p B V B T B,p B =2 atm. A 、B 、C 的位置如图所示.答案:见解析13.[2019·潍坊高二检测]内燃机汽缸里的混合气体,在吸气冲程结束瞬间,温度为50 ℃,压强为1.0×105 Pa ,体积为0.93 L .在压缩冲程中,把气体的体积压缩为0.155 L 时,气体的压强增大到1.2×106 Pa.这时混合气体的温度升高到多少摄氏度?解析:气体初状态的状态参量为p 1=1.0×105 Pa ,V 1=0.93 L ,T 1=(50+273) K =323 K.气体末状态的状态参量为p 2=1.2×106 Pa ,V 2=0.155 L ,T 2为未知量.由p 1V 1T 1=p 2V 2T 2可求得T 2=p 2V 2p 1V 1T 1, 将已知量代入上式,得T 2=1.2×106×0.1551.0×105×0.93×323 K =646 K , 所以混合气体的温度t =(646-273) ℃=373 ℃.答案:373 ℃能力达标14.[2019·长春市质检]如图所示,绝热气缸开口向上放置在水平地面上,一质量m =10 kg,横截面积S=50 cm2的活塞可沿气缸无摩擦滑动;被封闭的理想气体温度t=27 ℃时,气柱长L=22.4 cm.已知大气压强为标准大气压p0=1.0×105Pa,标准状况下(压强为一个标准大气压,温度为0 ℃)理想气体的摩尔体积为22.4 L,阿伏加德罗常数N A=6.0×1023mol-1,g=10 m/s2.求:(计算结果保留两位有效数字)(1)被封闭理想气体的压强;(2)被封闭气体内所含分子的数目.解析:(1)被封闭理想气体的压强为p=p0+mg Sp=1.2×105 Pa(2)由p0V0T0=pVT得标准状况下的体积为V0=pVT0 p0T被封闭气体内所含分子的数目为N=N A V0 V m解得N=3.3×1022个答案:(1)1.2×105 Pa(2)3.3×1022。
高中物理学习材料(灿若寒星**整理制作)理想气体状态方程同步练习 3(1)乒乓球挤瘪后,放在热水里泡一会儿,会重新鼓起来. 解释这个现象.(2)封闭在容器中的气体,当温度升高时,下面哪个说法是正确的(容器的膨胀忽略不计):A.密度和压强均增大B.密度增大,压强不变.C.密度不变,压强增大.D.密度和压强均不变.分析:封闭在容器中的气体,质量不变. 在容器膨胀忽略不计时,由于体积不变,气体的密度不变. 由查理定律可知,温度升高时,气体压强增大.(3)一定质量的某种气体在20℃时的压强是1.0×105Pa. 保持体积不变,温度升高到50℃时,压强是多大?温度降低到-17℃时,压强是多大?(4)一个密闭容器里的气体,0℃时压强是8.0×104Pa. 给容器加热,气体的压强为1.0×105Pa 时温度升高到多少度?(容器的膨胀忽略不计)(5)某气体的等容线如图所示,线上的两点A 、B 表示气体所处的两个状态. A 、B 两个状态的体积比=B A V V _______,压强比=B A p p ________,温度比=BA T T _________. (6)一定质量的气体,保持其体积不变. 设0℃时的压强为p 0,t ℃时的压强为p . 取T = t ℃+273K.a. 试证明:)2731(0t p p +=.b. 在p-t 图上画出等容线. 等容线的延长线与横轴的交点是多少摄氏度?等容线在纵轴上的截距代表什么?答案:1、答:把乒乓球放在热水里,球内空气温度升高,由查理定律知道,空气的压强增大,大于大气压强. 球上瘪下去的部分受到球内气体的较大压强的作用,最终会鼓起来.2、答:说法C 正确.3、解:气体的初状态T 1=293K ,p 1=1.0×105Pa. 由查理定律2121T T p p =可知,1122p T T p =. 气体温度为50℃时T 2 = 323K. 把已知数值代入上式,可得这时气体的压强Pa 101.1Pa 100.1293323552⨯=⨯⨯=p . 气体温度为-17℃时T 3 = 256K ,这时气体的压强1133p T T p =Pa 100.12932565⨯⨯= = 8.7×104Pa4、解:气体的初状态T 1=273K ,p 1=8.0×104Pa. 气体的末状态p 2 = 1.0×105Pa.由查理定律可知 1122T p p T = K 273100.8100.145⨯⨯⨯= = 341.3 K5、答:11;12;12 6、答: a.证明:由查理定律知道,00T p T p =,所以00p T T p =. 根据题目所给的条件,0℃时的压强为p 0. 由于摄氏温度t = T -T 0,T 0 = 273.15K ,因此上式也可以表示为T = t + 273K ,所以可以得到t ℃时的压强)2731(27327300t p p t p +=+=. 证毕.b.在p-t 图上画出的等容线如图13-8. 等容线的延长线与横轴的交点是0 K ,即-273℃. 等容线在纵轴上的截距代表0℃时气体的压强p 0。
