中考冲刺:数形结合问题--知识讲解(提高)
- 格式:doc
- 大小:300.50 KB
- 文档页数:10
______________________________________________________________跃龙学堂 您身边的中小学生辅导专家1第十四讲 数形结合问题【典型例题1】如图,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的表达式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结P A ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S ∆;(3)是否存在一点P ,使S △P AB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.解:(1)设抛物线的表达式为 4)1(21+-=x a y 。
把A (3,0)代入表达式,求得1-=a 。
所以324)1(221++-=+--=x x x y 。
设直线AB 的表达式为 b kx y +=2。
由3221++-=x x y 求得B 点的坐标为)3,0( 。
把)0,3(A ,)3,0(B 代入b kx y +=2中,解得 3,1=-=b k 。
所以32+-=x y 。
(2)因为C 点坐标为(1,4),所以当x =1时,y 1=4,y 2=2。
所以CD =4-2=2。
xCOy ABD 1 1______________________________________________________________ 跃龙学堂 您身边的中小学生辅导专家2 32321=⨯⨯=∆CAB S (平方单位)。
(3)假设存在符合条件的点P ,设P 点的横坐标为x ,△P AB 的铅垂高为h , 则x x x x x y y h 3)3()32(2221+-=+--++-=-=。
由S △P AB =89S △CAB ,得 389)3(3212⨯=+-⨯⨯x x 。
化简得 091242=+-x x 。
解得 23=x 。
将23=x 代入3221++-=x x y 中, 解得P 点坐标为)415,23(。
中考经典考题:数形结合掌握这些几何解题技巧压轴题不再丢分解决数学中考压轴题一般都会用到数形结合等思想。
数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想. 数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。
题型分析本题是二次函数综合题,考查了待定系数法求二次函数的解析式,一次函数的解析式,等腰直角三角形的判定和性质,三角形相似的判定和性质,勾股定理的应用等,难点在于(3)作辅助线构造出相似三角形和三角形的中位线。
第(1)题:顶点C的坐标为(1,2)。
第(2)题:F的坐标为(-3,-6)。
数形结合思想利用几何图形的性质研究数量关系,寻求代数问题的解决途径,或用数量关系研究几何图形的性质,解决几何问题,将数量关系和几何图形巧妙地结合起来,以形助数,以数辅形,使抽象问题直观化,复杂问题简单化,从而使问题得以解决的一种数学思想。
数形结合思想常见的四种类型1、实数与数轴实数与数轴上的点具有一一对应关系,因此借助数轴观察数的特点,直观明了。
2、在解方程(组)或不等式(组)中的应用利用函数图象解决方程问题时,常把方程根的问题看作两个函数图象的交点问题来解决;还有曲线与方程的对应关系;利用数轴或函数图象解有关不等式(组)的问题直观,形象,易于找出不等式(组)解的公共部分或判断不等式组有无公共解。
讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨论方程的解一定要注意图像的准确性、全面性,否则会得到错解。
3、在函数中的应用函数与图像的对应关系;借助于图象研究函数的性质是一种常用的方法,函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。
4、在几何中的应用以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;对于几何问题,我们常通过图形,找出边、角的数量关系,通过边、角的数量关系,得出图形的性质等。
中考冲刺:数形结合问题【中考展望】1.用数形结合的思想解题可分两类:(1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等;(2)运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等.2. 热点内容:在初中教材中,数的常见表现形式为: 实数、代数式、函数和不等式等,而形的常见表现形式为: 直线型、角、三角形、四边形、多边形、圆、抛物线、相似、勾股定理等.在直角坐标系下,一次函数的图象对应着一条直线,二次函数的图象对应着一条抛物线,这些都是初中数学的重要内容.特别是二次函数,不仅是学生学习的难点之一,同时也使数形结合的思想方法在中学数学中得到最充分体现.在平面直角坐标系中,二次函数图象的开口方向、顶点坐标、对称轴以及与坐标轴的交点等都与其系数a,b,c密不可分.事实上,数a 决定抛物线的开口方向, b 与a 一起决定抛物线的对称轴位置, c 决定了抛物线与y 轴的交点位置,与a、b 一起决定抛物线顶点坐标的纵坐标,抛物线的平移的图形关系只是顶点坐标发生变化,其实从代数的角度看是b、c 的大小变化.【方法点拨】数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含“以形助数”和“以数解形”两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有“数的严谨”与“形的直观”之长,是优化解题过程的重要途径之一,是一种基本的数学方法.数形结合问题,也可以看作代数几何综合问题.从内容上来说,是把代数中的数与式、方程与不等式、函数,几何中的三角形、四边形、圆等图形的性质,以及解直角三角形的方法、图形的变换、相似等内容有机地结合在一起,同时也会融入开放性、探究性等问题.经常考查的题目类型主要有坐标系中的几何问题(简称坐标几何问题),以及图形运动过程中求函数解析式的问题等.解决这类问题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题;第三,要善于联系与转化,进一步得到新的结论.尤其要注意的是,恰当地使用综合分析法及方程与函数的思想、转化思想、数形结合思想、分类与整合思想等数学思想方法,能更有效地解决问题.【典型例题】类型一、利用数形结合探究数字的变化规律例1.如图,网格中的每个四边形都是菱形.如果格点三角形ABC的面积为S,按照如图所示方式得到的格点三角形A1B1C1的面积是7S,格点三角形A2B2C2的面积是19S,那么格点三角形A3B3C3的面积为().A.39SB. 36SC.37SD.43S举一反三:【变式】在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y 轴正半轴上,则点B n的坐标是.类型二、利用数形结合解决数与式的问题例2.已知实数a在数轴上的位置如图所示,则化简|2-a|+2a的结果为__________.类型三、利用数形结合解决代数式的恒等变形问题例3.(1)在边长为a的正方形纸片中剪去一个边长为b的小正方形,把余下的部分沿虚线剪开,拼成一个矩形,分别计算这两个图形阴影部分的面积,可以验证的乘法公式是__________________(用字母表示).(2)设直角三角形的直角边分别是a,b,斜边为c,将这样的四个完全相同的直角三角形拼成正方形,验证等式a2+b2=c2成立。
