材料热力学(杨)-完整版
- 格式:ppt
- 大小:3.84 MB
- 文档页数:88
第二章热力学基础材料热力学的基础:热力学的基本概念和基本定律经典热力学的核心和精髓:热力学3个(或称4个)基本定律2.1 热力学基本概念2.2 热力学第零定律(热平衡和温度)2.3 热力学第一定律(能量关系)2.4 热力学第二定律(过程方向)2.5 热力学第三定律(熵值计算)2.1 热力学基本概念(Basic concepts)1.体系(system)和环境(surroundings)2.系统的状态(State)和状态函数(State Function)3.系统的过程与途径4.体系的性质5.热力学平衡态体系(system):研究的对象(是大量分子、原子、离子等物质微粒组成的宏观集合体)。
人为地将所研究的一定范围的物体或空间与其余部分分开,作为我们研究的对象。
1. 体系(system)和环境(surroundings):环境(surroundings ):体系的周围部分1. 体系(system)和环境(surroundings):体系和环境的划分不是绝对的。
如何合适地选择体系,是解决热力学问题时必须考虑的。
例如:一个密闭容器,内装半容器水。
若以容器中的液体为体系,则为敞开体系。
因为液体水不仅可与容器内的空气(环境)交换热量,且可与液面上的水蒸气交换物质。
如果选整个容器为体系.则只与环境发生热量交换,故为封闭体系。
如果将容器及其外面的空气一起选为体系,则为孤立体系。
2 . 系统的状态和状态函数状态:体系有一定的外在的宏观表现形式,每一个外在表现形式称作体系的一个状态。
状态是体系所具有的宏观性质。
状态与性质单值对应,因此:系统的宏观性质也称为系统的状态函数。
当系统的状态变化时,状态函数的改变量只决定于系统的始态和终态,而与变化的过程或途径无关。
3.系统的过程与途径过程:系统由始态变化到终态的过渡。
途径:完成过程的具体步骤。
系统由始态变化到终态所经历的过程的总和。
系统的变化过程分为:•P、V、T变化过程,•相变化过程,•化学变化过程等。
材料热力学材料热力学是研究材料在不同温度、压力和化学势条件下的热力学性质以及与之相关的热力学过程的学科。
它是物理化学和材料科学的重要基础,并在工程和科学研究中起着重要的作用。
材料热力学可以帮助我们了解材料的相变、热力学稳定性、相图等方面的性质,为材料的设计和性能优化提供理论指导。
材料热力学的基本概念包括热力学平衡、自由能、熵和化学势等。
热力学平衡指的是材料系统处于热平衡状态下的能力,这是材料在给定温度和压力下达到的最稳定的状态。
自由能是描述系统能量和熵之间关系的重要概念,它用于描述材料系统在各种条件下的稳定性。
熵则是描述系统无序性的测度,是材料系统的一个重要参量。
化学势是描述系统中不同组分间平衡的关系的指标。
材料热力学还涉及到一些重要的热力学过程,如相变、化学反应和溶解等。
相变是材料由一种相态转变为另一种相态的过程,如固态到液态、气态到液态等。
相变涉及到热力学平衡条件和相图的研究。
化学反应是指材料中的物质转化为其他物质的过程,它与能量和熵的转化有关,化学反应的热力学性质可以通过反应热和平衡常数等来描述。
溶解是指固体溶质在溶剂中溶解的过程,溶解过程的热力学性质可以通过溶解热和溶解度等来描述。
材料热力学的研究方法主要包括实验测量和理论计算。
实验测量可以通过热力学仪器和设备来获取材料的热力学性质,如定压热容、相变温度等。
理论计算则可以通过热力学模型和方程来描述材料热力学性质,如热力学函数、相图等。
实验测量和理论计算相辅相成,可以互相验证和补充,为材料热力学的研究提供可靠的结果和解释。
总之,材料热力学是研究材料在不同温度、压力和化学势条件下的热力学性质和过程的学科。
它作为物理化学和材料科学的基础,为材料的设计和性能优化提供理论指导。
通过实验测量和理论计算,可以获得材料的热力学性质,并为材料科学的发展和材料应用提供有力支持。