2.5《理想气体》同步练习1.关于理想气体,下列说法正确的是()A.理想气体也不能严格地遵守气体实验定律B.实际气体在温度不太高、压强不太小的情况下,可看成理想气体C.实际气体在温度不太低、压强不太大的情况下,可看成理想气体D.所有的实际气体在任何情况下,都可以看成理想气体解析:选C.理想气体是在任何温度、任何压强下都能遵守气体实验定律的气体,A项错误;它是实际气体在温度不太低、压强不太大的情况下的抽象,故C正确.B、D错误.2.(达县中学高二检测)封闭在体积一定的容器内的理想气体,当温度升高时,下列说法正确的是()A.气体分子的密度增加B.气体分子的平均动能增加C.气体分子的平均速率增加D.气体分子的势能增加解析:选BC.理想气体做等容变化,单位体积分子数不变,密度不变.温度升高,则气体分子平均速率、平均动能均增大.理想气体分子间没有相互作用力,没有分子势能,故B、C正确.3.对于一定质量的理想气体()A.若保持气体的温度不变,则当气体的压强减小时,气体的体积一定会增大B.若保持气体的压强不变,则当气体的温度减小时,气体的体积一定会增大C.若保持气体的体积不变,则当气体的温度减小时,气体的压强一定会增大D.若保持气体的温度和压强都不变,则气体的体积一定不变解析:选AD.气体的三个状态参量变化时,至少有两个同时参与变化,故D对;T不变时,由pV=恒量知,A对;p不变时,由VT=恒量知,B错;V不变时,由pT=恒量知,C错.4.(高考新课标全国卷改编)对于一定量的理想气体,下列说法正确的是()A.若气体的压强和体积都不变,其内能也一定不变B.若气体的内能不变,其状态也一定不变C.若气体的温度随时间不断升高,其压强也一定不断增大D.气体温度每升高1 K所吸收的热量与气体经历的过程有关解析:选AD.对一定质量的理想气体,有pVT=常量,当体积和压强不变时,温度也不变,而其内能仅由温度决定,故其内能不变,因此A正确.在等温时,理想气体内能不变,但其状态可以变化,并遵循玻意耳定律,故B错.由于pV T=常量,当V与T成正比时,p不变,故C错.对气体,在等压和等容情况下,比热容不同,因此D正确.5.使一定质量的理想气体按图2-5-2中箭头所示的顺序变化,图中BC段是以纵轴和横轴为渐近线的双曲线.(1)已知气体在状态A的温度T A=300 K,求气体在状态B、C和D的温度各是多少?(2)将上述状态变化过程在图中画成用体积V和温度T表示的图线(图中要标明A、B、C、D四点,并且要画箭头表示变化的方向).说明每段图线各表示什么过程.图2-5-2解析:(1)A→B为等压过程:V A T A=V BT B,得T B=2T A=600 KB→C为等温线,得T C=T B=600 K因为p A V A=p D V D,所以T D=T A=300 K.(2)A→B为等压过程,B→C为等温过程,C→D为等压过程.答案:(1)600 K 600 K 300 K(2)如图所示AB是等压膨胀过程,BC是等温膨胀过程,CD是等压压缩过程.一、选择题1.关于理想气体,下列说法正确的是()A.温度极低的气体也是理想气体B.压强极大的气体也遵守气体实验定律C.理想气体是对实际气体的抽象化模型D.理想气体实际并不存在解析:选CD.气体实验定律是在压强不太大、温度不太低的情况下得出的,温度极低、压强极大的气体在微观上分子间距离变小,趋向于液体,故答案为C、D.2.一定质量的理想气体经历等温压缩过程时,气体压强增大,从分子运动理论观点来分析,这是因为()A.气体分子的平均动能增大B.单位时间内,器壁单位面积上分子碰撞的次数增多C.气体分子数增加D.气体的分子数密度变大解析:选BD.等温压缩,温度不变,分子平均动能不变,A错;由查理定律知,压强增大,故B对;由于气体质量不变,体积减小,故分子数不变,密度变大,故C错、D对.3.一定质量的理想气体,在压强不变的条件下,温度升高,体积增大,从分子动理论的观点来分析,正确的是()A.此过程中分子的平均速率不变,所以压强保持不变B.此过程中每个气体分子碰撞器壁的平均冲击力不变,所以压强保持不变C.此过程中单位时间内气体分子对单位面积器壁的碰撞次数不变,所以压强保持不变D.以上说法都不对解析:选D.压强与单位时间内碰撞到器壁单位面积的分子数和每个分子的冲击力有关,温度升高,分子与器壁的撞击力增大,单位时间内碰撞的分子数要减小,压强才可能保持不变.4. (西昌一中高二检测)一定质量的理想气体,压强保持不变,下列过程可以实现的是()A.温度升高,体积增大B.温度升高,体积减小C.温度不变,体积增大D.温度不变,体积减小解析:选A.一定质量的理想气体,压强保持不变时,其热力学温度和体积成正比,则温度升高,体积增大;温度降低,体积减小;温度不变,体积也不发生变化.故A正确.5.一定质量的理想气体,初始状态为p、V、T.经过一系列状态变化后,压强仍为p,则下列过程中可以实现的是()A.先等温膨胀,再等容降温B.先等温压缩,再等容降温C.先等容升温,再等温压缩D.先等容降温,再等温压缩解析:选BD.气体状态无论怎样变化,其pV/T比值却不能改变.A项中气体先经V↑p↓T不变的过程,再经T↓p↓的等容过程,压强降了再降,不可能回到初态的压强p值.B项中,T不变,V↓p↑后V不变,T↓p↓,压强增了之后又减小,可能会回到初态压强值p,即B正确.C项中,V不变,T↑p↑之后T不变,V ↓p↑,压强增了再增,末态压强必大于初态压强值p,C项不可能实现.D项中,V不变,T↓p↓之后T不变,V↓p↑,压强先减后增,末态压强可能等于初态压强值p,D项正确,本题选B、D.6.如图2-5-3所示为一定质量的理想气体在不同体积时的两条等容线,a、b、c、d表示四个不同状态,则()图2-5-3A.