数形结合解题方法和技巧
本文介绍数形结合解题方法和技巧,帮助读者更好地理解和应用这一方法,提高数学解题能力。
数形结合是一种常用的数学解题方法,它将数学问题与几何图形相结合,通过直观的几何图形来帮助解决复杂的数学问题。
下面,我们介绍一些数形结合解题的方法和技巧。
一、利用几何图形的性质
几何图形具有许多特定的性质,如线段长度、角度大小、平行关系等。
在解题时,我们可以利用这些性质来帮助我们理解问题,甚至可以通过这些性质来推导出未知数的值。
例如,在一道求解三角形题目中,我们可以利用三角形的边角关系,通过余弦定理或正弦定理来求解未知角度或边长。
二、利用几何图形的变换
几何图形可以通过平移、旋转、翻折等变换来改变形态,而这些变换并不改变图形的本质属性。
在解题时,我们可以利用这些变换来帮助我们理解问题。
例如,在一道求解相似三角形题目中,我们可以
通过旋转或翻折等变换将原图形变换成易于求解的图形,然后再进行计算。
三、利用几何图形的切分
几何图形可以通过切分来将复杂的问题分解成简单的问题。
在解题时,我们可以利用这些切分来帮助我们理解问题。
例如,在一道求解曲线图形题目中,我们可以通过切分将曲线分割成一些简单的线段或曲线,然后再分别进行计算,最后再将结果相加得到答案。
数形结合是一种非常有用的解题方法,可以帮助我们更好地理解和解决数学问题。
授课类型C数形结合基本应用 C 几何与函数中的应用T 综合应用授课日期及时段教学内容专题透析数形结合思想是数学中重要的思想方法.所谓数形结合就是根据数学问题的题设和结论之间的内在联系,既分析其数量关系,又揭示其几何意义,使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使复杂问题简单化,抽象问题具体化,化难为易,获取简便易行的方法.运用这一数学思想解题,要熟练掌握一些概念和运算的几何意义及常见图形中的代数特征.一、专题精讲题型1在数与式中的应用:例1、文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在() A.玩具店B.文具店C.文具店西边40米D.玩具店东边-60米【答案】 B例2.已知实数a,b在数轴上的对应点依次在原点的右边和左边,那么()A.ab<b B.ab>b C.a+b>0 D.a-b>0【答案】D例3、实数a、b在数轴上的位置如图所示,化简2||a a b+-=_________。
【答案】b例4、如图1,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个梯形,根据a b两个图形阴影部分面积的关系,可以得到一个关于a 、b 的恒等式为 A.()2222a b a ab b -=-+ B.()2222a b a ab b +=++C.22()()a b a b a b -=+-D.2()a ab a a b +=+【答案】B题型2. 在方程、不等式中的应用例1、已知关于x 的不等式组020x a x ->⎧⎨->⎩的整数解共有2个,则a 的取值范围是____________。
【答案】-1≤x <0例2、用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( )A .203210x y x y +-=⎧⎨--=⎩,B .2103210x y x y --=⎧⎨--=⎩,C .2103250x y x y --=⎧⎨+-=⎩,D .20210x y x y +-=⎧⎨--=⎩,【答案】D题型3 在实际问题中的应用例1:某公司推销一种产品,设x (件)是推销产品的数量,y (元)是推销费,图3-3-1已表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y 1与y 2的函数解析式;(2)解释图中表示的两种方案是如何付推销费的? (3)果你是推销员,应如何选择付费方案?图1· P (1,1)1 12 23 3-1 -1Ox y【答案】 解:(1)y 1=20x ,y 2=10x+300.(2)y 1是不推销产品没有推销费,每推销10件产品得推销费200元,y 2是保底工资300元,每推销10件产品再提成100元.(3)若业务能力强,平均每月保证推销多于30件时,就选择y 1的付费方案;否则,选择y 2的付费方案. 【小结】图象在上方的说明它的函数值较大,反之较小,当然,两图象相交时,说明在交点处的函数值是相等的.例2、如图,四边形 ABCD 是边长为 60 cm 的正方形硬纸片,剪掉阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使 A ,B ,C ,D 四个点重合于点 P ,正好形成一个底面是正方形的长方体包装盒 (1)若折叠后长方体底面正方形的面积为 1 250 cm2,求长方体包装盒的高;(2)设剪掉的等腰直角三角形的直角边长为 x(单位:cm),长方体的侧面积为 S(单位:cm2),求 S 与 x 的函数关系式,并求 x 为何值时,S 的值最大.【答案】解:(1)如图Z3-2,设剪掉阴影部分的每个等腰直角三角形的腰长为x cm ,则NP =2x cm ,DP =60-2x2cm ,QM =PW =2×60-2x 2cm.由题意,得60-2x2×22=1250.解得x 1=52,x 2=552(不符合题意舍去).答:长方体包装盒的高为52cm.(2)由题意,得S =4×2×60-2x 2×x =-4x 2+1202x .∵a =-4<0,∴当x =152时,S 有最大值.变式1、某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图3-3-2,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析.【答案】解:(1)2月份每千克销售价是3.5元;7对月份每千克销售价是0.5元;(3)l月到7月的销售价逐月下降;(4)7月到12月的销售价逐月上升;(5)2月与7月的销售差价是每千克3元;(6)7月份销售价最低,1月份销售价最高;(7)6月与8月、5月与9月、4月与10 月、3月与11 月,2月与12 月的销售价分别相同.【小结】可以运用二次函数的性质:增减性、对称性.最大(小)值等,得出多个结论.题型4 在概率统计中的应用例、某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图所示的条形统计图:⑴请写出从条形统计图中获得的一条信息;⑵请根据条形统计图中的数据补全扇形统计图,并说明这两幅统计图各有什么特点?⑶请你根据上述数据,对该报社提出一条合理的建议。