材料热力学知识点总结一. 名词解释1. 标准态:一般将一个组元在一个大气压下和所研究的温度下的稳定状态选为标准态,这样,在室温下的铁,水银和氧气的标准态即为一个大气压下的体心立方结构,一个大气压下的液体及一个大气压下的双原子气体.//近年来,SGTE 组织已推出使用一种SRE 标准态,即规定在1*105Pa 压力下,298。
15K 时元素的稳定结构为标准态//人们也可能不取稳定的结构来作为组元的标准态.例如:可取气体的水作为298K 时的标准态,而不以液态作为标准态,或者以铁的fcc 结构(奥氏体)作为298K 时的标准态而不以bcc 结构(铁素体)作为标准态,标准态也可能是个虚拟的状态,这个状态并不实际存在而仅仅是理论上的设定.通过这样的设定,可有利于计算体系的性质。
2. 状态函数:试定义一个函数性质为A ,在状态1时,有值A1,在状态2,有值A2,不管实行的途径如何,A 在两态之间的差值dA=A2—A1,A 即称为状态函数,其微分为全微分。
3. 比热: 体系的比热是指体系在恒压下每克的热容量。
4. 热容量:给体系所加的热量或从体系抽出的热量和体系温度改变之比,即:TQC ∆=。
5. 自发过程:从不平衡态自发的移向平衡态的过程称为自发过程6. 吉布斯自由能:一个封闭体系当状态微量改变时,则W Q dU δδ+=,在恒温恒压下,令G=U+PV-TS ,即dG=dH —TdS 或者dG=dU+PdV —TdS ,G 即为吉布斯自由能。
7. 亥姆霍兹自由能:在恒温恒容时,令F=U-TS ,dF=dU-TdS,其中F 称为Helmholz 自由能。
8. 配置熵:当不计混合热(熔解热)时,由于不同原子互相配置(混合)出现不同组态而引起的熵值的增加,称为配置熵。
9. 振动熵:当两种大小不同的原子互相混合时,除因出现各种排列组态引起配置熵外,还由于排列很不紧密,因而增加振幅而引起振动熵。
10.磁性熵:由自旋电子引起的混乱度或熵。
材料热力学习题答案材料热力学习题答案热力学是研究物质的能量转化和能量传递规律的科学。
在材料科学中,热力学是一个重要的分支,它可以帮助我们理解材料在不同条件下的性质和行为。
在学习热力学的过程中,我们经常会遇到一些习题,下面我将给出一些常见材料热力学习题的答案。
1. 问题:在常压下,将1mol的水从25℃加热到100℃,需要吸收多少热量?答案:要计算这个问题,我们可以使用热容的概念。
热容是物质在单位温度变化下吸收或释放的热量。
对于水来说,其热容为4.18J/(g℃)。
首先,我们需要知道水的质量,由于1mol的水的摩尔质量为18g/mol,因此1mol的水的质量为18g。
接下来,我们需要计算水的温度变化,即100℃-25℃=75℃。
最后,我们可以使用公式Q=mCΔT来计算所需吸收的热量,其中Q是热量,m是质量,C是热容,ΔT是温度变化。
代入数值得到Q=18g×4.18J/(g℃)×75℃=5613J。
2. 问题:在恒定温度下,气体的体积与压力之间的关系是什么?答案:根据热力学的理论,理想气体的体积与压力成反比。
这可以用理想气体状态方程PV=nRT来解释,其中P是压力,V是体积,n是物质的摩尔数,R是气体常数,T是温度。
根据这个方程,当温度保持不变时,如果压力增加,体积将减小,反之亦然。
这种关系被称为波义尔定律。
3. 问题:在材料科学中,什么是熵?答案:熵是热力学中的一个重要概念,它用于描述物质的无序程度。
熵可以理解为系统的混乱程度或无序程度。
根据热力学的第二定律,系统的熵总是趋向于增加,即系统总是朝着更高的熵状态发展。
当物质从有序状态转变为无序状态时,熵会增加。
例如,当固体融化成液体,或者液体蒸发成气体时,系统的熵会增加。
熵在材料科学中起着重要的作用,可以帮助我们理解材料的相变行为和稳定性。
4. 问题:什么是自由能?答案:自由能是热力学中另一个重要的概念,它用于描述系统的稳定性和可逆性。