气体由状态a变到状态c,其内能减少B.气体由状态a变到状态d,其内能增加C.气体由状态d变到状态c,其内能增加D.气体由状态b变到状态a,其内能减少解析:选ABD.气体由状态a变到状态c,温度降低,平均动能减少,内能减少,A对;气体由状态a变到状态d,温度升高,平均动能增大,内能增加,B对;气体由状态d变到状态c,温度降低,平均动能减少,内能减少,C错;气体由状态b变到状态a,温度降低,平均动能减少,内能减少,D对.7.已知理想气体的内能与温度成正比,如图2-5-4所示的实线为汽缸内一定质量的理想气体由状态1到状态2的变化曲线,则在整个过程中汽缸内气体的内能()图2-5-4A.先增大后减小B.先减小后增大C.单调变化D.保持不变解析:选B.题图中虚线是等温线,由理想气体状态方程pVT=C知,在V一定时,p∝T,所以气体由状态1到状态2时温度先减小后增大,即理想气体的内能先减小后增大.二、非选择题8.一定质量的理想气体,在状态变化过程中的p -T 图像如图2-5-5所示,在A 状态时的体积为V 0,试画出对应的V -T 图像.图2-5-5解析:对气体由A →B ,根据玻意耳定律有p 0V 0=3p 0V B ,则V B =13V 0. 对气体由B →C :根据盖吕萨克定律:V B T 0=V C 3T 0,V C =3V B =V 0,由此可知A 、B 、C 三点的状态量分别为 A :p 0,T 0,V 0;B :3p 0,T 0,13V 0;C :3p 0,3T 0,V 0.V -T 图像如图所示.答案:见解析9.(绵阳中学高二质检)汽车行驶时轮胎的胎压太高容易造成爆胎事故,太低又会造成耗油量上升.已知某型号轮胎能在-40 ℃~90 ℃正常工作,为使轮胎在此温度范围内工作时的最高胎压不超过3.5 atm ,最低胎压不低于1.6 atm ,那么在t =20 ℃时给该轮胎充气,充气后的胎压在什么范围内比较合适(设轮胎的体积不变). 解析:对于胎内气体,根据查理定律p 1T 1=p 2T 2,t 1、p 1分别为-40 ℃、1.6 atm20 ℃时的压强为p 2=T 2T 1p 1=293233×1.6 atm =2.01 atm 若t 3、p 3分别为90 ℃、3.5 atm根据查理定律得:p 2T 2=p 3T 320 ℃时的压强为:p2=T2T3p3=293363×3.5 atm=2.83 atm.胎压范围为:2.01 atm<p<2.83 atm. 答案:2.01 atm至2.83 atm。
理想气体的状态方程知识元理想气体的状态方程知识讲解1.理想气体(1)宏观上讲,理想气体是指在任何条件下始终遵守气体实验定律的气体,实际气体在压强不太大、温度不太低的条件下,可视为理想气体.(2)微观上讲:分子本身的大小可以忽略不计,分子可视为质点;理想气体分子除碰撞外,无相互作用的引力和斥力;从能量上看,分子间无相互作用力,也就没有分子力做功,故无分子势能。
理想气体的内能等于所有分子热运动的动能之和,一定质量的理想气体的内能只与温度有关。
2.理想气体的状态方程一定质量的理想气体状态方程:.(1)气体实验定律可看作一定质量理想气体状态方程的特例.(2)适用条件:压强不太大,温度不太低(3)式中常量C由气体的各类和质量决定,与其它参量无关例题精讲理想气体的状态方程例1.'如图所示,汽缸开口向上固定在水平面上,其横截面积为S,内壁光滑,A、B为距离汽缸底部h2处的等高限位装置,限位装置上装有压力传感器,可探测活塞对限位装置的压力大小,活塞质量为m,在汽缸内封闭了一段高为h1、温度为T1得到理想气体,对汽缸内气体缓缓降温,已知重力加速度为g,大气压强为p0,变化过程中活塞始终保持水平状态。
求:①当活塞刚好与限位装置接触(无弹力)时,汽缸内气体的温度T2;②当A、B处压力传感器的示数之和为2mg时,汽缸内气体的度T3。
'例2.'如图所示,一定质量的理想气体从状态A变化到状态B,再变化到状态C.已知状态A的温度为600K.求:(I)气体在状态C的温度;(II)若从状态A变化到状态B的整个过程中,气体是从外界吸收热量为Q,气体对外界做了多少功。
'例3.'热气球是靠加热气球内部空气排出部分气体而获得上升动力的装置。
已知空气在1个大气压,温度27℃时的密度为1.16kg/m3.现外界气体温度是17℃,气球内、外气压始终为1个标准大气压。
现要用容积V0=1000m3的气球(气球自身质量忽略不计)吊起m1=200kg的重物。
高中物理学习材料唐玲收集整理理想气体状态方程同步练习 3(1)乒乓球挤瘪后,放在热水里泡一会儿,会重新鼓起来. 解释这个现象.(2)封闭在容器中的气体,当温度升高时,下面哪个说法是正确的(容器的膨胀忽略不计):A.密度和压强均增大B.密度增大,压强不变.C.密度不变,压强增大.D.密度和压强均不变.分析:封闭在容器中的气体,质量不变. 在容器膨胀忽略不计时,由于体积不变,气体的密度不变. 由查理定律可知,温度升高时,气体压强增大.(3)一定质量的某种气体在20℃时的压强是1.0×105Pa. 保持体积不变,温度升高到50℃时,压强是多大?温度降低到-17℃时,压强是多大?(4)一个密闭容器里的气体,0℃时压强是8.0×104Pa. 给容器加热,气体的压强为1.0×105Pa 时温度升高到多少度?