专题二:数形结合简要分析数形结合思想是一种重要的数学思想方法。
近几年各地中考试题中都体现了这种数学思想方法。
数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想. 数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。
典型例题例1、小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还。
”如果用纵轴y 表示父亲与儿子进行中离家的距离,用横轴x 表示父亲离家的时间,那么下面的图像与上述诗的含义大致吻合的是()A B C D例2、已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,则下列结论中正确的是( )A .a >0B .当x >1时,y 随x 的增大而增大C .c <0D .3是方程ax 2+bx +c =0的一个根【分析】从二次函数的图象可知,图象开口向下,a <0;当x >1时,y 随x 的增大而减小; x=0时,y =c >0;函数的对称轴为x=1,函数与x 轴的一个交点的横坐标为-1,函数与x 轴的另一个交点的横坐标为3。
例3、如图所示,点A 的坐标为(2,0),点B 在直线上运动,当线段AB 最短时,点B 的坐标为例4、如图,直线b x k y +=1与反比例函数xk y 2=的图象 交于A )6,1(,B )3,(a 两点. (1)求1k 、2k 的值; (2)直接写出021>-+xk b x k 时x 的取值范围; (3)如图,等腰梯形OBCD 中,BC //OD ,OB =CD ,OD 边在x 轴上,过点C 作CE ⊥OD 于点E ,CE 和反比例函数的图象交于点P ,当梯形OBCD 的面积为12时,请判断PC 和PE 的大小关系,并说明理由.OPE DCBAyx【分析】(1)略(2)021>-+xk b x k 的x 的范围,就是当y 1>y 2时,自变量的x 的范围,从图象上看:直线在双曲线上方,即x 的范围是在点A 、B 的横坐标之间,这是“以形助数” (3)要判断PC 和PE 的大小关系,只需要分别求出它们的长度,“以数助形”.设点P 的坐标为(m ,n ),易得C (m ,3),点的坐标转化成线段长度CE=3,BC=m-2,OD=m+2,利用梯形的面积是12列方程,可求得m 的值,从而求得点P 的坐标,根据线段的长度关系可知PC=PE .考 点 训 练一、填空题1、已知二次函数c bx ax y ++=2的图象如图所示,则0___42,0____,0___,0___ac b c b a -2、如图,抛物线y =-x 2+2x +m (m <0)与x 轴相交于点A (x 1,0)、B (x 2,0),点A 在点B 的左侧.当x =x 2-2时,y ______0(填“>”“=”或“<”号).3、如图所示,矩形AOCB 的两边OC 、OA 分别位于x 轴,y 轴上,点B 的坐标为B,D 是AB 边上的一点。
数形联合思想【中考热门剖析】数形联合思想是数学中重要的思想方法,它依据数学识题中的条件和结论之间的内在联系,既剖析其数目关系,又揭露其几何意义,使数目关系和几何图形奇妙的联合起来,并充足利用这类联合,探究解决问题的思路,使问题得以解决的思虑方法。
几何图形的形象直观,便于理解;代数方法的一般性,解题过程的操作性强,便于掌握。
【经典考题讲练】例1.(2015衢州)如图,已知直线y3x3分别交x轴、y轴于点A、B,P是抛物线14yx22x5的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线2y 3x3于点Q,则当PQ=BQ时,a的值是.4例2.(2014?广州)已知平面直角坐标系中两定点A(-1,0),B(4,0),抛物线()过点A、B,极点为C.点P(m,n)(n<0)为抛物线上一点.1)求抛物线的分析式与极点C的坐标.2)当∠APB为钝角时,求m的取值范围.(3)若,当∠为直角时,将该抛物线向左或向右平移t()个单位,点APB、挪动后对应的点分别记为、,能否存在t ,使得首尾挨次连结、、、所PC AB组成的多边形的周长最短?若存在,求t值并说明抛物线平移的方向;若不存在,请说明理由.分析:(1)待定系数法求分析式即可,求得分析式后变换成极点式即可.2)由于AB为直径,因此当抛物线上的点P在⊙C的内部时,知足∠APB为钝角,因此-1<m<0,或3<m<4.(3)左右平移时,使A′D+DB″最短即可,那么作出点C′对于x轴对称点的坐标为C″,获得直线P″C″的分析式,而后把A点的坐标代入即可.答案:(1)解:依题意把的坐标代入得:;解得:抛物线分析式为极点横坐标,将代入抛物线得(2)如图,当时,设,则过作直线轴,(注意用整体代入法)解得,当在之间时,或时,为钝角.(3)依题意,且设挪动(向右,向左)连结22则又的长度不变四边形周长最小,只要最小即可将沿轴向右平移5各单位到处沿轴对称为∴当且仅当、B、三点共线时,最小,且最小为,此时,设过的直线为,代入∴即将代入,得:,解得:∴当,P、C向左挪动单位时,此时四边形ABP’C周’长最小。
中考冲刺:数形结合问题—知识讲解(提高)【中考展望】1.用数形结合的思想解题可分两类:(1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等;(2)运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等.2. 热点内容:在初中教材中,数的常见表现形式为: 实数、代数式、函数和不等式等,而形的常见表现形式为: 直线型、角、三角形、四边形、多边形、圆、抛物线、相似、勾股定理等.在直角坐标系下,一次函数的图象对应着一条直线,二次函数的图象对应着一条抛物线,这些都是初中数学的重要内容.特别是二次函数,不仅是学生学习的难点之一,同时也使数形结合的思想方法在中学数学中得到最充分体现.在平面直角坐标系中,二次函数图象的开口方向、顶点坐标、对称轴以及与坐标轴的交点等都与其系数a,b,c密不可分.事实上,数a 决定抛物线的开口方向, b 与a 一起决定抛物线的对称轴位置, c 决定了抛物线与y 轴的交点位置,与a、b 一起决定抛物线顶点坐标的纵坐标,抛物线的平移的图形关系只是顶点坐标发生变化,其实从代数的角度看是b、c 的大小变化.【方法点拨】数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含“以形助数”和“以数解形”两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有“数的严谨”与“形的直观”之长,是优化解题过程的重要途径之一,是一种基本的数学方法.