北京市西城区2016-2017学年高二上学期期末数学试卷(理科) Word版含解析
- 格式:doc
- 大小:472.00 KB
- 文档页数:21
北京市西城区2016 — 2017学年度第一学期期末试卷高三数学(理科) 2017.1第Ⅰ卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|02}A x x =<<,2{|10}B x x =-≤,那么AB =(A ){|01}x x <≤ (B ){|12}x x -<≤ (C ){|10}x x -<≤(D ){|12}x x <≤2.下列函数中,定义域为R 的奇函数是(A )21y x =+(B )tan y x = (C )2xy =(D )sin y x x =+3.已知双曲线2221(0)y x b b-=>的一个焦点是(2,0),则其渐近线的方程为(A )0x ±= (B 0y ±= (C )30x y ±=(D )30x y ±=4.在极坐标系中,过点(2,)6P π且平行于极轴的直线的方程是(A )sin 1=ρθ (B )sin =ρθ(C )cos 1=ρθ(D )cos =ρθ5.某四棱锥的三视图如图所示,该四棱锥的四个侧面的面积中最大的是 (A )3(B )(C )6(D )6.设,a b 是非零向量,且≠±a b .则“||||=a b ”是“()()+⊥-a b a b ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件7.实数,x y 满足3,0,60.x x y x y ⎧⎪+⎨⎪-+⎩≤≥≥若z ax y =+的最大值为39a +,最小值为33a -,则a的取值范围是 (A )[1,0]- (B )[0,1](C )[1,1]-(D )(,1][1,)-∞-+∞8.在空间直角坐标系O xyz -中,正四面体P ABC -的顶点A ,B 分别在x 轴,y 轴上移动.若该正四面体的棱长是2,则||OP 的取值范围是 (A)1] (B )[1,3] (C)1,2] (D)1]第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.复数1i1i+=-____.10.设等比数列{}n a 的各项均为正数,其前n 项和为n S .若11a =,34a =,则n a =____;6S =____.11.执行如图所示的程序框图,输出的S 值为____.12.在△ABC 中,角,,A B C 的对边分别为,,a b c .若3c =,3C π=,sin 2sin B A =,则a =____.13.设函数30,()log ,,x a f x x x a =>⎪⎩≤≤ 其中0a >.① 若3a =,则[(9)]f f =____;② 若函数()2y f x =-有两个零点,则a 的取值范围是____.14.10名象棋选手进行单循环赛(即每两名选手比赛一场).规定两人对局胜者得2分,平局各得1分,负者得0分,并按总得分由高到低进行排序.比赛结束后,10名选手的得分各不相同,且第二名的得分是最后五名选手得分之和的45.则第二名选手的得分是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数2π()sin(2)2cos 16f x x x ωω=-+-(0)ω>的最小正周期为π. (Ⅰ)求ω的值; (Ⅱ)求()f x 在区间7π[0,]12上的最大值和最小值.16.(本小题满分14分)如图,在四棱锥P ABCD -中,//AD BC , 90BAD ︒∠=,PA PD =,AB PA ⊥,2AD =,1AB BC ==.(Ⅰ)求证:平面PAD ⊥平面ABCD ;(Ⅱ)若E 为PD 的中点,求证://CE 平面PAB ; (Ⅲ)若DC 与平面PAB 所成的角为30︒,求四棱锥P ABCD -的体积.17.(本小题满分13分)手机完全充满电量,在开机不使用的状态下,电池靠自身消耗一直到出现低电量警告之间所能维持的时间称为手机的待机时间.为了解A ,B 两个不同型号手机的待机时间,现从某卖场库存手机中随机抽取A ,B 两个型号的手机各7台,在相同条件下进行测试,统计结果如下:其中,a ,b 是正整数,且a b <.(Ⅰ)该卖场有56台A 型手机,试估计其中待机时间不少于123小时的台数; (Ⅱ)从A 型号被测试的7台手机中随机抽取4台,记待机时间大于123小时的台数为X ,求X 的分布列;(Ⅲ)设A ,B 两个型号被测试手机待机时间的平均值相等,当B 型号被测试手机待机时间的方差最小时,写出a ,b 的值(结论不要求证明).18.(本小题满分13分)已知函数()ln sin (1)f x x a x =-⋅-,其中a ∈R .(Ⅰ)如果曲线()y f x =在1x =处的切线的斜率是1-,求a 的值; (Ⅱ)如果()f x 在区间(0,1)上为增函数,求a 的取值范围.19.(本小题满分14分)已知直线:l x t =与椭圆22:142x y C +=相交于A ,B 两点,M 是椭圆C 上一点.(Ⅰ)当1t =时,求△MAB 面积的最大值;(Ⅱ)设直线MA 和MB 与x 轴分别相交于点E ,F ,O 为原点.证明:||||OE OF ⋅为定值.20.(本小题满分13分)数字1,2,3,,(2)n n ≥的任意一个排列记作12(,,,)n a a a ,设n S 为所有这样的排列构成的集合.集合12{(,,,)|n n n A a a a S =∈任意整数,,1i j i j n <≤≤,都有}i j a i a j --≤;集合12{(,,,)|n n n B a a a S =∈任意整数,,1i j i j n <≤≤,都有}i j a i a j ++≤.(Ⅰ)用列举法表示集合3A ,3B ; (Ⅱ)求集合nn A B 的元素个数;(Ⅲ)记集合n B 的元素个数为n b .证明:数列{}n b 是等比数列.北京市西城区2016 — 2017学年度第一学期期末高三数学(理科)参考答案及评分标准2017.1一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.D 3.B 4.A 5.C 6.C 7.C 8.A 二、填空题:本大题共6小题,每小题5分,共30分.9.i 10.12n -;63 11. 3-12 13[4,9) 14.16 注:第10,13题第一空2分,第二空3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)解:(Ⅰ)因为2π()sin(2)(2cos 1)6f x x x ωω=-+-ππ(sin 2coscos 2sin )cos 266x x x ωωω=-+ [4分]12cos 22x x ωω=+ πsin(2)6x ω=+, [ 6分]所以()f x 的最小正周期 2ππ2T ω==, 解得 1ω=. [ 7分] (Ⅱ)由(Ⅰ)得 π()sin(2)6f x x =+.因为 7π12x ≤≤0,所以 ππ4π2663x +≤≤. [ 9分] 所以,当ππ262x +=,即π6x =时,()f x 取得最大值为1; [11分]当π4π263x +=,即7π12x =时,()f x 取得最小值为2-. [13分]解:(Ⅰ)因为90BAD ∠=,所以AB AD ⊥, [ 1分]又因为 AB PA ⊥,所以 AB ⊥平面PAD . [ 3分] 所以 平面PAD ⊥平面ABCD . [ 4分] (Ⅱ)取PA 的中点F ,连接BF ,EF . [ 5分] 因为E 为PD 的中点,所以//EF AD ,12EF AD =,又因为 //BC AD ,12BC AD =,所以 //BC EF ,BC EF =.所以四边形BCEG 是平行四边形,//EC BF . [7分]又 BF ⊂平面PAB ,CE ⊄平面PAB ,所以//CE 平面PAB . [ 8分] (Ⅲ)过P 作PO AD ⊥于O ,连接OC .因为PA PD =,所以O 为AD 中点, 又因为平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD .如图建立空间直角坐标系O xyz -. [ 9分] 设PO a =.由题意得,(0,1,0)A ,(1,1,0)B ,(1,0,0)C ,(0,1,0)D -,(0,0,)P a . 所以(1,0,0)AB −−→=,(0,1,)PA a −−→=-,(1,1,0)DC −−→=. 设平面PCD 的法向量为(,,)x y z =n ,则0,0,AB PA −−→−−→⎧⋅=⎪⎨⎪⋅=⎩n n即0,0.x y az =⎧⎨-=⎩令1z =,则y a =.所以(0,,1)a =n . [11分] 因为DC 与平面PAB 所成角为30,所以|1|cos ,|2||||DC DC DC −−→−−→−−→⋅〈〉===|n n n , 解得 1a =. [13分]所以四棱锥P ABCD -的体积11121113322P ABCD ABCD V S PO -+=⨯⨯=⨯⨯⨯=.[14分]解:(Ⅰ)被检测的7台手机中有5台的待机时间不少于123小时,因此,估计56台A 型手机中有556407⨯=台手机的待机时间不少于123小时. [ 3分] (Ⅱ)X 可能的取值为0,1,2,3. [ 4分]4711(0)35C P X ===; 133447C C 12(1)35C P X ===; 223447C C 18(2)35C P X ===; 3447C 4(3)35C P X ===. [ 8分] 所以,X 的分布列为:[10分](Ⅲ)若A ,B 两个型号被测试手机的待机时间的平均值相等,当B 型号被测试手机的待机时间的方差最小时,124a =,125b =. [13分]18.(本小题满分13分)解:(Ⅰ)函数()f x 的定义域是(0,)+∞, [ 1分]导函数为1()cos(1)f x a x x'=-⋅-. [ 2分] 因为曲线()y f x =在1x =处的切线的斜率是1-,所以 (1)1f '=-, 即 11a -=-, [ 3分] 所以 2a =. [ 4分] (Ⅱ)因为()f x 在区间(0,1)上为增函数,所以 对于任意(0,1)x ∈,都有1()cos(1)0f x a x x'=-⋅-≥. [ 6分] 因为(0,1)x ∈时,cos(1)0x ->,所以 11()cos(1)0cos(1)f x a x a x x x '=-⋅-⇔⋅-≤≥. [ 8分] 令 ()cos(1)g x x x =⋅-,所以()cos(1)sin (1)g x x x x '=--⋅-. [10分] 因为 (0,1)x ∈时,sin (1)0x -<,所以 (0,1)x ∈时,()0g x '>,()g x 在区间(0,1)上单调递增,所以()(1)1g x g <=. [12分] 所以 1a ≤.即a 的取值范围是(,1]-∞. [13分]19.(本小题满分14分)解:(Ⅰ)将1x =代入22142x y +=,解得2y =±, 所以||AB = [ 2分] 当M 为椭圆C 的顶点()2,0-时,M 到直线1x =的距离取得最大值3, [ 4分]所以 △MAB面积的最大值是2. [ 5分] (Ⅱ)设,A B 两点坐标分别为(),A t n ,(),B t n -,从而 2224t n +=. [ 6分]设()00,M x y ,则有220024x y +=,0x t ≠,0y n ≠±. [ 7分]直线MA 的方程为 00()y ny n x t x t--=--, [ 8分] 令0y =,得000ty nx x y n -=-,从而 000ty nx OE y n-=-. [ 9分]直线MB 的方程为00()y ny n x t x t++=--, [10分] 令0y =,得000ty nx x y n +=+,从而 000ty nx OF y n+=+. [11分]所以000000=ty nx ty nx OE OF y n y n -+⋅⋅-+222200220=t y n x y n--()()222202204242=n y n y y n ---- [13分]22022044=y n y n -- =4.所以OE OF ⋅为定值. [14分]20.(本小题满分13分)解:(Ⅰ)3{(1,2,3)}A =,3{(1,2,3),(1,3,2),(2,1,3),(3,2,1)}B =. [ 3分] (Ⅱ)考虑集合n A 中的元素123(,,,,)n a a a a .由已知,对任意整数,,1i j i j n <≤≤,都有i j a i a j --≤, 所以 ()()i j a i i a j j -+<-+, 所以 i j a a <.由,i j 的任意性可知,123(,,,,)n a a a a 是1,2,3,,n 的单调递增排列,所以{(1,2,3,,)}n A n =. [ 5分]又因为当k a k =*(k ∈N ,1)k n ≤≤时,对任意整数,,1i j i j n <≤≤, 都有 i j a i a j ++≤. 所以 (1,2,3,,)n n B ∈, 所以 n n A B ⊆. [ 7分]所以集合nn A B 的元素个数为1. [ 8分](Ⅲ)由(Ⅱ)知,0n b ≠.因为2{(1,2),(2,1)}B =,所以22b =.当3n ≥时,考虑n B 中的元素123(,,,,)n a a a a .(1)假设k a n =(1)k n <≤.由已知,1(1)k k a k a k ++++≤, 所以1(1)1k k a a k k n ++-+=-≥, 又因为11k a n +-≤,所以11k a n +=-. 依此类推,若k a n =,则11k a n +=-,22k a n +=-,…,n a k =.① 若1k =,则满足条件的1,2,3,,n 的排列123(,,,,)n a a a a 有1个. ② 若2k =,则2a n =,31a n =-,42a n =-,…,2n a =. 所以 11a =.此时 满足条件的1,2,3,,n 的排列123(,,,,)n a a a a 有1个. ③ 若2k n <<,只要1231(,,,)k a a a a -是1,2,3,,1k -的满足条件的一个排列,就可以相应得到1,2,3,,n 的一个满足条件的排列.此时,满足条件的1,2,3,,n 的排列123(,,,,)n a a a a 有1k b -个. [10分](2)假设n a n =,只需1231(,,,)n a a a a -是1,2,3,,1n -的满足条件的排列,此时 满足条件的1,2,3,,n 的排列123(,,,,)n a a a a 有1n b -个. 综上 23111n n b b b b -=+++++,3n ≥. 因为 3221142b b b =++==,且当4n ≥时,23211(11)2n n n n b b b b b b ---=++++++=, [12分] 所以 对任意*n ∈N ,3n ≥,都有12n n b b -=. 所以 {}n b 成等比数列. [13分]。
北京市西城区2016— 2017学年度第二学期期末试卷高二数学(理科)2017.7试卷满分:150分考试时间:120分钟一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9. 曲线1y x=在2x =处切线的斜率为______. 10. 4)12(xx -展开式中的常数项是_______.(用数字作答) 11. 离散型随机变量ξ的分布列为:且2=ξE ,则1p =_________;2p = _________.12. 某班举行的联欢会由5个节目组成,节目演出顺序要求如下: 节目甲不能排在第一个,并且节目甲必须和节目乙相邻,则该班联欢会节目演出顺序的编排方案共有_____种.13. 若函数32()f x ax ax x =-+在区间(1,0)-上恰有一个极值点,则a 的取值范围是_____.14. 已知,对于任意x ∈R ,e xax b ≥+均成立.①若e a =,则b 的最大值为__________;②在所有符合题意的b a ,中,a b -的最小值为_________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)在数列{}n a 中,11=a ,121++=+n n a nn a ,其中1,2,3,n =.(Ⅰ) 计算2a ,3a ,4a ,5a 的值;(Ⅱ) 根据计算结果,猜想{}n a 的通项公式,并用数学归纳法加以证明.16.(本小题满分13分)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为21与p ,且乙投球2次均未命中的概率为161. (Ⅰ)求甲投球2次,至少命中1次的概率;(Ⅱ)若甲、乙两人各投球2次,求两人共命中3次的概率.17.(本小题满分13分)已知函数32()3f x x ax =+.(Ⅰ) 若1-=a ,求)(x f 的极值点和极值; (Ⅱ) 求)(x f 在[0,2]上的最大值.18.(本小题满分13分)一个袋中装有黑球,白球和红球共n (*n ∈N )个,这些球除颜色外完全相同. 已知从袋中任意摸出1个球,得到黑球的概率是52. 现从袋中任意摸出2个球. (Ⅰ) 用含n 的代数式表示摸出的2球都是黑球的概率,并写出概率最小时n 的值.(直接写出n 的值)(Ⅱ) 若15=n ,且摸出的2个球中至少有1个白球的概率是74,设X 表示摸出的2个球中红球的个数,求随机变量X 的分布列和数学期望. 19.(本小题满分14分)已知函数2()f x ax bx =+和x x g ln )(=.(Ⅰ) 若1==b a ,求证:()f x 的图象在()g x 图象的上方;(Ⅱ) 若()f x 和()g x 的图象有公共点P ,且在点P 处的切线相同,求a 的取值范围. 20.(本小题满分14分)已知函数()(1)e xf x x =-. (Ⅰ)求()f x 的单调区间; (Ⅱ)证明:当0>a时,方程()f x a =在区间(1,)+∞上只有一个解;(Ⅲ)设()()ln(1)h x f x a x ax =---,其中0>a .若()0h x ≥恒成立,求a 的取值范围.北京市西城区2016 — 2017学年度第二学期期末试卷高二数学(理科)参考答案及评分标准2017.7一、选择题:本大题共8小题,每小题5分,共40分.1. A ;2.D ;3. C ;4. B ;5. C ;6. D ;7. C ;8. B . 二、填空题:本大题共6小题,每小题5分,共30分.9. 41-; 10. 24; 11. ,4211; 12. 42; 13. 1(,)5-∞-; 14. 0;1e-.注:一题两空的题目,第一空2分,第二空3分.三、解答题:本大题共6小题,共80分. 15.