(容器的膨胀忽略不计)(5)某气体的等容线如图所示,线上的两点A 、B 表示气体所处的两个状态. A 、B 两个状态的体积比=B A V V _______,压强比=B A p p ________,温度比=BA T T _________. (6)一定质量的气体,保持其体积不变. 设0℃时的压强为p 0,t ℃时的压强为p . 取T = t ℃+273K.a. 试证明:)2731(0t p p +=. b. 在p-t 图上画出等容线. 等容线的延长线与横轴的交点是多少摄氏度?等容线在纵轴上的截距代表什么?答案:1、答:把乒乓球放在热水里,球内空气温度升高,由查理定律知道,空气的压强增大,大于大气压强. 球上瘪下去的部分受到球内气体的较大压强的作用,最终会鼓起来.2、答:说法C 正确.3、解:气体的初状态T 1=293K ,p 1=1.0×105Pa. 由查理定律2121T T p p =可知,1122p T T p =. 气体温度为50℃时T 2 = 323K. 把已知数值代入上式,可得这时气体的压强Pa 101.1Pa 100.1293323552⨯=⨯⨯=p . 气体温度为-17℃时T 3 = 256K ,这时气体的压强1133p T T p =Pa 100.12932565⨯⨯= = 8.7×104Pa4、解:气体的初状态T 1=273K ,p 1=8.0×104Pa. 气体的末状态p 2 = 1.0×105Pa.由查理定律可知 1122T p p T = K 273100.8100.145⨯⨯⨯= = 341.3 K5、答:11;12;126、答:a.证明:由查理定律知道,00T p T p =,所以00p T T p =. 根据题目所给的条件,0℃时的压强为p 0. 由于摄氏温度t = T -T 0,T 0 = 273.15K ,因此上式也可以表示为T = t + 273K ,所以可以得到t ℃时的压强)2731(27327300t p p t p +=+=. 证毕.b.在p-t 图上画出的等容线如图13-8. 等容线的延长线与横轴的交点是0 K ,即-273℃. 等容线在纵轴上的截距代表0℃时气体的压强p 0。
3 理想气体的状态方程互动课堂 疏导引导1.对理想气体的理解(1)理想气体是一种科学的抽象,是理想化的物理模型,把严格遵守三个实验定律的气体称为理想气体. (2)理想气体的分子模型:①分子本身的大小和它们之间的距离相比较可忽略不计.②分子间的距离很大,因此除碰撞外,分子间的相互作用力忽略不计,分子势能看作零,理想气体的内能就等于所有分子动能的总和.③分子之间的碰撞看成弹性碰撞.(3)实际气体在常温常压下可近似看成理想气体.注:中学阶段所涉及的气体(除特别说明外)都看成理想气体. 2.理想气体的状态方程 (1)推导过程首先由学生画出上节中的p-V 图象,如图8-3-1所示.由图可知,A→B 为等温过程,根据玻意耳定律可得p A V A =p B V B ①图8-3-1从B→C 为等容过程,根据查量定律可得:CC B BT p T p = ② 又T B =T A ,V B =V C , 联立①②可得.CC C A AA T V p T V p = (2)上式表明,一定质量的某种理想气体在从一个状态1变化到另一个状态2时,尽管其p 、V 、T 都可能变化,但是压强跟体积的乘积与热力学温度的比值保持不变.也就是说222111T V p T V p =或C TpV=(C 为恒量) 上面两式都叫做一定质量的理想气体的状态方程.(3)气体实验定律可看作一定质量理想气体状态方程的特例.一定质量的理想气体状态方程222111T V p T V p =, ①当m 、T 不变时,则为p 1V 1=p 2V 2——玻意耳定律. ②当m 、V 不变时,则为2211T p T p =——查理定律.③当m 、p 不变时,则为2211T V TV =——盖·吕萨克定律. 3.两个有用的推论①含有密度的理想气体状态方程:222111T pT p ρρ=,该方程根据理想气体状态方程和物质密度的定义可导出,此式虽是从定质量的条件下推导出来的,但它却与质量无关,可适用于任何两部分同类气体,方便地解决变质量的一些问题,该式也称为理想气体密度方程. ②理想气体状态方程的分态式:nn n T V p T V p T V p T pV+++= 222111,式中(p 1、V 1、T 1)、(p 2、V 2、T 2)…(p n 、V n 、T n )是气体终态的n 个部分的状态参量.该方程根据质量守恒和克拉珀龙方程可导出,当理想气体发生状态变化时,如伴随着有气体的迁移、分装、混合等各种情况,使用分态式会显得特别方便. 活学巧用1.关于理想气体,下列说法中哪些是正确的( ) A.严格遵守气体三定律的气体称为理想气体B.理想气体客观上是不存在的,它只是实际气体在一定程度上的近似C.低温(和室温比较)和低压(和大气压比较)条件下的实际气体都可以看成理想气体D.和质点的概念一样,理想气体是一种理想化的模型 解析:见疏导引导1。