数形结合问题,也可以看作代数几何综合问题.从内容上来说,是把代数中的数与式、方程与不等式、函数,几何中的三角形、四边形、圆等图形的性质,以及解直角三角形的方法、图形的变换、相似等内容有机地结合在一起,同时也会融入开放性、探究性等问题.经常考查的题目类型主要有坐标系中的几何问题(简称坐标几何问题),以及图形运动过程中求函数解析式的问题等.解决这类问题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题;第三,要善于联系与转化,进一步得到新的结论.尤其要注意的是,恰当地使用综合分析法及方程与函数的思想、转化思想、数形结合思想、分类与整合思想等数学思想方法,能更有效地解决问题.【典型例题】类型一、利用数形结合探究数字的变化规律1.如图,网格中的每个四边形都是菱形.如果格点三角形ABC的面积为S,按照如图所示方式得到的格点三角形A1B1C1的面积是7S,格点三角形A2B2C2的面积是19S,那么格点三角形A3B3C3的面积为().A.39SB. 36SC.37SD.43S【思路点拨】设网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n C n三顶点分别在边长为(2n+1)个单位的菱形的内部,此菱形与三角形A n B n C n不重合的部分为三个小三角形;由此得到关于三角形A n B n C n面积公式,把n=3代入即可求出三角形A3B3C3的面积.【答案】C.【解析】网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n C n三顶点分别在边长为2n+1个单位的菱形的内部,此菱形与三角形A n B n C n不重合的部分为三个小三角形;而三角形A n B n C n面积=边长为2n+1个单位的菱形面积-三个小三角形面积=2S(2n+1)2-(21)2(21)(1)2(1)2222n n s n n s n n s+⨯⨯+⨯+⨯⨯+⨯--,=S(8n2+8n+2-2n2-n-2n2-3n-1-n2-n),=S(3n2+3n+1),把n=3分别代入上式得:S3=S(3×32+3×3+1)=37S.故选C.【总结升华】此题主要考查菱形的性质,也考查了学生的读图能力以及探究问题的规律并有规律解决问题的能力.举一反三:【变式】(2016•潍坊)在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是.【答案】(2n﹣1,2n﹣1)【解析】解:∵y=x﹣1与x轴交于点A1,∴A1点坐标(1,0),∵四边形A1B1C1O是正方形,∴B1坐标(1,1),∵C1A2∥x轴,∴A2坐标(2,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3),∵C2A3∥x轴,∴A3坐标(4,3),∵四边形A3B3C3C2是正方形,∴B3(4,7),∵B1(20,21﹣1),B2(21,22﹣1),B3(22,23﹣1),…,∴B n坐标(2n﹣1,2n﹣1).类型二、利用数形结合解决数与式的问题类型三、利用数形结合解决代数式的恒等变形问题3.(1)示).验证等式a+b=c成立。
中考数学能力提升--数形结合思想的应用数学研究的主要对象是空间形式和数量关系。
数与形是数学的两大支柱,它们是对立的,也是统一的。
数形结合思想,就是通过数与形之间的对应和转化来解决数学问题,它包含以形助数和以数解形两个方面。
利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长,是一种基本的数学思想。
下面结合具体实例谈谈数形结合思想在解题中的应用:一、构造几何图形解决代数与三角问题:1、证明恒等式:例1 已知x 、y 、z 、r 均为正数,且222,x y z +=2z x = 求证:.rz xy =2、证明不等式:例2 已知:0<a <1,0<b <1. 求证:≥3、求参数的值或参数的取值范围: 例3 若方程2210ax x -+= (a>0)的两根满足:1x<1,1<2x <3,求a 的取值范围。
BACxyzr例4 若关于x 的不等式2021x mx ≤++≤ 的解集仅有一个元素,求m 的值。
4、求最值问题: 例5 已知a 、b 均为正数,且 2.a b +=求+的最小值。
二、用代数与三角方法解决几何问题:例6 如图,在△ABC 中,AB >AC ,CF 、BE 分别是AB 、AC 边上的高。
试证:AB CF AC BE +≥+例7 如图,在正△ABC 的三边AB 、BC 、CA 上分别有点D 、E 、F.若DE⊥BC ,EF ⊥AC ,FD ⊥AB 同时成立,求点D 在AB 上的位置.分析:先假设符合条件的点 D 、E 、F 已经作出,再利用已知条件,寻找线段与角之间的数量关系,列出含有待求量的等式(方程),以求其解。
例8 如图,△ABC 三边的长分别是BC=17,CA=18,AB=19. 过△ABC 内的点P 向△ABC 的三边分别作垂线PD 、PE 、PF (D 、E 、F 为垂足). 若27.BD CE AF ++=求:BD BF +的长.ABCEF例题解析1分析:由222,x y z +=自然联想到勾股定理。
中考冲刺:数形结合问题—知识讲解(提高)【中考展望】1.用数形结合的思想解题可分两类:(1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等;(2)运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等.2. 热点内容:在初中教材中,数的常见表现形式为: 实数、代数式、函数和不等式等,而形的常见表现形式为: 直线型、角、三角形、四边形、多边形、圆、抛物线、相似、勾股定理等.在直角坐标系下,一次函数的图象对应着一条直线,二次函数的图象对应着一条抛物线,这些都是初中数学的重要内容.特别是二次函数,不仅是学生学习的难点之一,同时也使数形结合的思想方法在中学数学中得到最充分体现.在平面直角坐标系中,二次函数图象的开口方向、顶点坐标、对称轴以及与坐标轴的交点等都与其系数a,b,c密不可分.事实上,数a 决定抛物线的开口方向, b 与a 一起决定抛物线的对称轴位置, c 决定了抛物线与y 轴的交点位置,与a、b 一起决定抛物线顶点坐标的纵坐标,抛物线的平移的图形关系只是顶点坐标发生变化,其实从代数的角度看是b、c 的大小变化.【方法点拨】数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含“以形助数”和“以数解形”两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有“数的严谨”与“形的直观”之长,是优化解题过程的重要途径之一,是一种基本的数学方法.数形结合问题,也可以看作代数几何综合问题.