(本小题满分13分)解: (Ⅰ) 根据已知,24a =;99a =;416a =;525a =. …………… 4分 (Ⅱ)猜想2n a n =. …………… 6分证明:① 当1=n 时,由已知11=a ;由猜想,2111a ==,猜想成立. …………… 8分②假设当k n =(k ∈*N )时猜想成立,即2k a k =, ……………10分则1+=k n 时, 221)1(1212+=+⨯+=++=+k k kk a k k a k k . 所以,当1n k =+时,猜想也成立. ……………12分由①和②可知,2n a n =对任意的*n ∈N 都成立. ……………13分16.(本小题满分13分)解:(Ⅰ)设“甲投球一次命中”为事件A , 则11(),()22P A P A ==. …………… 2分 故甲投球2次至少命中1 次的概率为31()1()()4P A A P A P A -⋅=-=. (5)分(Ⅱ) 设“乙投球一次命中”为事件B .由题意得1()(1)(1)16P B B p p ⋅=--=, (7)分解得43=p 或45(舍去), 所以31(),()44P B P B ==. ……………8分甲、乙两人各投球2次共命中3次有两种情况:甲中两次,乙中一次;甲中一次,乙中两次. ……………9分甲中两次,乙中一次的概率为1211313()()()()2224432P A P A C P B P B =⨯⨯⨯⨯=.…11分 甲中一次,乙中两次的概率为1211339()()()()2224432C P A P A P B P B =⨯⨯⨯⨯=.…12分事件“甲中两次,乙中一次”与“甲中一次,乙中两次”是互斥的,所以,所求事件概率为93332328+=. 所以甲、乙两人各投2次,共命中3次的概率为38. ……………13分 17.(本小题满分13分)解:(Ⅰ) 当1-=a 时,32()3f x x x =-,2()36f x x x '=-. ……………2分令2()360f x x x '=-=,得0x =或2x =.……………4分所以,函数)(x f 的极大值点为0x =,极大值为0;极小值点为2x =,极小值为4-.……………6分(Ⅱ) 2()363(2)f x x ax x x a '=+=+. ……………7分①当0a =时,()0f x '≥(仅当0x =时,()0f x '=),函数)(x f 是增函数,)(x f 在[0,2]上的最大值为(2)8128f a =+=. ……………8分②当0a >时,在区间(0,)+∞上()0f x '>,函数)(x f 是增函数.)(x f 在[0,2]上的最大值为(2)812f a =+. ……………10分③当0a <时,()f x '与()f x 在区间(0,)+∞上的情况如下:……………11分此时,(0)0f =,(2)812f a =+. 当8120a +>,即203a -<<时,)(x f 在[0,2]上的最大值为(2)812f a =+. 12分 当8120a +≤,即23a ≤-时,)(x f 在[0,2]上的最大值为(0)0f =. ………13分 综上,当23a ≤-时,)(x f 在[0,2]上的最大值为0;当23a >-时,)(x f 在[0,2]上的最大值为812a +.18.(本小题满分13分) 解:(Ⅰ) 依题意有n 52个黑球. 记“摸出的2球都是黑球”为事件A , 则225222(1)41055()(1)2525n n C n n n P A C n n n --===--. ……………4分()P A 最小时5=n . ……………5分(Ⅱ) 依题意有21565⨯=个黑球. ……………6分 设袋中白球的个数为x (个),记“从袋中任意摸出两个球至少得到一个白球”为事件B ,则2152154()17xC P B C -=-=,整理得2291200x x -+=,解得5x =或24x =(舍). ……………8分 所以袋中红球的个数为4(个).随机变量X 的取值为0,1,2. ……………9分21121511(0)21C P X C ===;1141121544(1)105C C P X C ===;242152(2)35C P X C ===. X…………12分数学期望114428012211053515EX =⨯+⨯+⨯=. ……………13分 19.(本小题满分14分)解:(Ⅰ) 当1==b a 时,2()f x x x =+.设2()ln h x x x x =+-,0x >. ……………1分则2121(21)(1)()21x x x x h x x x x x +--+'=+-==, ……………2分所以,在区间1(0,)2上()0h x '<,()h x 是减函数;在区间1(,)2+∞上()0h x '>,()h x 是增函数. ……………4分所以,()h x 的最小值为1()2h =31ln 42-,又31ln 042->,所以()0h x >恒成立. 即()f x 的图象在()g x 图象的上方. ……………5分 (Ⅱ) 设00(,)P x y ,其中00x >.由已知()2f x ax b '=+,1()g x x'=. 因为在点P 处的切线相同, 所以2000000012,,ln ax b y ax bx y x x +==+=. ……………7分 消去0,b y 得200ln 10ax x +-=.根据题意,方程200ln 10ax x +-=有解. ……………8分设2()ln 1F x ax x =+-,则()F x 在(0,)+∞上有零点.2121()2ax F x ax x x+'=+=, 当0a ≥时,()0F x '>,函数()F x 在(0,)+∞上单调递增. 当1a ≥时,(1)10F a =-≥,1ln 1ln 0F =+-=≤,()F x 有零点.当01a ≤<时,(1)10F a =-≤,22(e )e 10F a =+>,()F x 有零点. …11分 当0a <时,令()0F x '=,解得x ='与在区间上的情况如下:令3ln 02≥,得 312ea ≥-. 此时(1)10F a =-<.所以()F x 有零点. ……………13分综上,所求a 的取值范围为31[,)2e -+∞. ……………14分20.(本小题满分14分)解:(Ⅰ)由已知()e (1)e e xx xf x x x '=+-=. ……………2分所以,在区间(,0)-∞上()0f x '<,函数()f x 在(,0)-∞上单调递减,在区间(0,)+∞上()0f x '>,函数()f x 在区间(0,)+∞上单调递增. ……………4分 (Ⅱ)设()()(1)e xg x f x a x a =-=--,0a >. ……………5分()e x g x x '=,由(Ⅰ)知,函数()g x 在区间(0,)+∞上单调递增.且(1)0g a =-<,11(1)e(e 1)0a a g a a a a +++=-=->.所以,()g x 在区间(1,)+∞上只有一个零点,方程()f x a =在区间(1,)+∞上只有一个解. ……………8分 (Ⅲ)设()()ln(1)h x f x a x ax =---,0>a ,()h x 定义域为}1|{>x x ,()e (e )[(1)e ]111x x x a a x h x x a x x a x x x '=--=-=-----, ……………9分 令()0h x '=,则(1)e 0xx a --=,由(Ⅱ)知,()(1)e xg x x a =--在区间(1,)+∞上只有一个零点,是增函数, 不妨设()g x 的零点为0x ,则00(1)e0x x a --=, ……………11分所以,()h x '与()h x 在区间(0,)+∞上的情况如下:所以,函数()h x 的最小值为0()h x ,00000()(1)e ln(1)x h x x a x ax =----,由00(1)e 0xx a --=,得001e x a x -=,所以00000()e ln ln e e x x x a ah x a ax a a a =⋅--=-. ……………13分依题意0()0h x ≥,即ln 0a a a -≥,解得0e a <≤,所以,a 的取值范围为(0,e]. ……………14分。
北京市西城区2017— 2018学年度第一学期期末试卷高二数学(理科)一.选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1. 直线的倾斜角为()A. B. C. D.【答案】D【解析】直线可化为:.斜率为-1,所以倾斜角为.故选D.2. 命题“对任意,都有”的否定是()A. 存在,使得B. 对任意,都有C. 存在,使得D. 对任意,都有【答案】C【解析】根据命题的否定的写法,只否结论,不改变条件,且转化其中的量词,将任意改为存在。
即存在,使得.故答案为:C。
3. 双曲线的焦点到其渐近线的距离为()A. 1B.C. 2D.【答案】A【解析】根据双曲线的方程得到焦点为,渐近线为:,根据点到直线的距离得到焦点到渐近线的距离为故答案为:A。
4. 设是两个不同的平面,是三条不同的直线,()A. 若,,则B. 若,,则C. 若,,则D. 若,,则【答案】D【解析】A.垂直于同一条直线的两条直线,可能是互相垂直的,比如墙角模型。
故不正确。
B.平行于同一个平面的两条直线可以是平行的,垂直的,共面异面都有可能。
故不正确。
C.直线b有可能在平面内。
故不正确。
D.垂直于同一条直线的两个平面是平行的。
正确。
故答案为:D。
5. “”是“方程表示的曲线为椭圆”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】易知“”时,方程表示的曲线为椭圆成立,充分性成立但当方程表示的曲线为椭圆时,或,必要性不成立.所以“”是“方程表示的曲线为椭圆”的充分不必要条件.故选A.6. 设是两个不同的平面,是一条直线,若,,,则()A.与平行B.与相交C.与异面D. 以上三个答案均有可能【答案】A【解析】过l作平面与α、β相交,交线分别为a,b,利用线面平行的性质,可得l∥a,l∥b,∴a∥b,∵a⊄β,b⊂β,∴a∥β,∵a⊂α,α∩β=m,∴l∥m.故选A.7. 设为坐标原点,是以为焦点的抛物线上任意一点,是线段的中点,则直线的斜率的最大值为()A. B. 1 C. D. 2【答案】B【解析】设,,是线段的中点,所以.直线的斜率为:.显然时的斜率较大,此时,当且仅当,时,斜率最大为1.故选B.8. 设为空间中的一个平面,记正方体的八个顶点中到的距离为的点的个数为,的所有可能取值构成的集合为,则有()A. ,B. ,C. ,D. ,【答案】D【解析】当为面时,A,C,,到面的距离相等,即,排除C;取E,F,G,H为,的中点,记为时,点,六个点到面的距离相等,即,排除A,B.故选D.点睛:两点到面的距离相等分为两种情况:(1)两点连线与平面平行;(2)两点连线的中点在面上.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9. 命题“若,则”的逆否命题为_______.【答案】若,则【解析】逆否命题即调换结论和条件的位置,并且将两者都否定。
北京市西城区2016-2017学年高二数学上学期期末考试试题 理试卷满分:150分 考试时间:120分钟题号 一 二三本卷总分1516 17 18 19 20 分数一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1. 双曲线2213x y -=的一个焦点坐标为( ) (A )(2,0)(B )(0,2)(C )(2,0) (D )(0,2)2. 已知椭圆的短轴长是焦距的2倍,则椭圆的离心率为( ) (A )12(B )22(C )15(D )553. 设,αβ是两个不同的平面,l 是一条直线,以下命题正确的是( ) (A )若//αβ,//l α,则l β⊂ (B )若//αβ,l α⊥,则 l β⊥ (C )若αβ⊥,l α⊥,则l β⊂(D )若αβ⊥,//l α,则 l β⊥4. 设m ∈R ,命题“若0m ≥,则方程2x m =有实根”的逆否命题是( ) (A )若方程2x m =有实根,则0m ≥ (B )若方程2x m =有实根,则0m < (C )若方程2x m =没有实根,则0m ≥ (D )若方程2x m =没有实根,则0m <5. 已知βα,表示两个不同的平面,m 为平面α内的一条直线,则“βα⊥” 是“β⊥m ” 的( ) (A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件6. 已知双曲线的焦点在x 轴上,焦距为25,且双曲线的一条渐近线与直线210x y -+= 平行,则双曲线的标准方程为( )(A )2214-=x y (B )2214-=y x (C )22331205-=x y (D )22331520-=x y7. 已知(3,0)A ,(0,4)B ,动点(,)P x y 在线段AB 上运动,则xy 的最大值为( ) (A )5 (B )4 (C )3 (D )28. 用一个平面截正方体和正四面体,给出下列结论:① 正方体的截面不可能是直角三角形; ② 正四面体的截面不可能是直角三角形; ③ 正方体的截面可能是直角梯形;④ 若正四面体的截面是梯形,则一定是等腰梯形. 其中,所有正确结论的序号是( ) (A )②③ (B )①②④ (C )①③ (D )①④二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9. 命题“x ∃∈R ,使得2250x x ++=”的否定是______________________.10. 已知点)1,0(-M ,)3,2(N . 如果直线MN 垂直于直线032=-+y ax ,那么a 等于_______.11. 在正方体1111ABCD A B C D -中,异面直线1,AD BD 所成角的余弦值为_________.12. 一个正三棱柱的正视图、俯视图如图所示,则该三棱柱的侧视图的面积为_________.13. 设O 为坐标原点,抛物线24y x =的焦点为F ,P 为抛物线上一点. 若3PF =,则OPF △的面积为_________.14. 学完解析几何和立体几何后,某同学发现自己家碗的侧面可以看做抛物线的一部分曲线围绕其对称轴旋转而成,他很想知道抛物线的方程,决定把抛物线的顶点确定为原点,对称轴确定为x 轴,建立如图所示的平面直角坐标系,但是他无法确定碗底中心到原点的距离,请你通过对碗的相关数据的测量以及进一步的计算,帮助他求出抛物线的方程.你需要测量的数据是_________________________(所有测量数据用小写英文字母表示),算出的抛物线标准方程为___________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)如图,四棱锥P ABCD -的底面是正方形,侧棱PA ⊥底面ABCD ,E 是PA 的中点. (Ⅰ)求证://PC 平面BDE ; (Ⅱ)证明:BD CE ⊥.16.(本小题满分13分)如图,PA ⊥平面ABC ,AB BC ⊥,22AB PA BC ===,M 为PB 的中点. ABCDPE 正(主)视图俯视图242(Ⅰ)求证:AM ⊥平面PBC ; (Ⅱ)求二面角A PC B --的余弦值.17.(本小题满分13分)已知直线l 过坐标原点O ,圆C 的方程为22640x y y +-+=. (Ⅰ)当直线l 2l 与圆C 相交所得的弦长;(Ⅱ)设直线l 与圆C 交于两点,A B ,且A 为OB 的中点,求直线l 的方程.18.(本小题满分13分)已知1F 为椭圆22143x y +=的左焦点,过1F 的直线l 与椭圆交于两点,P Q . (Ⅰ)若直线l 的倾斜角为45,求PQ ;(Ⅱ)设直线l 的斜率为k (0)k ≠,点P 关于原点的对称点为P ',点Q 关于x 轴的对称点为Q ',P Q ''所在直线的斜率为k '. 若2k '=,求k 的值.y1A1B2B2A Ox19.(本小题满分14分)如图,四棱锥E ABCD -中,平面EAD ⊥平面ABCD ,//DC AB ,BC CD ⊥,EA ED ⊥,且4AB =,2BC CD EA ED ====.(Ⅰ)求证:BD ⊥平面ADE ;(Ⅱ)求BE 和平面CDE 所成角的正弦值; (Ⅲ)在线段CE 上是否存在一点F ,使得平面BDF ⊥平面CDE ,请说明理由.20.(本小题满分14分)如图,过原点O 引两条直线12,l l 与抛物线21:2W y px =和22:4W y px =(其中p 为常数,0p >)分别交于四个点1122,,,A B A B .(Ⅰ)求抛物线12,W W 准线间的距离; (Ⅱ)证明:1122//A B A B ;(Ⅲ)若12l l ⊥,求梯形1221A A B B 面积的最小值. EABCD北京市西城区2016 — 2017学年度第一学期期末试卷高二数学(理科)参考答案及评分标准一、选择题:本大题共8小题,每小题5分,共40分.; ; 3. B ; 4. D ; 5. B ; 6. A ; 7. C ; 8. D. 二、填空题:本大题共6小题,每小题5分,共30分.9. 对任意x ∈R ,都有0522≠++x x ; 10. 1; 11. 33; 12. 832;14. 碗底的直径m ,碗口的直径n ,碗的高度h ;2224n my x h-=.注:一题两空的题目,第一空2分,第二空3分.三、解答题:本大题共6小题,共80分. 15.(本小题满分13分)解: (Ⅰ)连结AC 交BD 于O ,连结OE ,因为四边形ABCD 是正方形,所以O 为AC 中点. 又因为E 是PA 的中点,所以//PC OE , ………3分 因为PC ⊄平面BDE ,OE ⊂平面BDE ,所以//PC 平面BDE . ……………6分 (Ⅱ)因为四边形ABCD 是正方形,所以BD AC ⊥. ……8分因为PA ⊥底面ABCD ,且BD ⊂平面ABCD , 所以PA BD ⊥. ……………10分 又因为ACPA A =,所以BD ⊥平面PAC , ……………12分又CE ⊂平面PAC ,ABCDPE O所以BD CE ⊥. ……………13分16.(本小题满分13分)解: (Ⅰ)因为PA ⊥平面ABC ,BC ⊂平面ABC ,所以PA BC ⊥.因为BC AB ⊥,PAAB A =,所以BC ⊥平面PAB . ……………2分 所以AM BC ⊥. ……………3分 因为PA AB =,M 为PB 的中点, 所以AM PB ⊥. ……………4分 所以AM ⊥平面PBC . ……………5分 (Ⅱ)如图,在平面ABC 内,作//Az BC ,则,,AP AB AZ 两两互相垂直, 建立空间直角坐标系A xyz -.则(0,0,0),(2,0,0),(0,2,0),(0,2,1),(1,1,0)A P B C M .