理想气体状态方程(选修3-3)(一)理想气体定义:在任何温度、任何压强下都遵从气体实验定律的气体简化条件:实际气体,在压强不太大(不超过大气压的几倍),温度不太低(不低于零下几十摄氏度)时,可以近似地视为理想气体内能:微观角度——理想气体的内能等于所有分子的总动能宏观角度——一定质量的理想气体,其内能只与温度有关,与体积无关(二)理想气体的状态方程表述:一定质量气体的状态变化时,其压强和体积的乘积与热力学温度的比是个常数表达式:pV/T=C适用条件:质量一定的理想气体(三)气体热现象的微观意义气体压强的微观意义:A、大小及定义:气体压强的大小等于气体作用在器壁单位面积上的压力B、决定因素:气体分子的平均动能;分子的密集度对气体实验定律的微观解释习题1.关于理想气体,下列说法正确的是( )A.理想气体能严格遵守气体实验定律B.实际气体在温度不太高、压强不太大的情况下,可看成理想气体C.实际气体在温度不太低、压强不太大的情况下,可看成理想气体D.所有的实际气体任何情况下,都可以看成理想气体2.一定质量的理想气体,在某一平衡状态下的压强、体积和温度分别为p1、V1、T1,在另一平衡状态下的压强、体积和温度分别为p2、V2、T2,下列关系正确的是( ) A.p1=p2,V1=2V2,T1=12T2B.p1=p2,V1=12V2,T1=2T2C.p1=2p2,V1=2V2,T1=2T2 D.p1=2p2,V1=V2,T1=2T23.一定质量的理想气体,经历一膨胀过程,这一过程可以用下图上的直线ABC来表示,在A、B、C三个状态上,气体的温度T A、T B、T C相比较,大小关系为( )A.T B=T A=T CB.T A>T B>T CC.T B>T A=T CD.TB<TA=TC4.如图所示,一定质量的空气被水银封闭在静置于竖直平面的U形玻璃管内,右管上端开口且足够长,右管内水银面比左管内水银面高h,能使h变大的原因是A.环境温度升高B.大气压强升高C.沿管壁向右管内加水银D.U形玻璃管自由下落5.下图中A、B两点代表一定质量理想气体的两个不同的状态,状态A的温度为T A,状态B的温度为T B;由图可知( )A.T B=2T A B.T B=4T AC.T B=6T A D.T B=8T A6.有两个容积相等的容器,里面盛有同种气体,用一段水平玻璃管把它们连接起来。
《理想气体状态方程的应用》(一)复习理想气体的状态方程的几种表达式 1.C TPV=恒量C 与气体的质量和种类有关。
2.222111T V P T V P =适用于一定质量理想气体的状态变化过程 3.222111T PT P ρρ=在气体质量改变的情况下也适用。
4.nRT PV = RT MmPV ==(二)实例推导出分态式的状态方程例1两瓶气体,压强、体积、温度分别为1p 、1V 、1T 和2p 、2V 、2T ,把它们混合装在体积为V ,温度恒为T 的容器中,求它们的压强。
解析 设想把甲瓶中的气体装入容器的左边,占据体积为1V ',乙瓶中的气体装在容器的右边,占据体积为2V ',它们的共同压强为p ,如图19-l 所示。
对甲气体,由状态方程得11111T V P T V P '= 对乙气体,由状态方程得TV P T V P 2222'= 据上述二式两边相加,并注意到它们的体积关系V V V ='+'21,得222111T V P T V P T PV += 这就是分态式气体的状态方程,一般地,有Λ+++=333222111T V P T V P T V P T PV 几种不同气体混合后它们的压强222111VT TV P VT T V P P +=上式中的第一项111VT T V P 是甲气体单独装进体积为V 的容器中的压强,第二项222VT TV P 是乙气体单独装进体积为V 的容器中的压强。
由此可得出道尔顿分压原理:容器中装有几种气体时,气体的压强等于每种气体所产生的压强之和。
对于把一定质量的理想气体分成几部分状态参量不相同的气体或者把状态参量不相同的几部分气体合装在同一个容器的问题,应用分态式状态方程非常方便。
例2一艘位于水面下200m 深处的潜水艇,艇上有一个容积为32m 的贮气筒,筒内贮有压缩空气,将筒内一部分空气压入水箱(水箱有排水孔和海水相连),排出海水310m ,此时筒内剩余气体的压强是95atm 。
§8.3 理想气体的状态方程【教学目标】1.在物理知识方面的要求:(1)初步理解“理想气体”的概念。
(2)掌握运用玻意耳定律和查理定律推导理想气体状态方程的过程,熟记理想气体状态方程的数学表达式,并能正确运用理想气体状态方程解答有关简单问题。
(3)熟记盖·吕萨克定律及数学表达式,并能正确用它来解答气体等压变化的有关问题。
2.通过推导理想气体状态方程及由理想气体状态方程推导盖·吕萨克定律的过程,培养学生严密的逻辑思维能力。
3.通过用实验验证盖·吕萨克定律的教学过程,使学生学会用实验来验证成正比关系的物理定律的一种方法,并对学生进行“实践是检验真理唯一的标准”的教育。
【重点、难点分析】1.理想气体的状态方程是本节课的重点,因为它不仅是本节课的核心内容,还是中学阶段解答气体问题所遵循的最重要的规律之一。
2.对“理想气体”这一概念的理解是本节课的一个难点,因为这一概念对中学生来讲十分抽象,而且在本节只能从宏观现象对“理想气体”给出初步概念定义,只有到后两节从微观的气体分子动理论方面才能对“理想气体”给予进一步的论述。
另外在推导气体状态方程的过程中用状态参量来表示气体状态的变化也很抽象,学生理解上也有一定难度。
【教具】1.气体定律实验器、烧杯、温度计等。