从内容上来说,是把代数中的数与式、方程与不等式、函数,几何中的三角形、四边形、圆等图形的性质,以及解直角三角形的方法、图形的变换、相似等内容有机地结合在一起,同时也会融入开放性、探究性等问题.经常考查的题目类型主要有坐标系中的几何问题(简称坐标几何问题),以及图形运动过程中求函数解析式的问题等.解决这类问题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题;第三,要善于联系与转化,进一步得到新的结论.尤其要注意的是,恰当地使用综合分析法及方程与函数的思想、转化思想、数形结合思想、分类与整合思想等数学思想方法,能更有效地解决问题.【典型例题】类型一、利用数形结合探究数字的变化规律1.如图,网格中的每个四边形都是菱形.如果格点三角形ABC的面积为S,按照如图所示方式得到的格点三角形A1B1C1的面积是7S,格点三角形A2B2C2的面积是19S,那么格点三角形A3B3C3的面积为().A.39SB. 36SC.37SD.43S【思路点拨】设网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n C n三顶点分别在边长为(2n+1)个单位的菱形的内部,此菱形与三角形A n B n C n不重合的部分为三个小三角形;由此得到关于三角形A n B n C n面积公式,把n=3代入即可求出三角形A3B3C3的面积.【答案】C.【解析】网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n C n三顶点分别在边长为2n+1个单位的菱形的内部,此菱形与三角形A n B n C n不重合的部分为三个小三角形;而三角形A n B n C n面积=边长为2n+1个单位的菱形面积-三个小三角形面积=2S(2n+1)2-(21)2(21)(1)2(1)2222n n s n n s n n s+⨯⨯+⨯+⨯⨯+⨯--,=S(8n2+8n+2-2n2-n-2n2-3n-1-n2-n),=S(3n2+3n+1),把n=3分别代入上式得:S3=S(3×32+3×3+1)=37S.故选C.【总结升华】此题主要考查菱形的性质,也考查了学生的读图能力以及探究问题的规律并有规律解决问题的能力.举一反三:【变式】(2016•潍坊)在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是.【答案】(2n﹣1,2n﹣1)【解析】解:∵y=x﹣1与x轴交于点A1,∴A1点坐标(1,0),∵四边形A1B1C1O是正方形,∴B1坐标(1,1),∵C1A2∥x轴,∴A2坐标(2,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3),∵C2A3∥x轴,∴A3坐标(4,3),∵四边形A3B3C3C2是正方形,∴B3(4,7),∵B1(20,21﹣1),B2(21,22﹣1),B3(22,23﹣1),…,∴B n坐标(2n﹣1,2n﹣1).类型二、利用数形结合解决数与式的问题2. 已知实数a在数轴上的位置如图所示,则化简|2-a|+2a的结果为__________.【思路点拨】由数轴可知,0<a<2,由此去绝对值,对二次根式化简.【答案与解析】解:∵0<a<2,∴|2-a|+2a=2-a+a=2.故答案为:2.【总结升华】本题考查了绝对值的化简和二次根式的性质与化简,实数与数轴的对应关系.关键是根据数轴上的点的位置来判断数a的取值范围,根据取值范围去绝对值,化简二次根式.类型三、利用数形结合解决代数式的恒等变形问题3.(1)在边长为a的正方形纸片中剪去一个边长为b的小正方形,把余下的部分沿虚线剪开,拼成一个矩形,分别计算这两个图形阴影部分的面积,可以验证的乘法公式是__________________(用字母表示).(2)设直角三角形的直角边分别是a,b,斜边为c,将这样的四个完全相同的直角三角形拼成正方形,验证等式a2+b2=c2成立。
介:数形结合是一种数学思想方法,包括“以形助数”和“以数助形”两个方面,其应用大致可以分为两种情助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的。
数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。
几何知识涉及到等腰三角形和等腰三角形等,平行四边形、特殊平行四边形和等腰梯形或直角梯形,以及圆等图形。
一、与三角形相关的二次函数 1.等腰三角形:【例1】 在直角坐标平面内,O 为原点,点A 的坐标为(10),,点C 的坐标为(04),,直线CM x ∥轴(如图所示),点B 与点A 关于原点对称,直线y x b =+(b 为常数)经过点B ,且与直线CM 相交于点D ,联结OD .(1)求b 的值和点D 的坐标;(2)设点P 在x 轴的正半轴上,若POD △是等腰三角形,求点P 的坐标;(3)在(2)的条件下,如果以PD 为半径的圆P 与圆O 外切,求圆O 的半径.解析:(1)B 与A (10),关于原点对称,∴(10)B -,,∵y x b =+过点B ,∴10b -+=,1b =,∴1y x =+,中考24题数形结合专题突破直击中考当4y =时,14,3x x +==,∴(34)D ,; (2)作DE x ⊥轴于点E ,则34OE DE ==,, ∴2222345OD OE DE =+=+=, 若POD ∆为等腰三角形,则有以下三种情况,①以O 为圆心,OD 为半径作弧交x 轴的正半轴于点1P ,则15OP OD ==,∴1(50)P,; ②以D 为圆心,DO 为半径作弧交x 轴的正半轴于点2P ,则25DP DO ==,∵2DE OP ⊥,∴23P E OE ==,∴26OP =,∴2(60)P ,; ③取OD 的中点K ,过K 作OD 的垂线交x 轴的正半轴于点3P ,则33OP DP =,易知3OKP DCO ∆∆,∴3OP OK DO DC =,∴335252536OP OP ==,,∴325(0)6P ,, 综上所述,符合条件的点P 有三个,分别是1(50)P ,,2(60)P ,,325(0)6P ,; (3)①当1(50)P ,时,11532PE OP OE =-=-=,4DE =,∴2222112425PD PE DE =+=+=,P 的半径为25, ∵O 与P 外切,∴O 的半径为5-②当2(60)P ,时,25P D DO ==,26OP =∴P 的半径为5, ∵O 与P 外切, ∴O 的半径为1;③当325(0)6P ,时,33256P D OP ==, ∴P 的半径为256, ∵O 与P 外切,∴O 的半径为O ,即此时O 不存在。