(2,0,0)AP =,(0,2,1)AC =,(1,1,0)AM = . ……………8分设平面APC 的法向量为(,,)x y z =n ,则 0,0,AP AC ⎧⋅=⎪⎨⋅=⎪⎩n n即0,20.x y z =⎧⎨+=⎩令1y =,则2z =-.所以(0,1,2)=-n . ……………10分由(Ⅰ)可知(1,1,0)AM =为平面BPC 的法向量, 设,AM n 的夹角为α, 则10cos 52AM AMα⋅===n n . ……………12分 因为二面角A PC B --为锐角, 所以二面角A PC B --10……………13分 17.(本小题满分13分)解:(Ⅰ)由已知,直线l 的方程为2y x =,圆C 圆心为(0,3),5………3分ABC P M xy z所以,圆心到直线l 的距离为333=. ……………5分所以,所求弦长为22. ……………6分 (Ⅱ) 设11(,)A x y ,因为A 为OB 的中点,则11(2,2)B x y . ……………8分 又,A B 圆C 上,所以 22111640x y y +-+=,22111441240x y y +-+=,即22111310x y y +-+=. ……………10分解得11y =,11x =±, ……………11分 即(1,1)A 或(1,1)A -. ……………12分 所以,直线l 的方程为y x =或y x =-. ……………13分18.(本小题满分13分)解:(Ⅰ)设1122(,),(,)P x y Q x y ,由已知,椭圆的左焦点为(1,0)-,又直线l 的倾斜角为45,所以直线l 的方程为1y x =+, ……………1分 由221,3412y x x y =+⎧⎨+=⎩得27880x x +-=, ……………3分所以1287x x +=-,1287x x =-. ……………4分 22212128824||1[()4]2()4777PQ k x x x x =++-=-+⨯=. ……………5分(Ⅱ)由22(1),3412y k x x y =+⎧⎨+=⎩得2222(34)84120k x k x k +++-=, ……………6分所以2122834k x x k -+=+,212241234k x x k -=+. ……………8分依题意1122(,),(,)P x y Q x y ''---,且11(1)y k x =+,22(1)y k x =+, 所以,12121212()y y k x x k x x x x --'==++, ……………10分其中2212121221()434k x x x x x x k+-=+-=+, ……………11分结合2122834k x x k-+=+,可得2312k k k +'=2=. ……………12分 解得279k =,377k =±. ……………13分19.(本小题满分14分)解:(Ⅰ)由BC CD ⊥,2BC CD ==.可得22BD =.由EA ED ⊥,且2EA ED ==,可得22AD =.又4AB =. 所以BD AD ⊥. …………2 又平面EAD ⊥平面ABCD , 平面ADE平面ABCD AD =,所以BD ⊥平面ADE . ……………4分 (Ⅱ)如图建立空间直角坐标系D xyz -,则(0,0,0)D ,(0,22,0)B ,(2,2,0)C -,(2,0,2)E ,(2,22,2)BE =-,(2,0,2)DE =,(2,2,0)DC =-. …………6分设(,,)x y z =n 是平面CDE 的一个法向量,则0DE ⋅=n ,0DC ⋅=n ,即0,0.x z x y +=⎧⎨-+=⎩令1x =,则(1,1,1)=-n . ……………7分设直线BE 与平面CDE 所成的角为α, 则|||2222|2sin |cos ,|3||||233BE BE BE ⋅--=<>===⋅⋅αn n n . ……………8分 所以BE 和平面CDE 所成的角的正弦值23. ……………9分 (Ⅲ)设CF CE =λ,[0,1]λ∈.又(2,2,0)DC =-,(22,2,2)CE =-,(0,22,0)BD =-. EAB Dzxy则2(21,1,)DF DC CF DC CE =+=+=--+λλλλ. ……………10分设(,,)x'y'z'=m 是平面BDF 一个法向量,则0BD ⋅=m ,0DF ⋅=m ,即0,(21)(1)0.y'x'y'z'=⎧⎨-+-++=⎩λλλ……………11分令1x'=,则21(1,0,)λλ-=-m . ……………12分若平面BDF ⊥平面CDE ,则0⋅=m n ,即2110λλ-+=,1[0,1]3λ=∈.……13分所以,在线段CE 上存在一点F 使得平面BDF ⊥平面CDE . ……………14分20.(本小题满分14分)解:(Ⅰ)由已知,抛物线12,W W 的准线分别为2px =-和x p =-, ……………2分 所以,抛物线12,W W 准线间的距离为2p. ……………4分 (Ⅱ)设11:l y k x =,代入抛物线方程,得12,A A 的横坐标分别是212p k 和214pk . ………5分 12||||OA OA 22421122421144121616p p k k p p k k +==+,同理12||1||2OB OB =, ……………7分 所以1122OA B OA B △△,所以1122//A B A B . ……………8分 (Ⅲ)设111(,)A x y ,122(,)B x y ,直线11A B 方程为111:A B l x ty m =+,代入曲线22y px =,得21220y pty pm --=,所以122y y pt +=,1212y y pm =-. ……………9分由12l l ⊥,得12120x x y y +=,又2112y px =,2222y px =,所以221212204y y y y p+=,由1212y y pm =-,得12m p =. ……………11分 所以直线11A B 方程为11:2A B l x ty p =+,百度文库 - 让每个人平等地提升自我1111 同理可求出直线22A B 方程为22:4A B l x ty p =+. 所以2221112||1214A B t y y p t t =+-=++, ……………12分2222||414A B p t t =++, 平行线11A B l 与22A B l 之间的距离为21d t =+, 所以梯形1221A A B B 的面积211221()642S A B A B d p t =+⋅=+ ……………13分 212p ≥当0t =时,梯形1221A A B B 的面积达最小,最小值为212p .……………14分。
2016西城区高二(上)期末数学(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(5分)命题“若a>1,则a>0”的逆命题是()A.若a>0,则a>1 B.若a≤0,则a>1 C.若a>0,则a≤1 D.若a≤0,则a≤1 2.(5分)圆心为(1,2),且与y轴相切的圆的方程是()A.(x+1)2+(y+2)2=4 B.(x﹣1)2+(y﹣2)2=4 C.(x+1)2+(y+2)2=1 D.(x﹣1)2+(y﹣2)2=1 3.(5分)在空间中,给出下列四个命题:①平行于同一个平面的两条直线互相平行;②垂直于同一个平面的两个平面互相平行;③平行于同一条直线的两条直线互相平行;④垂直于同一条直线的两条直线互相平行.其中真命题的序号是()A.①B.②C.③D.④4.(5分)实轴长为2,虚轴长为4的双曲线的标准方程是()A.B.C.,或D.,或5.(5分)“直线L垂直于平面α内无数条直线”是“直线L垂直于平面α”的()A.充要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件6.(5分)一个几何体的三视图如图所示,其中正(主)视图中△ABC是边长为2的正三角形,俯视图的边界为正六边形,那么该几何体的侧视图的面积为()A.B.1 C.D.27.(5分)已知椭圆的两个焦点分别为F1,F2,若椭圆上存在点P使得∠F1PF2是钝角,则椭圆离心率的取值范围是()A.B.C.D.8.(5分)已知四面体ABCD的侧面展开图如图所示,则其体积为()A.2 B.C.D.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.(5分)命题“∀x∈R,x2﹣1>0”的否定是.10.(5分)已知直线l1:2x﹣ay﹣1=0,l2:ax﹣y=0.若l1∥l2,则实数a=.11.(5分)已知双曲线的一个焦点是(2,0),则其渐近线的方程为.12.(5分)如图,正方体ABCD﹣A1B1C1D1中,直线BC1和B1D1所成角的大小为;直线BC1和平面B1D1DB所成角的大小为.13.(5分)在空间直角坐标系Oxyz中,已知平面α的一个法向量是=(1,﹣1,2),且平面α过点A(0,3,1).若P(x,y,z)是平面α上任意一点,则点P的坐标满足的方程是.14.(5分)曲线C是平面内到定点F(0,1)和定直线l:y=﹣1的距离之和等于4的点的轨迹,给出下列三个结论:①曲线C关于y轴对称;②若点P(x,y)在曲线C上,则|y|≤2;③若点P在曲线C上,则1≤|PF|≤4.其中,所有正确结论的序号是.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(13分)如图,四棱锥P﹣ABCD的底面ABCD为菱形,Q是棱PA的中点.(Ⅰ)求证:PC∥平面BDQ;(Ⅱ)若PB=PD,求证:平面PAC⊥平面BDQ.16.(13分)已知抛物线y2=2px(p>0)的准线方程是.(Ⅰ)求抛物线的方程;(Ⅱ)设直线y=k(x﹣2)(k≠0)与抛物线相交于M,N两点,O为坐标原点,证明:OM⊥ON.17.(13分)如图,在直三棱柱ABC﹣A 1B1C1中,∠BAC=90°,,,AB=2,点D在棱B1C1上,且B1C1=4B1D.(Ⅰ)求证:BD⊥A1C;(Ⅱ)求二面角B﹣A1D﹣B1的大小.18.(13分)如图,在直角坐标系xOy中,已知圆O:x2+y2=4.点B,C在圆O上,且关于x轴对称.(Ⅰ)当点B的横坐标为时,求的值;(Ⅱ)设P为圆O上异于B,C的任意一点,直线PB,PC与x轴分别交于点M,N,证明:|OM|•|ON|为定值.19.(14分)如图1,四棱锥P﹣ABCD中,PD⊥底面ABCD,面ABCD是直角梯形,M为侧棱PD上一点.该四棱锥的俯视图和侧(左)视图如图2所示.(Ⅰ)证明:BC⊥平面PBD;(Ⅱ)证明:AM∥平面PBC;(Ⅲ)线段CD上是否存在点N,使AM与BN所成角的余弦值为?若存在,找到所有符合要求的点N,并求CN的长;若不存在,说明理由.20.(14分)如图,已知四边形ABCD是椭圆3x2+4y2=12的内接平行四边形,且BC,AD分别经过椭圆的焦点F1,F2.(Ⅰ)若直线AC的方程为x﹣2y=0,求AC的长;(Ⅱ)求平行四边形ABCD面积的最大值.参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.【解答】互换原命题“若a>1,则a>0”的题设和结论,得到它的逆命题是“若a>0,则a>1”,故选:A.2.【解答】∵圆心C的坐标为(1,2),且所求圆与y轴相切,∴圆的半径r=1,则所求圆的方程为(x﹣1)2+(y﹣2)2=1.故选:D.3.【解答】①平行于同一个平面的两条直线有三种可能的位置关系:相平行、相交、异面,故①错误;②垂直于同一个平面的两个平面有两种可能的位置关系:平行、相交,故②错误;③由平行公理可知:平行于同一条直线的两条直线互相平行,故③正确;④垂直于同一条直线的两条直线有三种可能的位置关系:相平行、相交、异面,故④错误.故选:C.4.【解答】实轴长为2,虚轴长为4的双曲线的标准方程是:或,故选:D.5.【解答】根据线面垂直的定义可知,直线L与平面α内任意无数条直线都垂直,当直线L与平面α内无数条直线都垂直时,直线l与平面α垂直不一定成立,∴“直线L与平面α内无数条直线都垂直”是“直线L与平面α垂直”的必要不充分条件.故选:C6.【解答】由三视图知几何体为正六棱锥,∵正视图中△ABC是边长为2的正三角形,底面六边形的边长为1,∴棱锥的高为2×=,由俯视图知侧视图的宽为2×=,∴侧视图的面积S=××=.故选C.7.【解答】如图,当动点P在椭圆长轴端点处沿椭圆弧向短轴端点运动时,P对两个焦点的张角∠F1PF2渐渐增大,当且仅当P点位于短轴端点P0处时,张角∠F1PF2达到最大值.由此可得:∵椭圆上存在点P使得∠F1PF2是钝角,∴△P0F1F2中,∠F1P0F2>90°,∴Rt△P0OF2中,∠OP0F2>45°,所以P0O<OF2,即b<c,∴a2﹣c2<c2,可得a2<2c2,∴e>,∵0<e<1,∴<e<1.故选:B.8.【解答】由题意可知三棱锥的底面是等腰直角三角形,腰长为:,斜边为:2,3条侧棱相等为:.如图:△BOC≌△BOA≌△BOD,可得BO是三棱锥的高为2.四面体ABCD的体积为:==.故选:D.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.【解答】因为特称命题的否定是全称命题,所以,命题“∀x∈R,x2﹣1>0”的否定是:∃x∈R,x2﹣1≤0.故答案为:∃x∈R,x2﹣1≤0.10.【解答】当a=0时,l1:2x﹣1=0,l2:y=0.则l1⊥l2,不满足条件,当a≠0时,直线l1:2x﹣ay﹣1=0,即为y=﹣,l2:ax﹣y=0即为y=ax,∵l1∥l2,∴=a,解得a=±,故答案为:.11.【解答】∵双曲线的一个焦点是(2,0),∴1+b2=4,∵b>0,∴b=,又a=1,∴双曲线渐近线的方程为故答案为:.12.【解答】连结DC1,A1C1,设A1C1∩B1D1=O,连结BO,∵B1D1∥BD,∴∠DBC1是线BC1和B1D1所成角,∵BD=BC1=DC1,∴∠DBC1=60°,∴直线BC1和B1D1所成角的大小为60°;正方体ABCD﹣A1B1C1D1中,∵B1D1⊥A1C1,BB1⊥A1C1,B1D1∩BB1=B1,∴C1O⊥平面B1D1DB,∴∠OBC1是直线BC1和平面B1D1DB所成角,∵,∴=,∴∠OBC1=30°.∴直线BC1和平面B1D1DB所成角为30°.故答案为:60°,30°.13.【解答】由题意可知=(x,y﹣3,z﹣1);平面α的一个法向量是=(1,﹣1,2),所以•=0,即:(x,y﹣3,z﹣1)•(1,﹣1,2)=0;∴x﹣y+3+2z﹣2=0,即x﹣y+2z+1=0,所求点P的坐标满足的方程是x﹣y+2z+1=0.故答案为:x﹣y+2z+1=0.14.【解答】设P(x,y)是曲线C上的任意一点,因为曲线C是平面内到定点F(0,1)和定直线l:y=﹣1的距离之和等于4的点的轨迹,所以|PF|+|y+1|=4.即,解得y≥﹣1时,y=2﹣x2,当y<﹣1时,y=x2﹣2;显然①曲线C关于y轴对称;正确.②若点P(x,y)在曲线C上,则|y|≤2;正确.③若点P在曲线C上,|PF|+|y+1|=4,|y|≤2,则1≤|PF|≤4.正确.故答案为:①②③.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.【解答】(本小题满分13分)(Ⅰ)证明:设AC交BD于点O,连结OQ.(1分)因为底面ABCD为菱形,所以O为AC中点.因为Q是PA的中点,所以OQ∥PC.(4分)因为OQ⊂平面BDQ,PC⊄平面BDQ,所以PC∥平面BDQ.(5分)(Ⅱ)证明:连结OP.(6分)因为底面ABCD为菱形,所以BD⊥AC,O为BD中点.(8分)因为PB=PD,所以BD⊥PO.(10分)又因为:AO∩AC=0,所以BD⊥平面PAC.(11分)因为BD⊂平面BDQ,所以平面PAC⊥平面BDQ.(13分).16.【解答】(本小题满分13分)(Ⅰ)解:因为抛物线y2=2px(p>0)的准线方程为,(2分)所以,解得p=1,(4分)所以抛物线的方程为y2=2x.(5分)(Ⅱ)证明:设M(x1,y1),N(x2,y2).将y=k(x﹣2)代入y2=2x,消去y整理得k2x2﹣2(2k2+1)x+4k2=0.(7分)所以x1x2=4.(8分)由,,两式相乘,得,(9分)注意到y1,y2异号,所以y1y2=﹣4.(10分)所以直线OM与直线ON的斜率之积为,(12分)即OM⊥ON.(13分)17.【解答】(本小题满分13分)(Ⅰ)证明:因为ABC﹣A1B1C1直三棱柱,所以AA1⊥AB,AA1⊥AC.又AB⊥AC,所以AB,AC,AA1两两互相垂直.(1分)如图,以A为原点,建立空间直角坐标系A﹣xyz.(2分)则B(2,0,0),,,,.由,得.(3分)所以,.因为,(4分)所以BD⊥A1C.(5分)(Ⅱ)解:,.设平面A1DB的一个法向量为=(x1,y1,z1),则(7分)所以取z1=1,得.(9分)又平面A1DB1的一个法向量为=(0,0,1),(10分)所以,(12分)因为二面角B﹣A1D﹣B1的平面角是锐角,所以二面角B﹣A1D﹣B1的大小是60°.(13分)18.【解答】(Ⅰ)解:因为点B在圆O上,横坐标为.不妨设,由对称性知,(2分)所以.(5分)(Ⅱ)解:设B(x0,y0),由对称性知C(x0,﹣y0),且.(6分)设P(x1,y1)(y1≠±y0),则.(7分),.(9分)在上述方程中分别令y=0,解得,.(11分)所以.所以|OM|•|ON|=4.(13分)19.【解答】(Ⅰ)证明:由俯视图可得,BD2+BC2=CD2,∴BC⊥BD.又∵PD⊥平面ABCD,∴BC⊥PD,∵BD∩PD=D,∴BC⊥平面PBD.(Ⅱ)证明:取PC上一点Q,使PQ:PC=1:4,连接MQ,BQ.由左视图知PM:PD=1:4,∴MQ∥CD,.在△BCD中,易得∠CDB=60°,∴∠ADB=30°.又BD=2,∴AB=1,.又∵AB∥CD,,∴AB∥MQ,AB=MQ.∴四边形ABQM为平行四边形,∴AM∥BQ.∵AM⊄平面PBC,BQ⊂平面PBC,∴直线AM∥平面PBC.(Ⅲ)解:线段CD上存在点N,使AM与BN所成角的余弦值为.证明如下:∵PD⊥平面ABCD,DA⊥DC,建立如图所示的空间直角坐标系D﹣xyz.∴.设,其中N(0,t,0).∴,.要使AM与BN所成角的余弦值为,则有,∴,解得t=0或2,均适合N(0,t,0).故点N位于D点处,此时CN=4;或CD中点处,此时CN=2,有AM与BN所成角的余弦值为.20.【解答】(本小题满分14分)(Ⅰ)解:由,消去y可得:4x2=12,解得,(2分)所以A,C两点的坐标为和,(4分)所以.(5分)(Ⅱ)解:①当直线AD的斜率不存在时,此时易得,,,,所以平行四边形ABCD的面积为|AB|•|AD|=6.(6分)②当直线AD的斜率存在时,设直线AD的方程为y=k(x﹣1),将其代入椭圆方程,整理得(3+4k2)x2﹣8k2x+4k2﹣12=0.(8分)设点A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4).则,.(10分)连结AF1,DF1,则平行四边形ABCD的面积.(11分)又=.(13分)又(3+4k2)2﹣16k2(k2+1)=9+8k2,所以.综上,平行四边形ABCD面积的最大值是6.(14分)。