【教学过程】(一)引入新课前面我们学习的玻意耳定律是一定质量的气体在温度不变时,压强与体积变化所遵循的规律,而查理定律是一定质量的气体在体积不变时,压强与温度变化时所遵循的规律,即这两个定律都是一定质量的气体的体积、压强、温度三个状态参量中都有一个参量不变,而另外两个参量变化所遵循的规律,若三个状态参量都发生变化时,应遵循什么样的规律呢?这就是我们今天这节课要学习的主要问题。
(二)教学过程设计1.关于“理想气体”概念的教学设问:(1)玻意耳定律和查理定律是如何得出的?即它们是物理理论推导出来的还是由实验总结归纳得出来的?答案是:由实验总结归纳得出的。
一、选择题1.如图所示为一定质量理想气体的体积V与温度T的关系图象,它由状态A经等温过程到状态B,再经等容过程到状态C,设A、B、C状态对应的压强分别为p A、p B、p C,则下列关系式中正确的是()A.p A<p B,p B<p C B.p A>p B,p B=p CC.p A>p B,p B<p C D.p A=p B,p B>p C A解析:A气体从状态A变化到状态B,发生等温变化,p与体积V成反比,由图可知V A>V B,所以p A<p B从状态B到状态C,气体发生等容变化,压强p与热力学温度T成正比,由图可知T B<T C,所以p B<p CA.p A<p B,p B<p C与上述分析相符,故A正确;B.p A>p B,p B=p C 与上述分析不符,故B错误;C.p A>p B,p B<p C与上述分析不符,故C错误;D.p A=p B,p B>p C 与上述分析不符,故D错误;故选A。
2.液晶属于A.固态B.液态C.气态D.固态和液态之间的中间态D解析:D【解析】液晶像液体一样可以流动,又具有某些晶体结构特征的一类物质.液晶是介于液态与结晶态之间的一种物质状态,故D正确.故选D.【点睛】液晶较为生疏的一种物质状态.关键需要记住其定义和基本特性即可.3.一个敞口的瓶子,放在空气中,气温为27℃.现对瓶子加热,由于瓶子中空气受热膨胀,一部分空气被排出.当瓶子中空气温度上升到57℃时,瓶中剩余空气的质量是原来的()A.1011B.910C.911D.1112A解析:A假设被排出的空气体积为V ,瓶内的空气体积为V 0,则 0012V V V T T += 由于瓶中剩余空气的质量与总质量之间满足00m V m V V =+剩所以 0100227327102735711m V T m V V T +====++剩故选A .【点睛】 该题中,瓶子中的空气受热后有一部分溢出,然后分散在空气中,体积看似没有办法测量,但是,我们可以“假设”可以将这一部分的空气收集在一个容器中.4.下列说法不正确...的是( ) A .在失重的情况下,气体的压强不会为零B .液体中的扩散现象是由于液体的对流形成的C .加入水中的碳粒越小,碳粒自发混合均匀的过程就越快D .在一定的条件下,某些晶体可以转化为非晶体,某些非晶体也可以转化为晶体B 解析:BA .气体的压强是气体分子用于频繁的碰撞容器壁而产生的,所以即使在失重的情况下,气体的压强不会为零,选项A 正确;B .液体中的扩散现象是由于液体分子的无规则运动形成的,不是因对流形成的,选项B 错误;C .加入水中的碳粒越小,受到水分子的碰撞越不平衡,布朗运动越显著,所以碳粒自发混合均匀的过程就越快,选项C 正确;D .在一定的条件下,某些晶体可以转化为非晶体,某些非晶体也可以转化为晶体,天然石英是晶体,熔融过的石英却是非晶体,选项D 正确。
理想气体的状态方程一、选择题1.对于一定质量的理想气体,下述四个论述中正确的是().A.当分子热运动变剧烈时,压强必变大B.当分子热运动变剧烈时,压强可以不变C.当分子间的平均距离变大时,压强必变小D.当分子间的平均距离变大时,压强必变大2.关于理想气体,下列说法中哪些是正确的?()A.严格遵守玻意耳定律和查理定律以及盖一吕萨克定律的气体称为理想气体B.理想气体客观上是不存在的,它只是实际气体在一定程度上的近似C.温度不太低(和室温比较)和压强不太大(和大气压比较)条件下的实际气体可以近似看成理想气体D.和质点的概念一样,理想气体是一种理想化的模型3.一绝热隔板将一绝热长方形容器隔成两部分,两边分别充满气体,隔板可无摩擦移动.开始时,左边的温度为0℃,右边的温度为20℃,当左边的气体加热到20℃,右边的气体加热到40℃时,则达到平衡状态时隔板的最终位置().A.保持不动 B.在初始位置右侧 C.在初始位置左侧 D.决定于加热过程4.常温下,在密闭容器里分别充入两种气体0.1 mol,在一定条件下充分反应后,恢复到原温度时,压强降低为初始的14,则原混合气体可能是().A.H2和O2 B.H2和Cl2 C.NH3和HCl D.CO和O25.一定质量的理想气体的p-t图象如图所示,在状态A变化到状态曰的过程中,体积().A.一定不变 B.一定减小 C.一定增加 D.可能不变6.如图所示,a、b、c分别是一定质量的理想气体的三个状态点,设a、b、c状态的气体体积分别为V a、V b、V c,则下列关系中正确的是().A.V a<V b<V c B.V a>V b=V c C.V a=V b<V c D.V a=V b>V c7.如图所示,p0为标准大气压,0.2摩尔某种气体在B状态时的体积是().A.48 L B.5.6 L C.4.48 L D.2.24 L8.一定质量的理想气体由状态A沿着图所示的过程变化到B,下列分析正确的是().A.气体的温度保持不变 B.气体的温度先不变,后降低C.气体的内能保持不变 D.气体的内能先不变,后减小9.如图所示,U型气缸固定在水平地面上,用重力不计的活塞封闭着一定质量的气体,已知气缸不漏气,活塞移动过程无摩擦。