中考冲刺:数形结合问题—知识讲解(提高)责编:常春芳【中考展望】1.用数形结合的思想解题可分两类:(1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等;(2)运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等.2. 热点内容:在初中教材中,数的常见表现形式为: 实数、代数式、函数和不等式等,而形的常见表现形式为: 直线型、角、三角形、四边形、多边形、圆、抛物线、相似、勾股定理等.在直角坐标系下,一次函数的图象对应着一条直线,二次函数的图象对应着一条抛物线,这些都是初中数学的重要内容.特别是二次函数,不仅是学生学习的难点之一,同时也使数形结合的思想方法在中学数学中得到最充分体现.在平面直角坐标系中,二次函数图象的开口方向、顶点坐标、对称轴以及与坐标轴的交点等都与其系数a,b,c密不可分.事实上,数a 决定抛物线的开口方向, b 与a 一起决定抛物线的对称轴位置, c 决定了抛物线与y 轴的交点位置,与a、b 一起决定抛物线顶点坐标的纵坐标,抛物线的平移的图形关系只是顶点坐标发生变化,其实从代数的角度看是b、c 的大小变化.【方法点拨】数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含“以形助数”和“以数解形”两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有“数的严谨”与“形的直观”之长,是优化解题过程的重要途径之一,是一种基本的数学方法.数形结合问题,也可以看作代数几何综合问题.从内容上来说,是把代数中的数与式、方程与不等式、函数,几何中的三角形、四边形、圆等图形的性质,以及解直角三角形的方法、图形的变换、相似等内容有机地结合在一起,同时也会融入开放性、探究性等问题.经常考查的题目类型主要有坐标系中的几何问题(简称坐标几何问题),以及图形运动过程中求函数解析式的问题等.解决这类问题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题;第三,要善于联系与转化,进一步得到新的结论.尤其要注意的是,恰当地使用综合分析法及方程与函数的思想、转化思想、数形结合思想、分类与整合思想等数学思想方法,能更有效地解决问题.【典型例题】类型一、利用数形结合探究数字的变化规律1.如图,网格中的每个四边形都是菱形.如果格点三角形ABC的面积为S,按照如图所示方式得到的格点三角形A1B1C1的面积是7S,格点三角形A2B2C2的面积是19S,那么格点三角形A3B3C3的面积为().A.39SB. 36SC.37SD.43S【思路点拨】设网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n C n三顶点分别在边长为(2n+1)个单位的菱形的内部,此菱形与三角形A n B n C n不重合的部分为三个小三角形;由此得到关于三角形A n B n C n面积公式,把n=3代入即可求出三角形A3B3C3的面积.【答案】C.【解析】网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n C n三顶点分别在边长为2n+1个单位的菱形的内部,此菱形与三角形A n B n C n不重合的部分为三个小三角形;而三角形A n B n C n面积=边长为2n+1个单位的菱形面积-三个小三角形面积=2S(2n+1)2-(21)2(21)(1)2(1)2222n n s n n s n n s+⨯⨯+⨯+⨯⨯+⨯--,=S(8n2+8n+2-2n2-n-2n2-3n-1-n2-n),=S(3n2+3n+1),把n=3分别代入上式得:S3=S(3×32+3×3+1)=37S.故选C.【总结升华】此题主要考查菱形的性质,也考查了学生的读图能力以及探究问题的规律并有规律解决问题的能力.举一反三:【变式】(2016•潍坊)在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是.【答案】(2n﹣1,2n﹣1)【解析】解:∵y=x﹣1与x轴交于点A1,∴A1点坐标(1,0),∵四边形A1B1C1O是正方形,∴B1坐标(1,1),∵C1A2∥x轴,∴A2坐标(2,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3),∵C2A3∥x轴,∴A3坐标(4,3),∵四边形A3B3C3C2是正方形,∴B3(4,7),∵B1(20,21﹣1),B2(21,22﹣1),B3(22,23﹣1),…,∴B n坐标(2n﹣1,2n﹣1).类型二、利用数形结合解决数与式的问题2. 已知实数a在数轴上的位置如图所示,则化简|2-a|+2a的结果为__________.【思路点拨】由数轴可知,0<a<2,由此去绝对值,对二次根式化简.【答案与解析】解:∵0<a<2,∴|2-a|+2a=2-a+a=2.故答案为:2.【总结升华】本题考查了绝对值的化简和二次根式的性质与化简,实数与数轴的对应关系.关键是根据数轴上的点的位置来判断数a的取值范围,根据取值范围去绝对值,化简二次根式.类型三、利用数形结合解决代数式的恒等变形问题3.(1)在边长为a的正方形纸片中剪去一个边长为b的小正方形,把余下的部分沿虚线剪开,拼成一个矩形,分别计算这两个图形阴影部分的面积,可以验证的乘法公式是__________________(用字母表示).(2)设直角三角形的直角边分别是a,b,斜边为c,将这样的四个完全相同的直角三角形拼成正方形,验证等式a2+b2=c2成立。
中考冲刺:数形结合问题—知识讲解(提高)【中考展望】1.用数形结合的思想解题可分两类:(1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等;(2)运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等.2. 热点内容:在初中教材中,数的常见表现形式为: 实数、代数式、函数和不等式等,而形的常见表现形式为: 直线型、角、三角形、四边形、多边形、圆、抛物线、相似、勾股定理等.在直角坐标系下,一次函数的图象对应着一条直线,二次函数的图象对应着一条抛物线,这些都是初中数学的重要内容.特别是二次函数,不仅是学生学习的难点之一,同时也使数形结合的思想方法在中学数学中得到最充分体现.在平面直角坐标系中,二次函数图象的开口方向、顶点坐标、对称轴以及与坐标轴的交点等都与其系数a,b,c密不可分.事实上,数a 决定抛物线的开口方向, b 与a 一起决定抛物线的对称轴位置, c 决定了抛物线与y 轴的交点位置,与a、b 一起决定抛物线顶点坐标的纵坐标,抛物线的平移的图形关系只是顶点坐标发生变化,其实从代数的角度看是b、c 的大小变化.【方法点拨】数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含“以形助数”和“以数解形”两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有“数的严谨”与“形的直观”之长,是优化解题过程的重要途径之一,是一种基本的数学方法.数形结合问题,也可以看作代数几何综合问题.