北京市西城区2016-2017学年高二数学上学期期末考试试题文试卷满分:150分考试时间:120分钟一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9. 命题“x ∃∈R ,使得2250x x ++=”的否定是______________________.10. 如果直线032=-+y ax 与20x y -=垂直,那么a 等于_______.11. 已知双曲线2213y x -=,则双曲线的离心率为______;渐近线方程为_____________ .12. 一个直三棱柱的三视图如图所示,则该三棱柱的体积为_________.13. 如图,在四边形ABCD 中,1AD DC CB ===,AB =,对角线AC =将ACD △沿AC 所在直线翻折,当AD BC ⊥时,线段BD 的长度 为______.14. 学完解析几何和立体几何后,某同学发现自己家碗的侧面可以看做抛物线的一部分曲线围绕其对称轴旋转而成,他很想知道抛物线的方程,决定把抛物线的顶点确定为原点,对称轴确定为x 轴,建立如图所示的平面直角坐标系,但是他无法确定碗底中心到原点的距离,请你通过对碗的相关数据的测量以及进一步的计算,帮助他求出抛物线的方程.你需要测量的数据是_________________________(所有测量数据用小写英文字母表示),算出的抛物线标准方程为___________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)如图,四棱锥P ABCD -的底面是正方形,侧棱PA ⊥底面ABCD ,E 是PA 的中点. (Ⅰ)求证://PC 平面BDE ; (Ⅱ)证明:BD CE ⊥.16.(本小题满分13分)已知圆C 经过)1,1(),3,1(-B A 两点,且圆心在直线x y =上.ABCDPE ABCD(Ⅰ)求圆C 的方程;(Ⅱ)设直线l 经过点)2,2(-,且与圆C 相交所得弦长为32,求直线l 的方程.17.(本小题满分13分)如图,在平面ABCD 中,⊥AB 平面ADE ,CD ⊥平面ADE ,ADE △是等边三角 形,22AD DC AB ===,,F G 分别为,AD DE的中点. (Ⅰ)求证 EF ⊥平面ABCD ; (Ⅱ)求四棱锥E ABCD -的体积;(Ⅲ)判断直线AG 与平面BCE 的位置关系,并加以证明.18.(本小题满分13分)过椭圆2212x y +=右焦点F 的直线l 与椭圆交于两点,C D ,与直线2=x 交于点E .(Ⅰ)若直线l 的斜率为2,求||CD ;(Ⅱ)设O 为坐标原点,若:1:3ODE OCE S S ∆∆=,求直线l 的方程.19.(本小题满分14分)如图,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,90BAC ∠=︒,2AB AC ==,1AA =,M N 分别为BC 和1AA 的中点,P 为侧棱1BB 上的动点.EDABCGF(Ⅰ)求证平面APM ⊥平面11BB C C ;(Ⅱ)若P 为线段1BB 的中点,求证//CN 平面AMP ; (Ⅲ)试判断直线1BC 与PA 能否垂直. 若能垂直,求出PB 的值;若不能垂直,请说明理由.20.(本小题满分14分)已知抛物线22y x =,两点(1,0)M ,(3,0)N . (Ⅰ)求点M 到抛物线准线的距离;(Ⅱ)过点M 的直线l 交抛物线于两点,A B ,若抛物线上存在一点R ,使得,,,A B N R 四点构成平行四边形,求直线l 的斜率.北京市西城区2016 — 2017学年度第一学期期末试卷高二数学(文科)参考答案及评分标准2017.1NA MPCBA 1 C 1B 1一、选择题:本大题共8小题,每小题5分,共40分.1. A ;2.D ;3. C ;4. C ;5. D ;6. A ;7. B ;8. D. 二、填空题:本大题共6小题,每小题5分,共30分.9. 对任意x ∈R ,都有0522≠++x x ; 10. 1; 11. 2;y =; 12. 4;;14. 碗底的直径m ,碗口的直径n ,碗的高度h ;2224n my x h-=. 注:一题两空的题目,第一空2分,第二空3分. 三、解答题:本大题共6小题,共80分. 15.(本小题满分13分)解 (Ⅰ)连结AC 交BD 于O ,连结OE ,因为四边形ABCD 是正方形,所以O 为AC 中点.又因为E 是PA 的中点,所以//PC OE , ………3分 因为PC ⊄平面BDE ,OE ⊂平面BDE ,所以//PC 平面BDE . ……………6分 (Ⅱ)因为四边形ABCD 是正方形,所以BD AC ⊥. ……8分 因为PA ⊥底面ABCD ,且BD ⊂平面ABCD ,所以PA BD ⊥. ……………10分又因为AC PA A =I ,所以BD ⊥平面PAC , ……………12分 又CE ⊂平面PAC ,所以BD CE ⊥. ……………13分16.(本小题满分13分)解:(Ⅰ)设圆C 的圆心坐标为),(a a ,依题意,有2222)1()1()3()1(-++=-+-a a a a , ……………2分 即22451a a a -+=+,解得1=a , ……………4分 所以222(11)(31)4r =-+-=, ……………5分 所以圆C 的方程为4)1()1(22=-+-y x . ……………6分 (Ⅱ)依题意,圆C 的圆心到直线l 的距离为1. ……………8分 所以直线2x =符合题意. ……………9分ABCDPEO当直线l 斜率存在时,设直线l 方程为)2(2-=+x k y , 即022=---k y kx , 则11|3|2=++k k , ……………11分 解得43k =-, ……………12分 所以直线l 的方程为)2(342--=+x y ,即0234=-+y x , ……………13分综上,直线l 的方程为2x = 或0234=-+y x .17.(本小题满分13分)(Ⅰ)证明:因为F 为等边ADE △的边AD 的中点, 所以 EF AD ⊥. ……………2分 因为⊥AB 平面ADE ,⊂AB 平面ABCD 所以平面ADE ⊥平面ABCD . ……………4分 所以EF ⊥平面ABCD . ……………5分 (Ⅱ)解:因为⊥AB 平面ADE ,CD ⊥平面ADE, 所以//AB CD ,90ADC ∠=,四边形ABCD 是直角梯形, ……………7分 又22AD DC AB ===,所以1(21)232ABCD S =⋅+⋅=梯形,……………8分又EF =所以13E ABCD ABCD V S EF -=⋅=……………9分(Ⅲ)结论 直线//AG 平面BCE . 证明 取CE 的中点H ,连结,GH BH ,因为G 是DE 的中点,所以//GH DC ,且 GH =12DC . ……………11分所以//GH AB ,且1GH AB ==,所以四边形ABHG 为平行四边形,//AG BH , ……………12分 又⊄AG 平面BCE ,⊂BH 平面BCE .所以//AG 平面BCE . ……………13分DABCG FHE18.(本小题满分13分)解:(Ⅰ)由已知,1=c ,)0,1(F ,直线l 的方程为22-=x y . ……………1分设11(,)C x y ,22(,)D x y ,联立⎩⎨⎧-==+222222x y y x ,消y 得291660x x -+=, ……………3分91621=+x x ,9621=x x , ……………4分 所以||CD = ……………5分9==. ……………6分(Ⅱ)依题意,设直线l 的斜率为k (0≠k ),则直线l 的方程为)1(-=x k y ,联立⎩⎨⎧-==+kkx y y x 2222,消y 得0)22(4)212222=-+-+k x k x k (, ……………7分 2221214k k x x +=+……①, 22212122k k x x +-=……②……………8分 因为:1:3ODE OCE S S =△△,所以 :1:3DE CE =, 3CE DE =,所以 1223(2)x x -=-,整理得 2134x x -=……③ ……………10分由①③得 212121k x k -=+,2223121k x k +=+, ……………11分代入②,解得1±=k , ……………12分 所以直线l 的方程为1y x =-或1y x =-+. ……………13分19.(本小题满分14分)(Ⅰ)证明:由已知,M 为BC 中点,且AB AC =,所以AM BC ⊥. ……………1分 又因为11//BB AA ,且1AA ⊥底面ABC , 所以1BB ⊥底面ABC .所以1BB AM ⊥, ……………3分 所以AM ⊥平面11BB C C .所以平面AMP ⊥平面11BB C C .……………5分NAMPCB A 1C 1B 1 Q(Ⅱ)证明:连结BN ,交AP 于Q ,连结MQ ,NP .因为,N P 分别为11,AA BB 中点,所以//AN BP ,且AN BP =.所以四边形ANPB 为平行四边形, ……………7分Q 为BN 中点,所以MQ 为CBN △的中位线,所以//CN MQ . ……………8分 又CN ⊄平面AMP ,MQ ⊂平面AMP ,所以//CN 平面AMP . ……………9分 (Ⅲ) 解:假设直线1BC 与直线PA 能够垂直,又因为1BC AM ⊥,所以⊥1BC 平面APM ,所以1BC PM ⊥. ……………10分 设PB x =,x ∈.当1BC PM ⊥时,11BPM B C B ∠=∠, 所以Rt PBM △∽11Rt B C B △,所以111C B PB MB BB =. ……………12分因为111MB C B BB ====,解得3x =. ……………13分 因此直线1BC 与直线PA 不可能垂直. ……………14分20.(本小题满分14分)解:(Ⅰ)由已知,抛物线22y x =的准线方程为12x =-. ……………2分所以,点M 到抛物线准线的距离为131()22--=. ……………4分(Ⅱ)设直线:(1)l y k x =-,11(,)A x y ,22(,)B x y ,由2(1),2y k x y x=-⎧⎨=⎩得2222(22)0k x k x k -++=, ……………5分 所以212222k x x k++=,121x x =. ……………6分 ①,N R 在直线AB 异侧,,,,A B N R 四点构成平行四边形,则,AB NR 互相平分. 所以,12R N x x x x +=+,12R N y y y y +=+,所以,22223R k x k +=+,222R k x k -=. 12122(2)R y y y k x x k=+=+-=. ……………8分 将(,)R R x y 代入抛物线方程,得22RR y x =,即222422k k k-=⨯,解得0k =,不符合题意. ……………10分 ②若,N R 在直线AB 同侧,,,,A B N R 四点构成平行四边形,则,AR BN 互相平分. 所以,12R N x x x x +=+,12R N y y y y +=+,所以,213R x x x =-+,21R y y y =-. ……………12分代入抛物线方程,得22121()2(3)y y x x -=-+,又2112y x =,2222y x =,所以2222121()2(3)22y y y y -=-+,注意到212y y =-=-,解得211y =,11y =±. ……………13分 当11y =时,112x =,2k =-;当11y =-时,112x =,2k =. 所以2k =±. ……………14分。
2017西城区高二(上)期末数学(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(5分)双曲线的一个焦点坐标为()A.B.C.(2,0) D.(0,2)2.(5分)已知椭圆的短轴长是焦距的2倍,则椭圆的离心率为()A.B. C.D.3.(5分)设α,β是两个不同的平面,l是一条直线,以下命题正确的是()A.若α∥β,l∥α,则l⊂βB.若α∥β,l⊥α,则l⊥βC.若α⊥β,l⊥α,则l⊂βD.若α⊥β,l∥α,则l⊥β4.(5分)设m∈R,命题“若m≥0,则方程x2=m有实根”的逆否命题是()A.若方程x2=m有实根,则m≥0 B.若方程x2=m有实根,则m<0C.若方程x2=m没有实根,则m≥0 D.若方程x2=m没有实根,则m<05.(5分)已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件6.(5分)已知双曲线的焦点在x轴上,焦距为2,且双曲线的一条渐近线与直线x﹣2y+1=0平行,则双曲线的标准方程为()A.﹣y2=1 B.x2﹣=1C.﹣=1 D.﹣=17.(5分)已知两点A(3,0),B(0,4),动点P(x,y)在线段AB上运动,则xy的最大值为()A.B.C.3 D.48.(5分)用一个平面截正方体和正四面体,给出下列结论:①正方体的截面不可能是直角三角形;②正四面体的截面不可能是直角三角形;③正方体的截面可能是直角梯形;④若正四面体的截面是梯形,则一定是等腰梯形.其中,所有正确结论的序号是()A.②③B.①②④C.①③D.①④二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.(5分)命题“存在x∈R,使得x2+2x+5=0”的否定是.10.(5分)已知点M(0,﹣1),N(2,3).如果直线MN垂直于直线ax+2y﹣3=0,那么a等于.11.(5分)在正方体ABCD﹣A1B1C1D1中,异面直线AD,BD1所成角的余弦值为.12.(5分)一个正三棱柱的正视图、俯视图如图所示,则该三棱柱的侧视图的面积为.13.(5分)设O为坐标原点,抛物线y2=4x的焦点为F,P为抛物线上一点.若|PF|=3,则△OPF的面积为.14.(5分)学完解析几何和立体几何后,某同学发现自己家碗的侧面可以看做抛物线的一部分曲线围绕其对称轴旋转而成,他很想知道抛物线的方程,决定把抛物线的顶点确定为原点,对称轴确定为x轴,建立如图所示的平面直角坐标系,但是他无法确定碗底中心到原点的距离,请你通过对碗的相关数据的测量以及进一步的计算,帮助他求出抛物线的方程.你需要测量的数据是(所有测量数据用小写英文字母表示),算出的抛物线标准方程为.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(13分)如图,四棱锥P﹣ABCD的底面是正方形,侧棱PA⊥底面ABCD,E是PA的中点.(Ⅰ)求证:PC∥平面BDE;(Ⅱ)证明:BD⊥CE.16.(13分)如图,PA⊥平面ABC,AB⊥BC,AB=PA=2BC=2,M为PB的中点.(Ⅰ)求证:AM⊥平面PBC;(Ⅱ)求二面角A﹣PC﹣B的余弦值.17.(13分)已知直线l过坐标原点O,圆C的方程为x2+y2﹣6y+4=0.(Ⅰ)当直线l的斜率为时,求l与圆C相交所得的弦长;(Ⅱ)设直线l与圆C交于两点A,B,且A为OB的中点,求直线l的方程.18.(13分)已知F1为椭圆+=1的左焦点,过F1的直线l与椭圆交于两点P,Q.(Ⅰ)若直线l的倾斜角为45°,求|PQ|;(Ⅱ)设直线l的斜率为k(k≠0),点P关于原点的对称点为P′,点Q关于x轴的对称点为Q′,P′Q′所在直线的斜率为k′.若|k′|=2,求k的值.19.(14分)如图,四棱锥E﹣ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,EA⊥ED,且AB=4,BC=CD=EA=ED=2.(Ⅰ)求证:BD⊥平面ADE;(Ⅱ)求BE和平面CDE所成角的正弦值;(Ⅲ)在线段CE上是否存在一点F使得平面BDF⊥平面CDE,请说明理由.20.(14分)如图,过原点O引两条直线l1,l2与抛物线W1:y2=2px和W2:y2=4px(其中P为常数,p>0)分别交于四个点A1,B1,A2,B2.(Ⅰ)求抛物线W1,W2准线间的距离;(Ⅱ)证明:A1B1∥A2B2;(Ⅲ)若l1⊥l2,求梯形A1A2B2B1面积的最小值.参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.【解答】由双曲线得a2=3,b2=1,则c2=a2+b2=4,则c=2,故双曲线的一个焦点坐标为(2,0),故选:C2.【解答】由题意可知:设椭圆的方程为:(a>b>0),由2b=2×2c,即b=2c,a2=b2+c2=4c2+c2=5c2,则a=c,∴椭圆的离心率e==,椭圆的离心率,故选D.3.【解答】由α,β是两个不同的平面,l是一条直线,知:在A中,若α∥β,l∥α,则l⊂β或l∥β,故A错误;在B中,若α∥β,l⊥α,则由线面垂直的判定定理得l⊥β,故B正确;在C中,若α⊥β,l⊥α,则l与β相交、平行或l⊂β,故C错误;在D中,若α⊥β,l∥α,则l与β相交、平行或l⊂β,故D错误.故选:B.4.【解答】命题“若m≥0,则方程x2=m有实根”的逆否命题是命题“若方程x2=m没有实根,则m<0”,故选:D5.【解答】由平面与平面垂直的判定定理知如果m为平面α内的一条直线,且m⊥β,则α⊥β,反之,α⊥β时,若m平行于α和β的交线,则m∥β,所以不一定能得到m⊥β,所以“α⊥β”是“m⊥β”的必要不充分条件.故选B.6.【解答】由题意可知:设双曲线的标准方程为(a>0,b>0),由2c=2,则c=,双曲线的一条渐近线与直线x﹣2y+1=0平行,即=,由c2=a2+b2,解得:a=2,b=1,∴双曲线的标准方程为:,故选A.7.【解答】由题意可得直线AB的方程为,∴线段AB的方程为,(x≥0,y≥0)∴1=≥2,∴xy≤3,当且仅当即x=且y=2时取等号,xy有最大值3,故选:C.8.【解答】①正方体的截面是三角形时,为锐角三角形,正确;②正四面体的截面不可能是直角三角形,不正确;③正方体的截面与一组平行的对面相交,截面是等腰梯形,不正确;④若正四面体的截面是梯形,则一定是等腰梯形,正确.故选D.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.【解答】因为命题“存在x∈R,使得x2+2x+5=0”是特称命题,根据特称命题的否定是全称命题,可得命题的否定为:对任何x∈R,都有x2+2x+5≠0.故答案为:对任何x∈R,都有x2+2x+5≠0.10.【解答】∵点M(0,﹣1),N(2,3),∴k MN==2,∵直线MN垂直于直线ax+2y﹣3=0,∴2×=﹣1,解得a=1.故答案为1.11.【解答】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为1,则A(1,0,0),D(0,0,0),B(1,1,0),D1(0,0,1),=(﹣1,0,0),=(﹣1,﹣1,1),设异面直线AD,BD1所成角为θ,则cosθ==.