理想气体的状态方程一、选择题1.对于一定质量的理想气体,下述四个论述中正确的是().A.当分子热运动变剧烈时,压强必变大B.当分子热运动变剧烈时,压强可以不变C.当分子间的平均距离变大时,压强必变小D.当分子间的平均距离变大时,压强必变大2.关于理想气体,下列说法中哪些是正确的?()A.严格遵守玻意耳定律和查理定律以及盖一吕萨克定律的气体称为理想气体B.理想气体客观上是不存在的,它只是实际气体在一定程度上的近似C.温度不太低(和室温比较)和压强不太大(和大气压比较)条件下的实际气体可以近似看成理想气体D.和质点的概念一样,理想气体是一种理想化的模型3.一绝热隔板将一绝热长方形容器隔成两部分,两边分别充满气体,隔板可无摩擦移动.开始时,左边的温度为0℃,右边的温度为20℃,当左边的气体加热到20℃,右边的气体加热到40℃时,则达到平衡状态时隔板的最终位置().A.保持不动 B.在初始位置右侧 C.在初始位置左侧 D.决定于加热过程4.常温下,在密闭容器里分别充入两种气体0.1 mol,在一定条件下充分反应后,恢复到原温度时,压强降低为初始的14,则原混合气体可能是().A.H2和O2 B.H2和Cl2 C.NH3和HCl D.CO和O25.一定质量的理想气体的p-t图象如图所示,在状态A变化到状态曰的过程中,体积().A.一定不变 B.一定减小 C.一定增加 D.可能不变6.如图所示,a、b、c分别是一定质量的理想气体的三个状态点,设a、b、c状态的气体体积分别为V a、V b、V c,则下列关系中正确的是().A.V a<V b<V c B.V a>V b=V c C.V a=V b<V c D.V a=V b>V c7.如图所示,p0为标准大气压,0.2摩尔某种气体在B状态时的体积是().A.48 L B.5.6 L C.4.48 L D.2.24 L8.一定质量的理想气体由状态A沿着图所示的过程变化到B,下列分析正确的是().A.气体的温度保持不变 B.气体的温度先不变,后降低C.气体的内能保持不变 D.气体的内能先不变,后减小9.如图所示,U型气缸固定在水平地面上,用重力不计的活塞封闭着一定质量的气体,已知气缸不漏气,活塞移动过程无摩擦。
初始时,外界大气压为p0,活塞紧压小挡板。
现缓慢升高缸内气体温度,气缸内气体压强p随热力学温度T的变化规律是().10.如图8-4-33所示,左边容器的体积是右边容器的4倍,两边充以同种气体,温度分别为20℃和10℃,此时连接两容器的细玻璃管内的水银柱保持静止,如果容器两边的气体温度各升高10℃,忽略水银柱及容器的膨胀,则水银柱将().A.向左移动 B.向右移动 C.静止不动 D.条件不足,无法判断11.图所示,一定质量的理想气体由状态A沿平行于纵轴的直线变化到状态B,则它的状态变化过程是().A.气体的温度不变B.气体的内能增加C.气体分子的平均速率减小D.气体分子在单位时间内与器壁单位面积碰撞的次数不变二、解答题12.内径均匀的L形直角细玻璃管,一端封闭,一端开口竖直向上,用水银柱将一定质量空气封存在封闭端内,空气柱长4 cm,水银柱高58 cm,进入封闭端长2 cm,如图所示,温度是87℃,大气压强为75 cmHg,求:(1)在图示位置空气柱的压强p1.(2)在图示位置,要使空气柱的长度变为3 cm,温度必须降低到多少度?13.如图所示,U形管左端封闭,右端开口,左管横截面积为右管横截面积的2倍,在左管内用水银封闭一段长为26 cm、温度为280 K的空气柱,左右两管水银面高度差为36 cm,外界大气压为76 cm Hg。
若给左管的封闭气体加热,使管内气柱长度变为30 cm,则此时左管内气体的温度为多少?40cm的活塞将一定14.如图所示,上端开口的光滑圆柱形气缸竖直放置,截面积为2质量的气体封闭在气缸内。
在气缸内距缸底cm 60处设有a 、b 两限制装置,使活塞只能向上滑动。
开始时活塞搁在a 、b 上,缸内气体的压强为0p (pa p 50100.1⨯=为大气压强),温度为K 300。
现缓慢加热汽缸内气体,当温度为K 330,活塞恰好离开a 、b 。
求:(1)活塞的质量;(2)当温度升为K 360时活塞上升的高度15.如果病人在静脉输液时,不慎将5 mL 的空气柱输入体内,会造成空气栓塞,致使病人死亡.设空气柱在输入体内前的压强为760 mmHg ,温度为27℃,人的血压为120/80 mmHg ,试估算空气柱到达心脏处时,在收缩压和扩张压两种状态下,空气柱的体积分别为多少?16.如图所示,容积相同的两个容器A 和B 用细管连通,细管容积不计,A 、B 中都有氦气,温度都是27℃,压强都是1 atm .现将A 中氦气冷却到-173℃,而口中温度保持不变,求稳定后A 中气体的压强.17.如图所示直线AB 为一定质量的理想气体等容过程的p-t 图线,原点O 处的压强p=0,温度t=0℃.现使该气体从状态A 出发,经过一等温膨胀过程,体积变为原来体积的2倍,然后保持体积不变,缓慢加热气体,使之到达某一状态F ,此时的压强等于状态B 的压强,试用作图方法,在所给的p-t 图上,画出F 的位置.18.已知一定质量的理想气体的状态变化如图8-4-31所示,试在V-T 图中画出这个循环过程,并标出各状态的对应点.19.如图8-4-32所示,一定质量的理想气体,由状态A 变到状态B ,试比较p A 和p B 的大小.【答案与解析】一、选择题1.【答案】B 【解析】分子热运动变剧烈,说明温度T 升高,由“pV T=恒量”知,pV 要变大,但不知体积的变化情况,故无法判定压强变化情况(p 可以不变、变大或变小),因此A 错B 对;分子间的平均间距变大,说明体积变大,由“pV T =恒量”知,p T要变小,但温度T 的变化情况不定,故无法确定p 是变大还是变小,因此C 、D 皆错。