从内容上来说,是把代数中的数与式、方程与不等式、函数,几何中的三角形、四边形、圆等图形的性质,以及解直角三角形的方法、图形的变换、相似等内容有机地结合在一起,同时也会融入开放性、探究性等问题.经常考查的题目类型主要有坐标系中的几何问题(简称坐标几何问题),以及图形运动过程中求函数解析式的问题等.解决这类问题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题;第三,要善于联系与转化,进一步得到新的结论.尤其要注意的是,恰当地使用综合分析法及方程与函数的思想、转化思想、数形结合思想、分类与整合思想等数学思想方法,能更有效地解决问题.【典型例题】类型一、利用数形结合探究数字的变化规律1.如图,网格中的每个四边形都是菱形.如果格点三角形ABC的面积为S,按照如图所示方式得到的格点三角形A1B1C1的面积是7S,格点三角形A2B2C2的面积是19S,那么格点三角形A3B3C3的面积为().A.39SB. 36SC.37SD.43S【思路点拨】设网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n C n三顶点分别在边长为(2n+1)个单位的菱形的内部,此菱形与三角形A n B n C n不重合的部分为三个小三角形;由此得到关于三角形A n B n C n面积公式,把n=3代入即可求出三角形A3B3C3的面积.【答案】C.【解析】网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n C n三顶点分别在边长为2n+1个单位的菱形的内部,此菱形与三角形A n B n C n不重合的部分为三个小三角形;而三角形A n B n C n面积=边长为2n+1个单位的菱形面积-三个小三角形面积=2S(2n+1)2-(21)2(21)(1)2(1)2222n n s n n s n n s+⨯⨯+⨯+⨯⨯+⨯--,=S(8n2+8n+2-2n2-n-2n2-3n-1-n2-n),=S(3n2+3n+1),把n=3分别代入上式得:S3=S(3×32+3×3+1)=37S.故选C.【总结升华】此题主要考查菱形的性质,也考查了学生的读图能力以及探究问题的规律并有规律解决问题的能力.举一反三:【变式】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y kx b=+(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B4的坐标是______________.【答案】解:∵B1的坐标为(1,1),点B2的坐标为(3,2),∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,∴A1的坐标是(0,1),A2的坐标是:(1,2),代入y=kx+b 得:1,2.b k b =⎧⎨+=⎩ 解得:1,1.b k =⎧⎨=⎩则直线A 1A 2的解析式是:y=x+1.∵A 1B 1=1,点B 2的坐标为(3,2), ∴点A 3的坐标为(3,4), ∴A 3C 2=A 3B 3=B 3C 3=4,∴点B 3的坐标为(7,4),∴B 1的纵坐标是:1=20,B 1的横坐标是:1=21-1,∴B 2的纵坐标是:2=21,B 2的横坐标是:3=22-1,∴B 3的纵坐标是:4=22,B 3的横坐标是:7=23-1,∴B n 的纵坐标是:2n-1,横坐标是:2n-1,则B n (2n -1,2n-1).∴B 4的坐标是:(24-1,24-1),即(15,8). 故答案为:(15,8).类型二 、利用数形结合解决数与式的问题2. 已知实数a 在数轴上的位置如图所示,则化简|2-a|+2a 的结果为__________.【思路点拨】由数轴可知,0<a <2,由此去绝对值,对二次根式化简. 【答案与解析】解:∵0<a <2,∴|2-a|+2a =2-a+a=2.故答案为:2. 【总结升华】本题考查了绝对值的化简和二次根式的性质与化简,实数与数轴的对应关系.关键是根据数轴上的点的位置来判断数a 的取值范围,根据取值范围去绝对值,化简二次根式.类型三、利用数形结合解决代数式的恒等变形问题3.(1)在边长为a 的正方形纸片中剪去一个边长为b 的小正方形,把余下的部分沿虚线剪开,拼成一个矩形,分别计算这两个图形阴影部分的面积,可以验证的乘法公式是__________________(用字母表示).(2)设直角三角形的直角边分别是a,b,斜边为c,将这样的四个完全相同的直角三角形拼成正方形,验证等式a2+b2=c2成立。
【思路点拨】(1)根据阴影部分的面积相等,即可得到公式;(2)直角三角形的直角边分别是a,b,斜边为c,这样的4个三角形,即可拼成正方形,据此即可得到.【答案与解析】解:(1)a2-b2=(a+b)(a-b);(2)验证:利用面积公式可得正方形的面积是:c2,正方形的面积是四个直角三角形的面积加上里面较小的正方形的面积,得到:4×12ab+(b-a)2=2ab+(a2-2ab+b2)=a2+b2,则a2+b2=c2.【总结升华】本题主要考查了平方差公式的几何表示,表示出图形阴影部分面积是解题的关键.类型四、利用数形结合思想解决极值问题4.我们曾学过“两点之间线段最短”的知识,常可利用它来解决两条线段和最小的相关问题,下面是大家非常熟悉的一道习题:如图1,已知,A,B在直线l的同一侧,在l上求作一点,使得PA+PB最小.我们只要作点B关于l的对称点B′,(如图2所示)根据对称性可知,PB=PB′.因此,求AP+BP最小就相当于求AP+PB′最小,显然当A、P、B′在一条直线上时AP+PB′最小,因此连接AB′,与直线l 的交点就是要求的点P.有很多问题都可用类似的方法去思考解决.探究:(1)如图3,正方形ABCD的边长为2,E为BC的中点,P是BD上一动点.连接EP,CP,则EP+CP的最小值是________;运用:(2)如图4,平面直角坐标系中有三点A(6,4)、B(4,6)、C(0,2),在x轴上找一点D,使得四边形ABCD的周长最小,则点D的坐标应该是_____________.操作:(3)如图5,A是锐角MON内部任意一点,在∠MON的两边OM,ON上各求作一点B,C,组成△ABC,使△ABC周长最小.(不写作法,保留作图痕迹).【思路点拨】(1)由正方形的性质可得点A是点C关于BD的对称点,连接AE,则AE就是EP+CP的最小值;(2)找点C关于x轴的对称点C′,连接AC′,则AC′与x轴的交点即为点D的位置,先求出直线AC′的解析式,继而可得出点D的坐标;(3)分别作点A关于OM的对称点A′、关于ON的对称点A″,连接A′A″,则A′A″与OM交点为点B的位置,与ON交点为C的位置.【答案与解析】解:(1)∵点A是点C关于BD的对称点,连接AE,则AE就是EP+CP的最小值,∴EP+CP的最小值=AE=5;(2)作点C关于x轴的对称点C′,连接AC′,则AC′与x轴的交点即为点D的位置,∵点C′坐标为(0,-2),点A坐标为(6,4),∴直线C′A的解析式为:y=x-2,故点D的坐标为(2,0);(3)分别作点A关于OM的对称点A′、关于ON的对称点A″,连接A′A″,则A′A″与OM交点为点B的位置,与ON交点为C的位置;如图所示:点B、C即为所求作的点.