∴异面直线AD,BD1所成角的余弦值为.故答案为:.12.【解答】由正三棱柱的正视图、俯视图得到该三棱柱的侧视图是边长为4的等边三角形,∴由三视图可知,该正三棱柱的底边三角形的高为:=2,底面边长为:4,∴侧视图三角形的高为:4,该三棱柱的侧视图的面积为S=2×4=8.故答案为:8.13.【解答】由抛物线方程得:抛物线的准线方程为:x=﹣1,焦点F(1,0),又P为C上一点,|PF|=3,∴x P=2,代入抛物线方程得:|y P|=2,=×|OF|×2=.∴S△POF故答案为:.14.【解答】碗底的直径2m,碗口的直径2n,碗的高度h;设方程为y2=2px(p>0),则将点(a,m),(a+h,n)代入抛物线方程可得m2=2pa,n2=2p(a+h),可得2p=,∴抛物线方程为y2=x.故答案为碗底的直径2m,碗口的直径2n,碗的高度h;y2=x.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.【解答】(本小题满分13分)证明:(Ⅰ)连结AC交BD于O,连结OE,因为四边形ABCD是正方形,所以O为AC中点.又因为E是PA的中点,所以PC∥OE,…(3分)因为PC⊄平面BDE,OE⊂平面BDE,所以PC∥平面BDE.…(6分)(Ⅱ)因为四边形ABCD是正方形,所以BD⊥AC.…(8分)因为PA⊥底面ABCD,且BD⊂平面ABCD,所以PA⊥BD.…(10分)又因为AC∩PA=A,所以BD⊥平面PAC,…(12分)又CE⊂平面PAC,所以BD⊥CE.…(13分)16.【解答】(本小题满分13分)证明:(Ⅰ)因为PA⊥平面ABC,BC⊂平面ABC,所以PA⊥BC.因为BC⊥AB,PA∩AB=A,所以BC⊥平面PAB.…(2分)所以AM⊥BC.…(3分)因为PA=AB,M为PB的中点,所以AM⊥PB.…(4分)所以AM⊥平面PBC.…(5分)解:(Ⅱ)如图,在平面ABC内,作Az∥BC,则AP,AB,Az两两互相垂直,建立空间直角坐标系A﹣xyz.则A(0,0,0),P(2,0,0),B(0,2,0),C(0,2,1),M(1,1,0).=(2,0,0),=(0,2,1),=(1,1,0).…(8分)设平面APC的法向量为=(x,y,z),则,令y=1,得=(0,1,﹣2).…(10分)由(Ⅰ)可知=(1,1,0)为平面BPC的法向量,设二面角A﹣PC﹣B的平面角为α,则cosα===.…(12分)所以二面角A﹣PC﹣B的余弦值为.…(13分)17.【解答】(Ⅰ)由已知,直线l的方程为y=x,圆C圆心为(0,3),半径为,…(3分)所以,圆心到直线l的距离为=.…(5分)所以,所求弦长为2=2.…(6分)(Ⅱ)设A(x1,y1),因为A为OB的中点,则B(2x1,2y1).…(8分)又A,B在圆C上,所以x12+y12﹣6y1+4=0,4x12+4y12﹣12y1+4=0.…(10分)解得y1=1,x1=±1,…(11分)即A(1,1)或A(﹣1,1).…(12分)所以,直线l的方程为y=x或y=﹣x.…(13分)18.【解答】(Ⅰ)椭圆+=1,a=2,b=,c=1,椭圆的左焦点F1(﹣1,0),设P(x1,y1),Q(x2,y2),又直线l的倾斜角为45°,∴直线l的方程为y=x+1,…(1分)由,整理得:7x2+8x﹣8=0,…(3分)则x1+x2=﹣,x1•x2=﹣.…(4分)丨PQ丨=•=•=,∴|PQ|=;…(5分)(Ⅱ)由,整理得:(3+4k2)x2+8k2x+4k2﹣12=0,…(6分)则x1+x2=﹣,x1•x2=,…(8分)依题意P′(﹣x1,﹣y1),Q′(x2,﹣y2),且y1=k(x1+1),y2=k(x2+1),∴丨k′丨=丨丨=丨丨,…(10分)其中丨x1﹣x2丨==,…(11分)∴丨k′丨=丨丨=2.…(12分)解得:7k2=9,k=±,k的值±..…(13分)19.【解答】(I)证明:由BC⊥CD,BC=CD=2,可得.由EA⊥ED,且EA=ED=2,可得.又AB=4,所以BD⊥AD.又平面EAD⊥平面ABCD,平面ADE∩平面ABCD=AD,BD⊂平面ABCD,所以BD⊥平面ADE.…(5分)(II)解:建立空间直角坐标系D﹣xyz,则D(0,0,0),,,,,,.设=(x,y,z)是平面CDE的一个法向量,则令x=1,则=(1,1,﹣1).设直线BE与平面CDE所成的角为α,则sinα=所以BE和平面CDE所成的角的正弦值.…(10分)(III)解:设,λ∈[0,1].,,.则.设=(x',y',z')是平面BDF一个法向量,则令x'=1,则=(1,0,﹣).若平面BDF⊥平面CDE,则•=0,即,.所以,在线段CE上存在一点F使得平面BDF⊥平面CDE.…(14分)20.【解答】(Ⅰ)由已知,抛物线W1,W2的准线分别为x=﹣和x=﹣p,所以,抛物线W1,W2准线间的距离为(Ⅱ)设l1:y=k1x,代入抛物线方程,得A1,A2的横坐标分别是和.∴==,同理=,所以△OA1B1∽△OA2B2,所以A1B1∥A2B2.(Ⅲ)设A(x1,y1)B(x2,y2),直线A1B1方程为x=ty+m1,代入曲线y2=2px,得y2﹣2pty﹣2pm1=0,所以y1+y2=2pt,y1y2=﹣2pm1.由l1⊥l2,得x1x2+y1y2=0,又y12=2px1,y22=2px2,所以+y1y2=0,由y1y2=﹣2pm1,得m1=2p.所以直线A1B1方程为x=ty+2p,同理可求出直线A2B2方程为x=ty+4p,所以|A1B1|=|y1﹣y2|=2p•,|A2B2|=4p•,平行线A1B1与A2B2之间的距离为d=,所以梯形A1A2B2B1的面积≥12p2当t=0时,梯形A1A2B2B1的面积达最小,最小值为12p2.。
北京市2016-2017学年高二上学期期末考试数学理试卷一、选择题:本大题供8小题,每小题5分,供40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 直线023=+-y x 的倾斜角是A. 6πB. 3πC. 23πD. 56π 2. 直线l 过点(2,2)P -,且与直线032=-+y x 垂直,则直线l 的方程为A. 220x y +-=B. 260x y --=C. 260x y --=D. 250x y -+=3. 一个几何体的三视图如图所示,如果该几何体的侧面面积为π12,则该几何体的体积是A. π4B. 12πC. 16πD. 48π4. 在空间中,下列命题正确的是A. 如果直线m ∥平面α,直线α⊂n 内,那么m ∥n ;B. 如果平面α内的两条直线都平行于平面β,那么平面α∥平面βC. 如果平面α外的一条直线m 垂直于平面α内的两条相交直线,那么m α⊥D. 如果平面α⊥平面β,任取直线m α⊂,那么必有m β⊥5. 如果直线013=-+y ax 与直线01)21(=++-ay x a 平行.那么a 等于A. -1B. 31C. 3D. -1或316. 方程)0(0222≠=++a y ax x 表示的圆A. 关于x 轴对称B. 关于y 轴对称C. 关于直线x y =轴对称D. 关于直线x y -=轴对称7. 如图,正方体1111ABCD A BC D -中,点E ,F 分别是1AA ,AD 的中点,则1CD 与EF 所成角为A. 0︒B. 45︒C. 60︒D. 90︒8. 如果过点M (-2,0)的直线l 与椭圆1222=+y x 有公共点,那么直线l 的斜率k 的取值范围是 A.]22,(--∞ B.),22[+∞ C.]21,21[- D. ]22,22[- 二、填空题:本大题共6小题,每小题5分,共30分.9. 已知双曲线的标准方程为116422=-y x ,则该双曲线的焦点坐标为,_________________渐近线方程为_________________.10. 已知向量)1,3,2(-=a ,)2,,5(--=y b 且a b ⊥ ,则y =________.11. 已知点),2,(n m A -,点)24,6,5(-B 和向量(3,4,12)a =- 且AB ∥a .则点A 的坐标为________.12. 直线0632=++y x 与坐标轴所围成的三角形的面积为________.13. 抛物线x y 82-=上到焦点距离等于6的点的坐标是_________________.14. 已知点)0,2(A ,点)3,0(B ,点C 在圆122=+y x 上,当ABC ∆的面积最小时,点C 的坐标为________.三、解答题:本大题共6小题,共80分,解答应写出文字说明,演算步骤或证明过程.15. (本小题共13分)如图,在三棱锥A BCD -中,AB ⊥平面BCD ,BC CD ⊥,E ,F ,G 分别是AC ,AD ,BC 的中点.求证:(I )AB ∥平面EFG ;(II )平面⊥EFG 平面ABC .16. (本小题共13分)已知斜率为2的直线l 被圆0241422=+++y y x 所截得的弦长为求直线l 的方程.17. (本小题共14分)如图,在四棱锥P ABCD -中,平面⊥PAB 平面ABCD ,AB ∥CD ,AB AD ⊥,2CD AB =,E 为PA 的中点,M 在PD 上(点M 与D P ,两点不重合).(I ) 求证:PB AD ⊥;(II )若λ=PDPM ,则当λ为何值时, 平面⊥BEM 平面PAB ?(III )在(II )的条件下,求证:PC ∥平面BEM .18. (本小题共13分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,平面PCD ⊥底面ABCD ,PD CD ⊥,PD CD =,E 为PC 的中点.(I ) 求证:AC ⊥PB ;(II ) 求二面角P --BD --E 的余弦值.19. (本小题共14分) 已知斜率为1的直线l 经过抛物线22y px =(0)p >的焦点F ,且与抛物线相交于A ,B 两点,4=AB .(I ) 求p 的值;(II ) 设经过点B 和抛物线对称轴平行的直线交抛物线22y px =的准线于点D ,求证:D O A ,,三点共线(O 为坐标原点).20. (本小题共13分) 已知椭圆2222:1(0)x y G a b a b +=>>的左焦点为F ,离心率为33,过点)1,0(M 且与x 轴平行的直线被椭圆G 截得的线段长为6.(I ) 求椭圆G 的方程;(II )设动点P 在椭圆G 上(P 不是顶点),若直线FP 的斜率大于2,求直线OP (O 是坐标原点)的斜率的取值范围.北京市2016-2017学年高二上学期期末考试数学理试卷参考答案一、ABB C BA CD二、9.(±52,0),2y x =± 10. -4 11. (1,-2,0)12. 3 13. (-4,24±) 14. (13133,13132) 说明:1.第9题,答对一个空给3分。
北京市西城区2016 — 2017学年度第一学期期末试卷高三数学(理科)2017.1第Ⅰ卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|02}A x x =<<,2{|10}B x x =-≤,那么A B = (A ){|01}x x <≤ (B ){|12}x x -<≤ (C ){|10}x x -<≤(D ){|12}x x <≤2.下列函数中,定义域为R 的奇函数是 (A )21y x =+(B )tan y x =(C )2x y =(D )sin y x x =+3.已知双曲线2221(0)y x b b-=>的一个焦点是(2,0),则其渐近线的方程为(A )0x = (B 0y ±= (C )30x y ±=(D )30x y ±=4.在极坐标系中,过点(2,)6P π且平行于极轴的直线的方程是(A )sin 1=ρθ (B )sin =ρθ(C )cos 1=ρθ(D )cos =ρθ5.某四棱锥的三视图如图所示,该四棱锥的四个侧面的面积中最大的是 (A )3(B )(C )6(D )6.设,a b 是非零向量,且≠±a b .则“||||=a b ”是“()()+⊥-a b a b ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件7.实数,x y 满足3,0,60.x x y x y ⎧⎪+⎨⎪-+⎩≤≥≥若z ax y =+的最大值为39a +,最小值为33a -,则a的取值范围是 (A )[1,0]- (B )[0,1](C )[1,1]-(D )(,1][1,)-∞-+∞8.在空间直角坐标系O xyz -中,正四面体P ABC -的顶点A ,B 分别在x 轴,y 轴上移动.若该正四面体的棱长是2,则||OP 的取值范围是 (A)11] (B )[1,3] (C)1,2] (D)[11]第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.复数1i1i+=-____.10.设等比数列{}n a 的各项均为正数,其前n 项和为n S .若11a =,34a =,则n a =____;6S =____.11.执行如图所示的程序框图,输出的S 值为____.12.在△ABC 中,角,,A B C 的对边分别为,,a b c .若3c =,3C π=,sin 2sin B A =,则a =____.13.设函数30,()log ,,x a f x x x a =>⎪⎩≤≤其中0a >. ① 若3a =,则[(9)]f f =____;② 若函数()2y f x =-有两个零点,则a 的取值范围是____.14.10名象棋选手进行单循环赛(即每两名选手比赛一场).规定两人对局胜者得2分,平局各得1分,负者得0分,并按总得分由高到低进行排序.比赛结束后,10名选手的得分各不相同,且第二名的得分是最后五名选手得分之和的45.则第二名选手的得分是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数2π()sin(2)2cos 16f x x x ωω=-+-(0)ω>的最小正周期为π.(Ⅰ)求ω的值; (Ⅱ)求()f x 在区间7π[0,]12上的最大值和最小值.16.(本小题满分14分)如图,在四棱锥P ABCD -中,//AD BC ,90BAD ︒∠=,PA PD =,AB PA ⊥,2AD =,1AB BC ==.(Ⅰ)求证:平面PAD ⊥平面ABCD ;(Ⅱ)若E 为PD 的中点,求证://CE 平面PAB ; (Ⅲ)若DC 与平面PAB 所成的角为30︒,求四棱锥P ABCD -的体积.17.(本小题满分13分)手机完全充满电量,在开机不使用的状态下,电池靠自身消耗一直到出现低电量警告之间所能维持的时间称为手机的待机时间.为了解A ,B 两个不同型号手机的待机时间,现从某卖场库存手机中随机抽取A ,B 两个型号的手机各7台,在相同条件下进行测试,统计结果如下:其中,a ,b 是正整数,且a b <.(Ⅰ)该卖场有56台A 型手机,试估计其中待机时间不少于123小时的台数;(Ⅱ)从A 型号被测试的7台手机中随机抽取4台,记待机时间大于123小时的台数为X ,求X 的分布列; (Ⅲ)设A ,B 两个型号被测试手机待机时间的平均值相等,当B 型号被测试手机待机时间的方差最小时,写出a ,b 的值(结论不要求证明).18.(本小题满分13分)已知函数()ln sin (1)f x x a x =-⋅-,其中a ∈R .(Ⅰ)如果曲线()y f x =在1x =处的切线的斜率是1-,求a 的值; (Ⅱ)如果()f x 在区间(0,1)上为增函数,求a 的取值范围.19.(本小题满分14分)已知直线:l x t =与椭圆22:142x y C +=相交于A ,B 两点,M 是椭圆C 上一点.(Ⅰ)当1t =时,求△MAB 面积的最大值;(Ⅱ)设直线MA 和MB 与x 轴分别相交于点E ,F ,O 为原点.证明:||||OE OF ⋅为定值.20.(本小题满分13分)数字1,2,3,,(2)nn ≥的任意一个排列记作12(,,,)n a a a ,设n S 为所有这样的排列构成的集合.集合12{(,,,)|n n n A a a a S =∈ 任意整数,,1i j i j n <≤≤,都有}i j a i a j --≤;集合12{(,,,)|n n n B a a a S =∈ 任意整数,,1i j i j n <≤≤,都有}i j a i a j ++≤.(Ⅰ)用列举法表示集合3A ,3B ; (Ⅱ)求集合n n A B 的元素个数;(Ⅲ)记集合n B 的元素个数为n b .证明:数列{}n b 是等比数列.北京市西城区2016 — 2017学年度第一学期期末高三数学(理科)参考答案及评分标准2017.1一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.D 3.B 4.A 5.C 6.C 7.C 8.A 二、填空题:本大题共6小题,每小题5分,共30分.9.i 10.12n -;6311.3- 12[4,9)14.16 注:第10,13题第一空2分,第二空3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)解:(Ⅰ)因为2π()sin(2)(2cos 1)6f x x x ωω=-+-ππ(sin 2coscos 2sin )cos 266x x x ωωω=-+[4分]12cos 222x x ωω=+πsin(2)6x ω=+,[6分]所以()f x 的最小正周期2ππ2T ω==, 解得1ω=.[7分](Ⅱ)由(Ⅰ)得 π()sin(2)6f x x =+.因为7π12x ≤≤0,所以ππ4π2663x +≤≤.[9分] 所以,当ππ262x +=,即π6x =时,()f x 取得最大值为1;[11分]当π4π263x +=,即7π12x =时,()f x 取得最小值为 [13分] 16.(本小题满分14分)解:(Ⅰ)因为90BAD ∠= ,所以AB AD ⊥,[1分]又因为AB PA ⊥,所以AB ⊥平面PAD .[3分]所以平面PAD ⊥平面ABCD .[4分](Ⅱ)取PA 的中点F ,连接BF ,EF .[5分]因为E 为PD 的中点,所以//EF AD ,12EF AD =,又因为//BC AD ,12BC AD =,所以//BC EF ,BC EF =.所以四边形BCEG 是平行四边形,//EC BF .[7分]又BF ⊂平面PAB ,CE ⊄平面PAB , 所以//CE 平面PAB .[8分] (Ⅲ)过P 作PO AD ⊥于O ,连接OC .因为PA PD =,所以O 为AD 中点,又因为平面PAD ⊥平面ABCD ,所以PO ⊥平面ABCD . 如图建立空间直角坐标系O xyz -.[9分]设PO a =.