本题正确答案是B 。
2.【答案】A 、B 、C 、D3.【答案】B【解析】设温度变化过程中气体的体积不变,据查理定律得:212121121111p p p p T T p p T T T p T T --=⇒=⇒∆=∆。
对左边气体,20273p p ∆=⨯左左;对右边气体,20293p p ∆=⨯右右。
因初始p p =左右,故p p ∆>∆左右,即隔板将向右侧移动。
本题的正确答案为B 。
4.【答案】A 【解析】根据克拉珀龙方程pV nR T=,在同温(T )、恒容(V )下,压强之比等于气体的物质的量之比。
显然,只有反应后容器中的气体(常温下)为10.1mol 20.05mol 4⨯⨯=时,才符合题意。
考查气体之间的有关反应,不难确定答案为A 。
5.【答案】D6.【答案】C7.【答案】B8.【答案】B 、D9.【答案】B【解析】当缓慢升高缸内气体温度时,气体先发生等容变化,根据查理定律,缸内气体的压强p 与热力学温度T 成正比,图线是过原点的倾斜的直线;当缸内气体的压强等于外界的大气压时,气体发生等压膨胀,图线是平行于T 轴的直线。
10.【答案】A【解析】 一定质量的气体。
温度、体积和压强的变化是互相关联的,一动俱动,这是一个动态变化问题,采用计算的办法比较复杂.水银柱如何移动,决定于两容器气体压强的大小.由于初态20℃的气体与10℃的气体压强相同,可分别作出两容器中气体的等容线,如图所示.由图知10℃气体的等容线的斜率较大,因而当两容器温度各升10℃后,右边容器内气体压强比左边容器内气体压强增大得多,故水银柱向左移动.11.【答案】B【解析】 从p-V 图象中的AB 图线看,气体状态由A 变到B 为等容升压,根据查理定律,一定质量的气体,当体积不变时,压强跟热力学温度成正比.选项A 中温度不变是不对的,应该是压强增大,温度升高.气体的温度升高,内能增大,选项B 对.气体的温度升高,分子平均速率增加,故选项C 错.气体压强增大,则气体分子在单位时间内与器壁单位面积碰撞的次数增加.故选项D 是错误的.【点评】 根据图象确定气体的状态变化过程,利用状态方程解决问题.二、解答题12.【答案】(1)133 cmHg. (2)-5℃【解析】(1)p 1=p 0+p h =(75+58) cmHg=133 cmHg.(2)对空气柱:初态:p 1=133 cm Hg ,V 1=4S ,T 1=(273+87) K=360 K 。
末态:p 2=p 0+p h '=(75+57) cmHg=132 cmHg ,V 2=3S 。
由112212p V p V T T =代入数值,解得T=268 K=-5℃。
13.【答案】420K【解析】以封闭气体为研究对象,设左管横截面积为S ,当左管封闭的气柱长度变为30cm 时,左管水银柱下降4cm ,右管水银柱上升8cm ,即两端水银柱高度差为:h ′=24cm 由题意得:1126V L S S ==,101763640P P h cmHg cmHg cmHg =-=-=,1280T K =,2052P P h cmHg '=-=,2230V L S S == 由理想气体状态方程:112212PV PV T T = 解得:2420T K=14.【答案】(1)4kg ;(2)5.5cm【解析】(1)由题意可得:01p p =,K T 3001= s mg p p +=02气体经过等容变化:2211T p T p = 解得:kg m 4= (2)由题意可得:K T 3603=,31122400cm Sh V V === 气体经过等压变化:3322T V T V = cm SV h 5.653== cm h h h 5.513=-=∆(或cm h h h 45.513=-=∆)15.【答案】32.7mL 49.1mL【解析】空气柱在体外时的状态参量为:p 1=760 mmHg ,V 1=5 mL ,T 1=300 K 。
空气柱在体内收缩压时的状态参量为:p 2=120 mmHg ,T 2=310 K 。
由理想气体状态方程得,空气柱在收缩压下的体积为:1122127605310mL 32.7mL 300120p V T V T p ⨯⨯===⨯。
空气柱在体内扩张压时的状态参量为 p 3=80 mmHg ,T 3=310 K 。
由理想气体状态方程得,空气柱在扩张压下的体积为1133137605310mL 49.1mL 30080p V T V T p ⨯⨯===⨯。
16.【答案】0.5 atm【解析】将A 、B 中的气体当作一个整体,用气体分态方程求解:p 1=1 atm ,V 1=2V ,T 1=300 K 。