【总结升华】此题考查了利用轴对称求解最短路径的问题,求解模式题意已经给出,注意仔细理解,灵活运用题目所给的信息.类型五、利用数形结合思想,解决函数问题高清课堂:数形结合问题 资源编号:416971 经典例题15.如图, 在平面直角坐标系xOy 中,抛物线x x my 222-=与x 轴负半轴交于点A, 顶点为B, 且对称轴与x 轴交于点C.(2)D 为BO 中点,直线AD 交y 轴于E ,若点E 的坐标为(0, 2), 求抛物线的解析式;(3)在(2)的条件下,点M 在直线BO 上,且使得△AMC 的周长最小,P 在抛物线上,Q 在直线 BC 上,若以A 、M 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐标. 【思路点拨】(1)利用配方法或公式法都能求出点B 的坐标.(2)可过点D 作DF ⊥x 轴于F ,那么DF 是△BOC 的中位线,由此得出DF 、OF 、CF 的长;再由△AFD ∽△AOE 得出的比例线段以及OE 的长,即可求出m 的值,由此确定函数的解析式.(3)此题中,首先要确定点M 的位置:已知“△AMC 的周长最小”,那么可作点C 关于直线BO 的对称点C′,连接AC′与直线BO 的交点即为符合条件的点M ;确定点M 后,由于所求平行四边形的四顶点顺序并不确定,所以分AM 为边和AM 为对角线两种情况讨论;在解答时,可根据平行四边形的对边平行且相等的特点,过P 、Q 作坐标轴的垂线,通过构建全等三角形来确定点P 的坐标.【答案与解析】 解:(1)∵22222221212112()()4422y x x x mx m m x m m m m m m =-=-+-⋅=--, ∴抛物线的顶点B 的坐标为11(,)22m m -.(2)令2220x x m-=,解得10x =, 2x m =.∵ 抛物线x x my 222-=与x 轴负半轴交于点A ,∴ A (m, 0), 且m<0. 过点D 作DF ⊥x 轴于F.由 D 为BO 中点,DF//BC, 可得CF=FO=1.2COC A O BxyCA OBxy F EDyxO C BA∴ DF =1.2BC由抛物线的对称性得 AC=OC. ∴ AF :AO=3:4. ∵ DF //EO,∴ △AFD ∽△AOE. ∴.FD AFOE AO= 由E (0, 2),B 11(,)22m m -,得OE=2, DF=14m -.∴134.24m-=∴ m = -6.∴ 抛物线的解析式为2123y x x =--.(3)依题意,得A (-6,0)、B (-3, 3)、C (-3, 0).可得直线OB 的解析式为x y -=, 直线BC 为3x =-. 作点C 关于直线BO 的对称点C '(0,3),连接AC '交BO 于M , 则M 即为所求.由A (-6,0),C ' (0, 3),可得 直线AC '的解析式为321+=x y . 由13,2y x y x⎧=+⎪⎨⎪=-⎩ 解得2,2.x y =-⎧⎨=⎩ ∴ 点M 的坐标为(-2, 2).由点P 在抛物线2123y x x =--上,设P (t ,2123t t --).(ⅰ)当AM 为所求平行四边形的一边时. 如右图,过M 作MG ⊥ x 轴于G, 过P 1作P 1H ⊥ BC 于H, 则x G = x M =-2, x H = x B =-3.由四边形AM P 1Q 1为平行四边形, 可证△AMG ≌△P 1Q 1H . 可得P 1H= AG=4. ∴ t -(-3)=4. ∴ t=1.∴17(1,)3P -. 如右图,同 方法可得 P 2H=AG=4. ∴ -3- t =4. ∴t=-7.∴27(7,)3P --.(ⅱ)当AM 为所求平行四边形的对角线时, 如右图,过M 作MH ⊥BC 于H, 过P 3作P 3G ⊥ x 轴于G,则x H = x B =-3,x G =3P x =t. 由四边形AP 3MQ 3为平行四边形, 可证△A P 3G ≌△MQ 3H . 可得AG= MH =1. ∴ t -(-6)=1. ∴ t=-5. ∴35(5,)3P -. 综上,点P 的坐标为17(1,)3P -、27(7,)3P --、35(5,)3P -. 【总结升华】此题主要考查的是函数解析式的确定、全等三角形与相似三角形的应用以及平行四边形的特点等重要知识点;难点是最后一题,首先要根据轴对称图形的特点以及两点间线段最短确定点M 的位置,再根据平行四边形以及全等三角形的特点来设、求点P 的坐标,一个小题中就涉及到众多知识点,同时要注意的是平行四边形四顶点顺序不确定时,一定要分情况讨论,以免漏解. 举一反三:高清课堂:数形结合问题 资源编号:416971 经典例题2【变式】在平面直角坐标系xOy 中,抛物线21124y x =+的顶点为M ,直线2y x =,点()0P n ,为x 轴上 的一个动点,过点P 作x 轴的垂线分别交抛物线21124y x =+和直线2y x =于点A ,点B.(1)直接写出A ,B 两点的坐标(用含n 的代数式表示);⑵设线段AB 的长为d ,求d 关于n 的函数关系式及d 的最小值,并直接写出此时线段OB 与线段PM 的位置关系和数量关系;(3)已知二次函数2y ax bx c =++(a ,b ,c 为整数且0a ≠),对一切实数x 恒有x≤y ≤2124x +,求a ,b ,c 的值. (2) d =AB=A B y y -=2124n n -+.∴ d =2112()48n -+=2112()48n -+.∴ 当14n =时,d 取得最小值18.当d 取最小值时,线段OB 与线段PM 的位置关系和数量关系是OB ⊥PM 且OB=PM. (如图)(3) ∵对一切实数x 恒有 x ≤y ≤2124x +, ∴对一切实数x ,x ≤2ax bx c ++≤2124x +都成立. (0a ≠) ①当0x =时,①式化为 0≤c ≤14.∴整数c 的值为0.此时,对一切实数x ,x ≤2ax bx +≤2124x +都成立.(0a ≠) 即 222,12.4x ax bx ax bx x ⎧≤+⎪⎨+≤+⎪⎩对一切实数x 均成立. 由②得 ()21ax b x +-≥0 (0a ≠) 对一切实数x 均成立.∴()210,10.a b >⎧⎪⎨∆=-≤⎪⎩ 由⑤得整数b 的值为1.此时由③式得,2ax x +≤2124x +对一切实数x 均成立. (0a ≠) 即21(2)4a x x --+≥0对一切实数x 均成立. (0a ≠) 当a=2时,此不等式化为14x -+≥0,不满足对一切实数x 均成立.当a≠2时,∵ 21(2)4a x x --+≥0对一切实数x 均成立,(0a ≠)∴2220,1(1)4(2)0.4a a ->⎧⎪⎨∆=--⨯-⨯≤⎪⎩∴由④,⑥,⑦得 0 <a ≤1.④⑤② ③ ⑥⑦∴整数a 的值为1.∴整数a ,b ,c 的值分别为1a =,1b =,0c =.。