由题意得,(0,1,0)A ,(1,1,0)B ,(1,0,0)C ,(0,1,0)D -,(0,0,)P a . 所以(1,0,0)AB −−→=,(0,1,)PA a −−→=-,(1,1,0)DC −−→=. 设平面PCD 的法向量为(,,)x y z =n ,则0,0,AB PA −−→−−→⎧⋅=⎪⎨⎪⋅=⎩n n 即0,0.x y az =⎧⎨-=⎩ 令1z =,则y a =.所以(0,,1)a =n .[11分]因为DC 与平面PAB 所成角为30,所以|1|cos ,|2||||DC DC DC −−→−−→−−→⋅〈〉===|n n n , 解得1a =.[13分]所以四棱锥P ABCD -的体积11121113322P ABCD ABCD V S PO -+=⨯⨯=⨯⨯⨯=.[14分]17.(本小题满分13分)解:(Ⅰ)被检测的7台手机中有5台的待机时间不少于123小时,因此,估计56台A 型手机中有556407⨯=台手机的待机时间不少于123小时.[3分] (Ⅱ)X 可能的取值为0,1,2,3.[4分]4711(0)35C P X ===;133447C C 12(1)35C P X ===;223447C C 18(2)35C P X ===;3447C 4(3)35C P X ===.[8分]所以,X 的分布列为:[10分](Ⅲ)若A ,B 两个型号被测试手机的待机时间的平均值相等,当B 型号被测试手机的待机时间的方差最小时,124a =,125b =.[13分]18.(本小题满分13分)解:(Ⅰ)函数()f x 的定义域是(0,)+∞,[1分]导函数为1()cos(1)f x a x x'=-⋅-.[2分] 因为曲线()y f x =在1x =处的切线的斜率是1-, 所以(1)1f '=-,即11a -=-,[3分] 所以2a =.[4分](Ⅱ)因为()f x 在区间(0,1)上为增函数,所以对于任意(0,1)x ∈,都有1()cos(1)0f x a x x'=-⋅-≥.[6分] 因为(0,1)x ∈时,cos(1)0x ->,所以11()cos(1)0cos(1)f x a x a x x x '=-⋅-⇔⋅-≤≥.[8分] 令()cos(1)g x x x =⋅-,所以()cos(1)sin (1)g x x x x '=--⋅-.[10分] 因为(0,1)x ∈时,sin (1)0x -<,所以(0,1)x ∈时,()0g x '>,()g x 在区间(0,1)上单调递增, 所以()(1)1g x g <=.[12分] 所以1a ≤.即a 的取值范围是(,1]-∞.[13分]19.(本小题满分14分)解:(Ⅰ)将1x =代入22142x y +=,解得2y =±,所以||AB =[2分] 当M 为椭圆C 的顶点()2,0-时,M 到直线1x =的距离取得最大值3,[4分]所以△MAB 面积的最大值是2.[5分](Ⅱ)设,A B 两点坐标分别为(),A t n ,(),B t n -,从而2224t n +=.[6分]设()00,M x y ,则有220024x y +=,0x t ≠,0y n ≠±.[7分]直线MA 的方程为00()y ny n x t x t--=--,[8分] 令0y =,得000ty nx x y n-=-,从而000ty nx OE y n -=-.[9分]直线M B 的方程为00()y ny n x t x t++=--,[10分] 令0y =,得000ty nx x y n+=+,从而000ty nx OF y n +=+.[11分]所以000000=ty nx ty nx OE OF y n y n -+⋅⋅-+222200220=t y n x y n--()()222200224242=n y n y y n----[13分]22022044=y n y n -- =4.所以OE OF ⋅为定值.[14分]20.(本小题满分13分)解:(Ⅰ)3{(1,2,3)}A =,3{(1,2,3),(1,3,2),(2,1,3),(3,2,1)}B =.[3分] (Ⅱ)考虑集合n A 中的元素123(,,,,)n a a a a .由已知,对任意整数,,1i j i j n <≤≤,都有i j a i a j --≤, 所以()()i j a i i a j j -+<-+, 所以i j a a <.由,i j 的任意性可知,123(,,,,)n a a a a 是1,2,3,,n 的单调递增排列, 所以{(1,2,3,,)}n A n = .[5分]又因为当k a k =*(k ∈N ,1)k n ≤≤时,对任意整数,,1i j i j n <≤≤,都有i j a i a j ++≤.所以(1,2,3,,)n n B ∈ ,所以n n A B ⊆.[7分] 所以集合n n A B 的元素个数为1.[8分](Ⅲ)由(Ⅱ)知,0nb ≠.因为2{(1,2),(2,1)}B =,所以22b =.当3n ≥时,考虑n B 中的元素123(,,,,)n a a a a .(1)假设k a n =(1)k n <≤.由已知,1(1)k k a k a k ++++≤, 所以1(1)1k k a a k k n ++-+=-≥, 又因为11k a n +-≤,所以11k a n +=-.依此类推,若k a n =,则11k a n +=-,22k a n +=-,…,n a k =.① 若1k =,则满足条件的1,2,3,,n 的排列123(,,,,)n a a a a 有1个. ② 若2k =,则2a n =,31a n =-,42a n =-,…,2n a =.所以11a =.此时满足条件的1,2,3,,n 的排列123(,,,,)n a a a a 有1个.③ 若2k n <<,只要1231(,,,)k a a a a - 是1,2,3,,1k - 的满足条件的一个排列,就可以相应得到1,2,3,,n 的一个满足条件的排列.此时,满足条件的1,2,3,,n 的排列123(,,,,)n a a a a 有1k b -个.[10分](2)假设n a n =,只需1231(,,,)n a a a a - 是1,2,3,,1n - 的满足条件的排列,此时满足条件的1,2,3,,n 的排列123(,,,,)n a a a a 有1n b -个.综上23111n n b b b b -=+++++ ,3n ≥.因为3221142b b b =++==,且当4n ≥时,23211(11)2n n n n b b b b b b ---=++++++= ,[12分]所以对任意*n ∈N ,3n ≥,都有12nn b b -=. 所以{}n b 成等比数列...[13分]。
北京市西城区2016 — 2017学年度第一学期期末试卷高三数学(理科)2017.1第Ⅰ卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|02}A x x =<<,2{|10}B x x =-≤,那么AB =(A ){|01}x x <≤ (B ){|12}x x -<≤(C ){|10}x x -<≤ (D ){|12}x x <≤2.下列函数中,定义域为R 的奇函数是(A )21y x =+(B )tan y x =(C )2xy =(D )sin y x x =+3.已知双曲线2221(0)y x b b-=>的一个焦点是(2,0),则其渐近线的方程为(A )0x ±= (B 0y ±=(C )30x y ±= (D )30x y ±=4.在极坐标系中,过点(2,)6P π且平行于极轴的直线的方程是(A )sin 1=ρθ(B )sin =ρθ(C )cos 1=ρθ(D )cos =ρθ5.某四棱锥的三视图如图所示,该四棱锥的四个 侧面的面积中最大的是 (A )3 (B)(C )6 (D)6.设,a b 是非零向量,且≠±a b .则“||||=a b ”是“()()+⊥-a b a b ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件7.实数,x y 满足3,0,60.x x y x y ⎧⎪+⎨⎪-+⎩≤≥≥若z ax y =+的最大值为39a +,最小值为33a -,则a的取值范围是(A )[1,0]- (B )[0,1](C )[1,1]- (D )(,1][1,)-∞-+∞8.在空间直角坐标系O xyz -中,正四面体P ABC -的顶点A ,B 分别在x 轴,y 轴上移动.若该正四面体的棱长是2,则||OP 的取值范围是(A)1](B )[1,3](C)1,2](D)1]优质文档第Ⅱ卷(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.复数1i1i+=-____.10.设等比数列{}n a的各项均为正数,其前n项和为n S.若11a=,34a =,则n a =____;6S =____.11.执行如图所示的程序框图,输出的S 值为____.12.在△ABC 中,角,,A B C 的对边分别为,,a b c .若3c =,3C π=,sin 2sin B A =,则a =____.13.设函数30,()log ,,x a f x x x a =>⎪⎩≤≤其中0a >.① 若3a =,则[(9)]f f =____;② 若函数()2y f x =-有两个零点,则a 的取值范围是____.14.10名象棋选手进行单循环赛(即每两名选手比赛一场).规定两人对局胜者得2分,平局各得1分,负者得0分,并按总得分由高到低进行排序.比赛结束后,10名选手的得分各不相同,且第二名的得分是最后五名选手得分之和的45.则第二名选手的得分是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)已知函数2π()sin(2)2cos 16f x x x ωω=-+-(0)ω>的最小正周期为π.(Ⅰ)求ω的值; (Ⅱ)求()f x 在区间7π[0,]12上的最大值和最小值.16.(本小题满分14分)如图,在四棱锥P ABCD -中,//AD BC ,90BAD ︒∠=,PA PD =,AB PA ⊥,2AD =,1AB BC ==.(Ⅰ)求证:平面PAD ⊥平面ABCD ;(Ⅱ)若E 为PD 的中点,求证://CE 平面PAB ; (Ⅲ)若DC 与平面PAB 所成的角为30︒,求四棱锥P ABCD -的体积.17.(本小题满分13分)手机完全充满电量,在开机不使用的状态下,电池靠自身消耗一直到出现低电量警告之间所能维持的时间称为手机的待机时间.为了解A ,B 两个不同型号手机的待机时间,现从某卖场库存手机中随机抽取A ,B 两个型号的手机各7台,在相同条件下进行测试,统计结果如下:其中,a ,b 是正整数,且a b <.(Ⅰ)该卖场有56台A 型手机,试估计其中待机时间不少于123小时的台数; (Ⅱ)从A 型号被测试的7台手机中随机抽取4台,记待机时间大于123小时的台数为X ,求X 的分布列;(Ⅲ)设A ,B 两个型号被测试手机待机时间的平均值相等,当B 型号被测试手机待机时间的方差最小时,写出a ,b 的值(结论不要求证明).18.(本小题满分13分)已知函数()ln sin (1)f x x a x =-⋅-,其中a ∈R .(Ⅰ)如果曲线()y f x =在1x =处的切线的斜率是1-,求a 的值; (Ⅱ)如果()f x 在区间(0,1)上为增函数,求a 的取值范围.19.(本小题满分14分)已知直线:l x t =与椭圆22:142x y C +=相交于A ,B 两点,M 是椭圆C 上一点.(Ⅰ)当1t =时,求△MAB 面积的最大值;(Ⅱ)设直线MA 和MB 与x 轴分别相交于点E ,F ,O 为原点.证明:||||OE OF ⋅为定值.20.(本小题满分13分)数字1,2,3,,(2)n n ≥的任意一个排列记作12(,,,)n a a a ,设n S 为所有这样的排列构成的集合.集合12{(,,,)|n n n A a a a S =∈任意整数,,1i j i j n <≤≤,都有}i j a i a j --≤;集合12{(,,,)|n n n B a a a S =∈任意整数,,1i j i j n <≤≤,都有}i j a i a j ++≤.(Ⅰ)用列举法表示集合3A ,3B ;(Ⅱ)求集合n n A B 的元素个数;(Ⅲ)记集合n B 的元素个数为n b .证明:数列{}n b 是等比数列.北京市西城区2016 — 2017学年度第一学期期末高三数学(理科)参考答案及评分标准2017.1一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.D 3.B 4.A 5.C 6.C 7.C 8.A 二、填空题:本大题共6小题,每小题5分,共30分.9.i 10.12n -;6311.3-12;[4,9)14.16注:第10,13题第一空2分,第二空3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)解:(Ⅰ)因为2π()sin(2)(2cos1)6f x x x ωω=-+-ππ(sin 2cos cos 2sin )cos 266x x x ωωω=-+[4分]1sin 2cos 222x x ωω=+ πsin(2)6x ω=+,[6分]所以()f x 的最小正周期2ππ2T ω==, 解得1ω=.[7分](Ⅱ)由(Ⅰ)得 π()sin(2)6f x x =+.因为7π12x ≤≤0,所以ππ4π2663x +≤≤.[9分] 所以,当ππ262x +=,即π6x =时,()f x 取得最大值为1;[11分]当π4π263x +=,即7π12x =时,()f x 取得最小值为 [13分]16.(本小题满分14分)解:(Ⅰ)因为90BAD ∠=,所以AB AD ⊥,[1分]又因为AB PA ⊥,所以AB ⊥平面PAD .[3分] 所以平面PAD ⊥平面ABCD .[4分](Ⅱ)取PA 的中点F ,连接BF ,EF .[5分] 因为E 为PD 的中点,所以//EF AD ,12EF AD =,又因为//BC AD ,12BC AD =,所以//BC EF ,BC EF =.所以四边形BCEG 是平行四边形,//EC BF .[7分]又BF ⊂平面PAB ,CE ⊄平面PAB , 所以//CE 平面PAB .[8分] (Ⅲ)过P 作PO AD ⊥于O ,连接OC .因为PA PD =,所以O 为AD 中点,又因为平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD .如图建立空间直角坐标系O xyz -.[9分]设PO a =.由题意得,(0,1,0)A ,(1,1,0)B ,(1,0,0)C ,(0,1,0)D -,(0,0,)P a .所以(1,0,0)AB −−→=,(0,1,)PA a −−→=-,(1,1,0)DC −−→=. 设平面PCD 的法向量为(,,)x y z =n ,则0,0,AB PA −−→−−→⎧⋅=⎪⎨⎪⋅=⎩n n 即0,0.x y az =⎧⎨-=⎩令1z =,则y a =.所以(0,,1)a =n .[11分] 因为DC 与平面PAB 所成角为30,所以|1|cos ,|2||||DC DC DC −−→−−→−−→⋅〈〉===|n n n , 解得1a =.[13分]所以四棱锥P ABCD -的体积11121113322P ABCD ABCD V S PO -+=⨯⨯=⨯⨯⨯=.[14分] 17.(本小题满分13分)解:(Ⅰ)被检测的7台手机中有5台的待机时间不少于123小时,因此,估计56台A 型手机中有556407⨯=台手机的待机时间不少于123小时.[3分] (Ⅱ)X 可能的取值为0,1,2,3.[4分]4711(0)35C P X ===;133447C C 12(1)35C P X ===; 223447C C 18(2)35C P X ===;3447C 4(3)35C P X ===.[8分]所以,X 的分布列为:[10分](Ⅲ)若A ,B 两个型号被测试手机的待机时间的平均值相等,当B 型号被测试手机的待机时间的方差最小时,124a =,125b =.[13分]18.(本小题满分13分)解:(Ⅰ)函数()f x 的定义域是(0,)+∞,[1分] 导函数为1()cos(1)f x a x x'=-⋅-.[2分] 因为曲线()y f x =在1x =处的切线的斜率是1-,所以(1)1f '=-,即11a -=-,[3分]所以2a =.[4分](Ⅱ)因为()f x 在区间(0,1)上为增函数,所以对于任意(0,1)x ∈,都有1()cos(1)0f x a x x'=-⋅-≥.[6分] 因为(0,1)x ∈时,cos(1)0x ->, 所以11()cos(1)0cos(1)f x a x a x x x '=-⋅-⇔⋅-≤≥.[8分] 令()cos(1)g x x x =⋅-,所以()cos(1)sin (1)g x x x x '=--⋅-.[10分] 因为(0,1)x ∈时,sin (1)0x -<,所以(0,1)x ∈时,()0g x '>,()g x 在区间(0,1)上单调递增,所以()(1)1g x g <=.[12分]所以1a ≤.即a 的取值范围是(,1]-∞.[13分]19.(本小题满分14分)解:(Ⅰ)将1x =代入22142x y +=,解得2y =±,所以||AB =[2分] 当M 为椭圆C 的顶点()2,0-时,M 到直线1x =的距离取得最大值3,[4分]所以△MAB面积的最大值是2.[5分] (Ⅱ)设,A B 两点坐标分别为(),A t n ,(),B t n -,从而2224t n +=.[6分]设()00,M x y ,则有220024x y +=,0x t ≠,0y n ≠±.[7分] 直线MA 的方程为00()y n y n x t x t--=--,[8分] 令0y =,得000ty nx x y n -=-,从而000ty nx OE y n-=-.[9分] 直线MB 的方程为00()y n y n x t x t ++=--,[10分] 令0y =,得000ty nx x y n +=+,从而000ty nx OF y n+=+.[11分] 所以000000=ty nx ty nx OE OF y n y n -+⋅⋅-+222200220=t y n x y n--()()2222002204242=n y n y y n ----[13分]22022044=y n y n -- =4.所以OE OF ⋅为定值.[14分]20.(本小题满分13分)解:(Ⅰ)3{(1,2,3)}A =,3{(1,2,3),(1,3,2),(2,1,3),(3,2,1)}B =.[3分] (Ⅱ)考虑集合n A 中的元素123(,,,,)n a a a a . 由已知,对任意整数,,1i j i j n <≤≤,都有i j a i a j --≤, 所以()()i j a i i a j j -+<-+,所以i j a a <.由,i j 的任意性可知,123(,,,,)n a a a a 是1,2,3,,n 的单调递增排列, 所以{(1,2,3,,)}n A n =.[5分]又因为当k a k =*(k ∈N ,1)k n ≤≤时,对任意整数,,1i j i j n <≤≤, 都有i j a i a j ++≤.所以(1,2,3,,)n n B ∈,所以n n A B ⊆.[7分]所以集合n n A B 的元素个数为1.[8分](Ⅲ)由(Ⅱ)知,0n b ≠.因为2{(1,2),(2,1)}B =,所以22b =.当3n ≥时,考虑n B 中的元素123(,,,,)n a a a a .(1)假设k a n =(1)k n <≤.由已知,1(1)k k a k a k ++++≤, 所以1(1)1k k a a k k n ++-+=-≥, 又因为11k a n +-≤,所以11k a n +=-. 依此类推,若k a n =,则11k a n +=-,22k a n +=-,…,n a k =.① 若1k =,则满足条件的1,2,3,,n 的排列123(,,,,)n a a a a 有1个. ② 若2k =,则2a n =,31a n =-,42a n =-,…,2n a =.所以11a =.此时满足条件的1,2,3,,n 的排列123(,,,,)n a a a a 有1个.③ 若2k n <<,只要1231(,,,)k a a a a -是1,2,3,,1k -的满足条件的一个排列,就可以相应得到1,2,3,,n 的一个满足条件的排列.此时,满足条件的1,2,3,,n 的排列123(,,,,)n a a a a 有1k b -个.[10分] (2)假设n a n =,只需1231(,,,)n a a a a -是1,2,3,,1n -的满足条件的排列,此时满足条件的1,2,3,,n 的排列123(,,,,)n a a a a 有1n b -个.综上23111n n b b b b -=+++++,3n ≥. 因为3221142b b b =++==,且当4n ≥时,23211(11)2n n n n b b b b b b ---=++++++=,[12分] 所以对任意*n ∈N ,3n ≥,都有12n n b b -=. 所以{}n b 成等比数列.[13分]。
北京市西城区2016 — 2017学年度第二学期期末试卷高二数学(理科)参考答案及评分标准2017.7一、选择题:本大题共8小题,每小题5分,共40分.1. A ;2.D ;3. C ;4. B ;5. C ;6. D ;7. C ;8. B . 二、填空题:本大题共6小题,每小题5分,共30分.9. 41-; 10. 24; 11. ,4211; 12. 42; 13. 1(,)5-∞-; 14. 0;1e-. 注:一题两空的题目,第一空2分,第二空3分.三、解答题:本大题共6小题,共80分. 15.(本小题满分13分)解: (Ⅰ) 根据已知,24a =;99a =;416a =;525a =. …………… 4分 (Ⅱ)猜想2n a n =. …………… 6分证明:① 当1=n 时,由已知11=a ;由猜想,2111a ==,猜想成立. …………… 8分 ②假设当k n =(k ∈*N )时猜想成立,即2k a k =, ……………10分 则1+=k n 时, 221)1(1212+=+⨯+=++=+k k kk a k k a k k . 所以,当1n k =+时,猜想也成立. ……………12分 由①和②可知,2n a n =对任意的*n ∈N 都成立. ……………13分 16.(本小题满分13分)解:(Ⅰ)设“甲投球一次命中”为事件A ,则11(),()22P A P A ==. …………… 2分 故甲投球2次至少命中1 次的概率为31()1()()4P A A P A P A -⋅=-=. …………5分(Ⅱ) 设“乙投球一次命中”为事件B .由题意得1()(1)(1)16P B B p p ⋅=--=, ……………7分解得43=p 或45(舍去),所以31(),()44P B P B ==. ……………8分甲、乙两人各投球2次共命中3次有两种情况:甲中两次,乙中一次;甲中一次,乙中两次. ……………9分甲中两次,乙中一次的概率为1211313()()()()2224432P A P A C P B P B =⨯⨯⨯⨯=.…11分 甲中一次,乙中两次的概率为1211339()()()()2224432C P A P A P B P B =⨯⨯⨯⨯=.…12分事件“甲中两次,乙中一次”与“甲中一次,乙中两次”是互斥的,所以,所求事件概率为93332328+=. 所以甲、乙两人各投2次,共命中3次的概率为38. ……………13分 17.(本小题满分13分)解:(Ⅰ) 当1-=a 时,32()3f x x x =-,2()36f x x x '=-. ……………2分令2()360f x x x '=-=,得0x =或2x =.(f '……………4分所以,函数)(x f 的极大值点为0x =,极大值为0;极小值点为2x =,极小值为4-.……………6分(Ⅱ) 2()363(2)f x x ax x x a '=+=+. ……………7分①当0a =时,()0f x '≥(仅当0x =时,()0f x '=),函数)(x f 是增函数,)(x f 在[0,2]上的最大值为(2)8128f a =+=. ……………8分②当0a >时,在区间(0,)+∞上()0f x '>,函数)(x f 是增函数.)(x f 在[0,2]上的最大值为(2)812f a =+. ……………10分③当0a <时,()f x '与()f x 在区间(0,)+∞上的情况如下:……………11分此时,(0)0f =,(2)812f a =+.当8120a +>,即203a -<<时,)(x f 在[0,2]上的最大值为(2)812f a =+. 12分 当8120a +≤,即23a ≤-时,)(x f 在[0,2]上的最大值为(0)0f =. ………13分综上,当23a ≤-时,)(x f 在[0,2]上的最大值为0;当23a >-时,)(x f 在[0,2]上的最大值为812a +.18.(本小题满分13分)解:(Ⅰ) 依题意有n 52个黑球. 记“摸出的2球都是黑球”为事件A , 则225222(1)41055()(1)2525n n C n n n P A C n n n --===--. ……………4分()P A 最小时5=n . ……………5分(Ⅱ) 依题意有21565⨯=个黑球. ……………6分 设袋中白球的个数为x (个),记“从袋中任意摸出两个球至少得到一个白球”为事件B ,则2152154()17xC P B C -=-=,整理得2291200x x -+=,解得5x =或24x =(舍). ……………8分 所以袋中红球的个数为4(个).随机变量X 的取值为0,1,2. ……………9分21121511(0)21C P X C ===;1141121544(1)105C C P X C ===;242152(2)35C P X C ===. X…………12分数学期望114428012211053515EX =⨯+⨯+⨯=. ……………13分 19.(本小题满分14分)解:(Ⅰ) 当1==b a 时,2()f x x x =+.设2()ln h x x x x =+-,0x >. ……………1分则2121(21)(1)()21x x x x h x x x x x +--+'=+-==, ……………2分所以,在区间1(0,)2上()0h x '<,()h x 是减函数;在区间1(,)2+∞上()0h x '>,()h x 是增函数. ……………4分所以,()h x 的最小值为1()2h =31ln 42-,又31ln 042->,所以()0h x >恒成立. 即()f x 的图象在()g x 图象的上方. ……………5分 (Ⅱ) 设00(,)P x y ,其中00x >.由已知()2f x ax b '=+,1()g x x'=. 因为在点P 处的切线相同, 所以2000000012,,ln ax b y ax bx y x x +==+=. ……………7分 消去0,b y 得200ln 10ax x +-=.根据题意,方程200ln 10ax x +-=有解. ……………8分设2()ln 1F x ax x =+-,则()F x 在(0,)+∞上有零点.2121()2ax F x ax x x+'=+=, 当0a ≥时,()0F x '>,函数()F x 在(0,)+∞上单调递增. 当1a ≥时,(1)10F a =-≥,110F=+-=≤,()F x 有零点. 当01a ≤<时,(1)10F a =-≤,22(e )e 10F a =+>,()F x 有零点. …11分当0a <时,令()0F x '=,解得x =()F x '与()F x 在区间(0,)+∞上的情况如下:令302≥,得 312e a ≥-.此时(1)10F a =-<.所以()F x 有零点. ……………13分 综上,所求a 的取值范围为31[,)2e -+∞. ……………14分20.(本小题满分14分)解:(Ⅰ)由已知()e (1)e e xxxf x x x '=+-=. ……………2分所以,在区间(,0)-∞上()0f x '<,函数()f x 在(,0)-∞上单调递减,在区间(0,)+∞上()0f x '>,函数()f x 在区间(0,)+∞上单调递增. ……………4分(Ⅱ)设()()(1)e xg x f x a x a =-=--,0a >. ……………5分()e x g x x '=,由(Ⅰ)知,函数()g x 在区间(0,)+∞上单调递增.且(1)0g a =-<,11(1)e(e 1)0a a g a a a a +++=-=->.所以,()g x 在区间(1,)+∞上只有一个零点,方程()f x a =在区间(1,)+∞上只有一个解. ……………8分 (Ⅲ)设()()ln(1)h x f x a x ax =---,0>a ,()h x 定义域为}1|{>x x ,()e (e )[(1)e ]111x x x a a x h x x a x x a x x x '=--=-=-----, ……………9分 令()0h x '=,则(1)e 0xx a --=,由(Ⅱ)知,()(1)e xg x x a =--在区间(1,)+∞上只有一个零点,是增函数,不妨设()g x 的零点为0x ,则00(1)e 0x x a --=, ……………11分 所以,()h x '与()h x 在区间(0,)+∞上的情况如下:所以,函数()h x 的最小值为0()h x ,00000()(1)e ln(1)x h x x a x ax =----,由00(1)e 0x x a --=,得001e x ax -=,所以00000()e ln ln e e x x x a ah x a ax a a a =⋅--=-. ……………13分依题意0()0h x ≥,即ln 0a a a -≥,解得0e a <≤,所以,a 的取值范围为(0,e]. ……………14分。
北京市西城区2016-2017学年高二数学上学期期末考试试题理试卷满分:150分考试时间:120分钟一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.A(二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9. 命题“x ∃∈R ,使得2250x x ++=”的否定是______________________.10. 已知点)1,0(-M ,)3,2(N . 如果直线MN 垂直于直线032=-+y ax ,那么a 等于_______.11. 在正方体1111ABCD A BC D -中,异面直线1,AD BD 所成角的余弦值为_________.12. 一个正三棱柱的正视图、俯视图如图所示,则该三棱柱的侧视图的面积为_________.13. 设O 为坐标原点,抛物线24y x =的焦点为F ,P 为抛物线上一点. 若3PF =,则OPF △的面积为_________.14. 学完解析几何和立体几何后,某同学发现自己家碗的侧面可以看做抛物线的一部分曲线围绕其对称轴旋转而成,他很想知道抛物线的方程,决定把抛物线的顶点确定为原点,对称轴确定为x 轴,建立如图所示的平面直角坐标系,但是他无法确定碗底中心到原点的距离,请你通过对碗的相关数据的测量以及进一步的计算,帮助他求出抛物线的方程.你需要测量的数据是_________________________(所有测量数据用小写英文字母表示),算出的抛物线标准方程为___________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)如图,四棱锥P ABCD -的底面是正方形,侧棱PA ⊥底面ABCD ,E 是PA 的中点. (Ⅰ)求证://PC 平面BDE ; (Ⅱ)证明:BD CE ⊥.16.(本小题满分13分)如图,PA ⊥平面ABC ,AB BC ⊥,22AB PA BC ===,M 为PB 的中点.A BCDPE正(主)视图俯视图(Ⅰ)求证:AM ⊥平面PBC ; (Ⅱ)求二面角A PC B --的余弦值.17.(本小题满分13分)已知直线l 过坐标原点O ,圆C 的方程为22640x y y +-+=.(Ⅰ)当直线l l 与圆C 相交所得的弦长;(Ⅱ)设直线l 与圆C 交于两点,A B ,且A 为OB 的中点,求直线l 的方程.18.(本小题满分13分)已知1F 为椭圆22143x y +=的左焦点,过1F 的直线l 与椭圆交于两点,P Q . (Ⅰ)若直线l 的倾斜角为45,求PQ ;(Ⅱ)设直线l 的斜率为k (0)k ≠,点P 关于原点的对称点为P ',点Q 关于x 轴的对称点为Q ',P Q ''所在直线的斜率为k '. 若2k '=,求k 的值.19.(本小题满分14分)如图,四棱锥E ABCD -中,平面EAD ⊥平面ABCD ,//DC AB ,BC CD ⊥,EA ED ⊥,且4AB =,2BC CD EA ED ====.(Ⅰ)求证:BD ⊥平面ADE ;(Ⅱ)求BE 和平面CDE 所成角的正弦值; (Ⅲ)在线段CE 上是否存在一点F ,使得平面BD ⊥平面CDE ,请说明理由.20.(本小题满分14分)如图,过原点O 引两条直线12,l l 与抛物线21:2W y px =和22:4W y px =(其中p 为常数,0p >)分别交于四个点1122,,,A B A B .(Ⅰ)求抛物线12,W W 准线间的距离; (Ⅱ)证明:1122//A B A B ;(Ⅲ)若12l l ⊥,求梯形1221A A B B 面积的最小值.EABCD北京市西城区2016 — 2017学年度第一学期期末试卷高二数学(理科)参考答案及评分标准2017.1一、选择题:本大题共8小题,每小题5分,共40分.1.C ;2.D ;3. B ;4. D ;5. B ;6. A ;7. C ;8. D. 二、填空题:本大题共6小题,每小题5分,共30分.9. 对任意x ∈R ,都有0522≠++x x ; 10. 1;12.14. 碗底的直径m ,碗口的直径n ,碗的高度h ;2224n my x h-=.注:一题两空的题目,第一空2分,第二空3分.三、解答题:本大题共6小题,共80分. 15.(本小题满分13分)解: (Ⅰ)连结AC 交BD 于O ,连结OE ,因为四边形ABCD 是正方形,所以O 为AC 中点. 又因为E 是PA 的中点,所以//PC OE , ………3分 因为PC ⊄平面BDE ,OE ⊂平面BDE ,所以//PC 平面BDE . ……………6分 (Ⅱ)因为四边形ABCD 是正方形,所以BD AC ⊥. ……8分因为PA ⊥底面ABCD ,且BD ⊂平面ABCD , 所以PA BD ⊥. ……………10分又因为AC PA A =I ,所以BD ⊥平面PAC , ……………12分 又CE ⊂平面PAC ,ABCDPE O所以BD CE ⊥. ……………13分16.(本小题满分13分)解: (Ⅰ)因为PA ⊥平面ABC ,BC ⊂平面ABC ,所以PA BC ⊥.因为BC AB ⊥,PAAB A =,所以BC ⊥平面PAB . ……………2分 所以AM BC ⊥. ……………3分 因为PA AB =,M 为PB 的中点, 所以AM PB ⊥. ……………4分 所以AM ⊥平面PBC . ……………5分 (Ⅱ)如图,在平面ABC 内,作//Az BC ,则,,AP AB AZ 两两互相垂直, 建立空间直角坐标系A xyz -.则(0,0,0),(2,0,0),(0,2,0),(0,2,1),(1,1,0)A P B C M .(2,0,0)AP =,(0,2,1)AC =,(1,1,0)AM = . ……………8分设平面APC 的法向量为(,,)x y z =n ,则 0,0,AP AC ⎧⋅=⎪⎨⋅=⎪⎩n n即0,20.x y z =⎧⎨+=⎩令1y =,则2z =-.所以(0,1,2)=-n . ……………10分由(Ⅰ)可知(1,1,0)AM =为平面BPC 的法向量, 设,AM n 的夹角为α,则cos 5AM AMα⋅===n n . ……………12分 因为二面角A PCB --为锐角, 所以二面角A PC B --的余弦值为10. ……………13分 17.(本小题满分13分)解:(Ⅰ)由已知,直线l的方程为y =,圆C 圆心为(0,3),………3分所以,圆心到直线l=……………5分所以,所求弦长为……………6分 (Ⅱ) 设11(,)A x y ,因为A 为OB 的中点,则11(2,2)B x y . ……………8分 又,A B 圆C 上,所以 22111640x y y +-+=,22111441240x y y +-+=,即22111310x y y +-+=. ……………10分解得11y =,11x =±, ……………11分 即(1,1)A 或(1,1)A -. ……………12分 所以,直线l 的方程为y x =或y x =-. ……………13分18.(本小题满分13分)解:(Ⅰ)设1122(,),(,)P x y Q x y ,由已知,椭圆的左焦点为(1,0)-,又直线l 的倾斜角为45,所以直线l 的方程为1y x =+, ……………1分 由221,3412y x x y =+⎧⎨+=⎩得27880x x +-=, ……………3分所以1287x x +=-,1287x x =-. ……………4分24||7PQ ==. ……………5分(Ⅱ)由22(1),3412y k x x y =+⎧⎨+=⎩得2222(34)84120k x k x k +++-=, ……………6分所以2122834k x x k -+=+,212241234k x x k -=+. ……………8分依题意1122(,),(,)P x y Q x y ''---,且11(1)y k x =+,22(1)y k x =+, 所以,12121212()y y k x x k x x x x --'==++, ……………10分其中12x x -== ……………11分结合2122834k x x k-+=+,可得k '=2=. ……………12分 解得279k =,k =……………13分19.(本小题满分14分)解:(Ⅰ)由BC CD ⊥,2BC CD ==.可得BD =由EA ED ⊥,且2EA ED ==,可得AD =又4AB =. 所以BD AD ⊥. (2)又平面EAD ⊥平面ABCD , 平面ADE平面ABCD AD =,所以BD ⊥平面ADE . ……………4分 (Ⅱ)如图建立空间直角坐标系D xyz -,则(0,0,0)D ,B ,(C ,E ,(2,BE =-,(2,0,DE =,(DC =. …………6分设(,,)x y z =n 是平面CDE 的一个法向量,则0DE ⋅=n ,0DC ⋅=n ,即0,0.x z x y +=⎧⎨-+=⎩令1x =,则(1,1,1)=-n . ……………7分设直线BE 与平面CDE 所成的角为α, 则||sin |cos ,|||||BE BE BE ⋅=<>===⋅αn n n . ……………8分 所以BE 和平面CDE ……………9分 (Ⅲ)设CF CE =λ,[0,1]λ∈.又(DC =,CE =,(0,BD =-.则2(21,1,)DF DC CF DC CE =+=+=--+λλλλ. ……………10分 设(,,)x'y'z'=m 是平面BDF 一个法向量,则0BD ⋅=m ,0DF ⋅=m ,即0,(21)(1)0.y'x'y'z'=⎧⎨-+-++=⎩λλλ……………11分令1x'=,则21(1,0,)λλ-=-m . ……………12分若平面BDF ⊥平面CDE ,则0⋅=m n ,即2110λλ-+=,1[0,1]3λ=∈.……13分 所以,在线段CE 上存在一点F 使得平面BDF ⊥平面CDE . ……………14分20.(本小题满分14分)解:(Ⅰ)由已知,抛物线12,W W 的准线分别为2px =-和x p =-, ……………2分 所以,抛物线12,W W 准线间的距离为2p. ……………4分 (Ⅱ)设11:l y k x =,代入抛物线方程,得12,A A 的横坐标分别是212p k 和214pk . ………5分 12||||OA OA 12==,同理12||1||2OB OB =, ……………7分所以1122OA B OA B △△,所以1122//A B A B . ……………8分 (Ⅲ)设111(,)A x y ,122(,)B x y ,直线11A B 方程为111:A B l x ty m =+,代入曲线22y px =,得21220y pty pm --=,所以122y y pt +=,1212y y pm =-. ……………9分由12l l ⊥,得12120x x y y +=,又2112y px =,2222y px =,所以221212204y y y y p+=,由1212y y pm =-,得12m p =. ……………11分 所以直线11A B 方程为11:2A B l x ty p =+,11 同理可求出直线22A B 方程为22:4A B l x ty p =+.所以1112||2A B y y =-= ……………12分22||4A B = 平行线11A B l 与22A B l之间的距离为d =, 所以梯形1221A A B B的面积11221()62S A B A B d p =+⋅=……………13分 212p ≥当0t =时,梯形1221A A B B 的面积达最小,最小值为212p .……………14分。
北京市西城区2016-2017学年高二(上)期末数学试卷(理科)(解析版)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.双曲线的一个焦点坐标为()A.B.C.(2,0)D.(0,2)2.已知椭圆的短轴长是焦距的2倍,则椭圆的离心率为()A.B.C.D.3.设α,β是两个不同的平面,l是一条直线,以下命题正确的是()A.若α∥β,l∥α,则l⊂βB.若α∥β,l⊥α,则l⊥βC.若α⊥β,l⊥α,则l⊂βD.若α⊥β,l∥α,则l⊥β4.设m∈R,命题“若m≥0,则方程x2=m有实根”的逆否命题是()A.若方程x2=m有实根,则m≥0 B.若方程x2=m有实根,则m<0C.若方程x2=m没有实根,则m≥0 D.若方程x2=m没有实根,则m<05.已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m ⊥β”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知双曲线的焦点在x轴上,焦距为2,且双曲线的一条渐近线与直线x ﹣2y+1=0平行,则双曲线的标准方程为()A.﹣y2=1 B.x2﹣=1C.﹣=1 D.﹣=17.已知两点A(3,0),B(0,4),动点P(x,y)在线段AB上运动,则xy 的最大值为()A.B. C.3 D.48.用一个平面截正方体和正四面体,给出下列结论:①正方体的截面不可能是直角三角形;②正四面体的截面不可能是直角三角形;③正方体的截面可能是直角梯形;④若正四面体的截面是梯形,则一定是等腰梯形.其中,所有正确结论的序号是()A.②③B.①②④C.①③D.①④二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.命题“存在x∈R,使得x2+2x+5=0”的否定是.10.已知点M(0,﹣1),N(2,3).如果直线MN垂直于直线ax+2y﹣3=0,那么a等于.11.在正方体ABCD﹣A1B1C1D1中,异面直线AD,BD1所成角的余弦值为.12.一个正三棱柱的正视图、俯视图如图所示,则该三棱柱的侧视图的面积为.13.设O为坐标原点,抛物线y2=4x的焦点为F,P为抛物线上一点.若|PF|=3,则△OPF的面积为.14.学完解析几何和立体几何后,某同学发现自己家碗的侧面可以看做抛物线的一部分曲线围绕其对称轴旋转而成,他很想知道抛物线的方程,决定把抛物线的顶点确定为原点,对称轴确定为x轴,建立如图所示的平面直角坐标系,但是他无法确定碗底中心到原点的距离,请你通过对碗的相关数据的测量以及进一步的计算,帮助他求出抛物线的方程.你需要测量的数据是(所有测量数据用小写英文字母表示),算出的抛物线标准方程为.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(13分)如图,四棱锥P﹣ABCD的底面是正方形,侧棱PA⊥底面ABCD,E 是PA的中点.(Ⅰ)求证:PC∥平面BDE;(Ⅱ)证明:BD⊥CE.16.(13分)如图,PA⊥平面ABC,AB⊥BC,AB=PA=2BC=2,M为PB的中点.(Ⅰ)求证:AM⊥平面PBC;(Ⅱ)求二面角A﹣PC﹣B的余弦值.17.(13分)已知直线l过坐标原点O,圆C的方程为x2+y2﹣6y+4=0.(Ⅰ)当直线l的斜率为时,求l与圆C相交所得的弦长;(Ⅱ)设直线l与圆C交于两点A,B,且A为OB的中点,求直线l的方程.18.(13分)已知F1为椭圆+=1的左焦点,过F1的直线l与椭圆交于两点P,Q.(Ⅰ)若直线l的倾斜角为45°,求|PQ|;(Ⅱ)设直线l的斜率为k(k≠0),点P关于原点的对称点为P′,点Q关于x 轴的对称点为Q′,P′Q′所在直线的斜率为k′.若|k′|=2,求k的值.19.(14分)如图,四棱锥E﹣ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC ⊥CD,EA⊥ED,且AB=4,BC=CD=EA=ED=2.(Ⅰ)求证:BD⊥平面ADE;(Ⅱ)求BE和平面CDE所成角的正弦值;(Ⅲ)在线段CE上是否存在一点F使得平面BDF⊥平面CDE,请说明理由.20.(14分)如图,过原点O引两条直线l1,l2与抛物线W1:y2=2px和W2:y2=4px (其中P为常数,p>0)分别交于四个点A1,B1,A2,B2.(Ⅰ)求抛物线W1,W2准线间的距离;(Ⅱ)证明:A1B1∥A2B2;(Ⅲ)若l1⊥l2,求梯形A1A2B2B1面积的最小值.2016-2017学年北京市西城区高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.双曲线的一个焦点坐标为()A.B.C.(2,0)D.(0,2)【考点】双曲线的简单性质.【分析】根据双曲线的方程和性质即可得到结论.【解答】解:由双曲线得a2=3,b2=1,则c2=a2+b2=4,则c=2,故双曲线的一个焦点坐标为(2,0),故选:C【点评】本题主要考查双曲线的性质和方程,根据a,b,c之间的关系是解决本题的关键.2.已知椭圆的短轴长是焦距的2倍,则椭圆的离心率为()A.B.C.D.【考点】椭圆的简单性质.【分析】由题意可知:2b=2×2c,即b=2c,a2=b2+c2=4c2+c2=5c2,则a=c,椭圆的离心率e==.【解答】解:由题意可知:设椭圆的方程为:(a>b>0),由2b=2×2c,即b=2c,a2=b2+c2=4c2+c2=5c2,则a=c,∴椭圆的离心率e==,椭圆的离心率,故选D.【点评】本题考查椭圆的离心率公式,考查计算能力,属于基础题.3.设α,β是两个不同的平面,l是一条直线,以下命题正确的是()A.若α∥β,l∥α,则l⊂βB.若α∥β,l⊥α,则l⊥βC.若α⊥β,l⊥α,则l⊂βD.若α⊥β,l∥α,则l⊥β【考点】空间中直线与平面之间的位置关系.【分析】在A中,l⊂β或l∥β;在B中,由线面垂直的判定定理得l⊥β;在C 中,l与β相交、平行或l⊂β;在D中,l与β相交、平行或l⊂β.【解答】解:由α,β是两个不同的平面,l是一条直线,知:在A中,若α∥β,l∥α,则l⊂β或l∥β,故A错误;在B中,若α∥β,l⊥α,则由线面垂直的判定定理得l⊥β,故B正确;在C中,若α⊥β,l⊥α,则l与β相交、平行或l⊂β,故C错误;在D中,若α⊥β,l∥α,则l与β相交、平行或l⊂β,故D错误.故选:B.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.4.设m∈R,命题“若m≥0,则方程x2=m有实根”的逆否命题是()A.若方程x2=m有实根,则m≥0 B.若方程x2=m有实根,则m<0C.若方程x2=m没有实根,则m≥0 D.若方程x2=m没有实根,则m<0【考点】四种命题.【分析】根据已知中的原命题,结合逆否命题的定义,可得答案.【解答】解:命题“若m≥0,则方程x2=m有实根”的逆否命题是命题“若方程x2=m 没有实根,则m<0”,故选:D【点评】本题考查的知识点是四种命题,难度不大,属于基础题.5.已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m ⊥β”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件;空间中直线与平面之间的位置关系.【分析】判充要条件就是看谁能推出谁.由m⊥β,m为平面α内的一条直线,可得α⊥β;反之,α⊥β时,若m平行于α和β的交线,则m∥β,所以不一定能得到m⊥β.【解答】解:由平面与平面垂直的判定定理知如果m为平面α内的一条直线,且m⊥β,则α⊥β,反之,α⊥β时,若m平行于α和β的交线,则m∥β,所以不一定能得到m⊥β,所以“α⊥β”是“m⊥β”的必要不充分条件.故选B.【点评】本题考查线面垂直、面面垂直问题以及充要条件问题,属基本题.6.已知双曲线的焦点在x轴上,焦距为2,且双曲线的一条渐近线与直线x ﹣2y+1=0平行,则双曲线的标准方程为()A.﹣y2=1 B.x2﹣=1C.﹣=1 D.﹣=1【考点】双曲线的简单性质.【分析】设双曲线的标准方程为(a>0,b>0),由2c=2,则c=,由双曲线的一条渐近线与直线x﹣2y+1=0平行,即=,c2=a2+b2,即可求得a 和b的值,即可求得双曲线的标准方程.【解答】解:由题意可知:设双曲线的标准方程为(a>0,b>0),由2c=2,则c=,双曲线的一条渐近线与直线x﹣2y+1=0平行,即=,由c2=a2+b2,解得:a=2,b=1,∴双曲线的标准方程为:,故选A.【点评】本题考查双曲线的标准方程及简单几何性质,考查计算能力,属于基础题.7.已知两点A(3,0),B(0,4),动点P(x,y)在线段AB上运动,则xy 的最大值为()A.B. C.3 D.4【考点】基本不等式在最值问题中的应用.【分析】由题意易得线段AB的方程为,(x≥0,y≥0),由基本不等式可得.【解答】解:由题意可得直线AB的方程为,∴线段AB的方程为,(x≥0,y≥0)∴1=≥2,∴xy≤3,当且仅当即x=且y=2时取等号,xy有最大值3,故选:C.【点评】本题考查基本不等式求最值,涉及直线的截距式方程,属基础题.8.用一个平面截正方体和正四面体,给出下列结论:①正方体的截面不可能是直角三角形;②正四面体的截面不可能是直角三角形;③正方体的截面可能是直角梯形;④若正四面体的截面是梯形,则一定是等腰梯形.其中,所有正确结论的序号是()A.②③B.①②④C.①③D.①④【考点】平行投影及平行投影作图法;棱锥的结构特征.【分析】利用正方体和正四面体的性质,分析4个选项,即可得出结论.【解答】解:①正方体的截面是三角形时,为锐角三角形,正确;②正四面体的截面不可能是直角三角形,不正确;③正方体的截面与一组平行的对面相交,截面是等腰梯形,不正确;④若正四面体的截面是梯形,则一定是等腰梯形,正确.故选D.【点评】本题考查空间线面位置关系,考查学生分析解决问题的能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.命题“存在x∈R,使得x2+2x+5=0”的否定是对任何x∈R,都有x2+2x+5≠0.【考点】特称命题.【分析】利用特称命题的否定是全称命题,可得命题的否定.【解答】解:因为命题“存在x∈R,使得x2+2x+5=0”是特称命题,根据特称命题的否定是全称命题,可得命题的否定为:对任何x∈R,都有x2+2x+5≠0.故答案为:对任何x∈R,都有x2+2x+5≠0.【点评】本题主要考查特称命题的否定,比较基础.10.已知点M(0,﹣1),N(2,3).如果直线MN垂直于直线ax+2y﹣3=0,那么a等于1.【考点】直线的一般式方程与直线的垂直关系;直线的斜率.【分析】利用相互垂直的直线的斜率之间关系即可得出.【解答】解:∵点M(0,﹣1),N(2,3),∴k MN==2,∵直线MN垂直于直线ax+2y﹣3=0,∴2×=﹣1,解得a=1.故答案为1.【点评】本题考查了相互垂直的直线的斜率之间关系,属于基础题.11.在正方体ABCD﹣A1B1C1D1中,异面直线AD,BD1所成角的余弦值为.【考点】异面直线及其所成的角.【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线AD,BD1所成角的余弦值.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为1,则A(1,0,0),D(0,0,0),B(1,1,0),D1(0,0,1),=(﹣1,0,0),=(﹣1,﹣1,1),设异面直线AD,BD1所成角为θ,则cosθ==.∴异面直线AD,BD1所成角的余弦值为.故答案为:.【点评】本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真审题,注意向量法的合理运用.12.一个正三棱柱的正视图、俯视图如图所示,则该三棱柱的侧视图的面积为8.【考点】由三视图求面积、体积.【分析】由正三棱柱的正视图、俯视图得到该三棱柱的侧视图是边长为4的等边三角形,由此能求出该三棱柱的侧视图的面积.【解答】解:由正三棱柱的正视图、俯视图得到该三棱柱的侧视图是边长为4的等边三角形,∴由三视图可知,该正三棱柱的底边三角形的高为:=2,底面边长为:4,∴侧视图三角形的高为:4,该三棱柱的侧视图的面积为S=2×4=8.故答案为:8.【点评】本题考查三棱柱的侧视图的面积的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.13.设O为坐标原点,抛物线y2=4x的焦点为F,P为抛物线上一点.若|PF|=3,则△OPF的面积为.【考点】抛物线的简单性质.【分析】根据抛物线方程求得抛物线的准线方程与焦点坐标,利用|PF|=3求得P 点的横坐标,代入抛物线方程求得纵坐标,代入三角形面积公式计算.【解答】解:由抛物线方程得:抛物线的准线方程为:x=﹣1,焦点F(1,0),又P为C上一点,|PF|=3,∴x P=2,代入抛物线方程得:|y P|=2,=×|OF|×2=.∴S△POF故答案为:.【点评】本题考查了抛物线的定义及几何性质,熟练掌握抛物线上的点所迷住的条件是解题的关键.14.学完解析几何和立体几何后,某同学发现自己家碗的侧面可以看做抛物线的一部分曲线围绕其对称轴旋转而成,他很想知道抛物线的方程,决定把抛物线的顶点确定为原点,对称轴确定为x轴,建立如图所示的平面直角坐标系,但是他无法确定碗底中心到原点的距离,请你通过对碗的相关数据的测量以及进一步的计算,帮助他求出抛物线的方程.你需要测量的数据是碗底的直径2m,碗口的直径2n,碗的高度h(所有测量数据用小写英文字母表示),算出的抛物线标准方程为y2=x.【考点】抛物线的标准方程.【分析】碗底的直径2m,碗口的直径2n,碗的高度h;设方程为y2=2px(p>0),则将点(a,m),(a+h,n),即可得出结论.【解答】解:碗底的直径2m,碗口的直径2n,碗的高度h;设方程为y2=2px(p>0),则将点(a,m),(a+h,n)代入抛物线方程可得m2=2pa,n2=2p(a+h),可得2p=,∴抛物线方程为y2=x.故答案为碗底的直径2m,碗口的直径2n,碗的高度h;y2=x.【点评】本题考查抛物线的方程,考查利用数学知识解决实际问题,属于中档题.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(13分)(2016秋•西城区期末)如图,四棱锥P﹣ABCD的底面是正方形,侧棱PA⊥底面ABCD,E是PA的中点.(Ⅰ)求证:PC∥平面BDE;(Ⅱ)证明:BD⊥CE.【考点】直线与平面平行的判定.【分析】(Ⅰ)连结AC交BD于O,连结OE,推导出PC∥OE,由此能证明PC ∥平面BDE.(Ⅱ)推导出BD⊥AC,PA⊥BD,从而BD⊥平面PAC,由此能证明BD⊥CE.【解答】(本小题满分13分)证明:(Ⅰ)连结AC交BD于O,连结OE,因为四边形ABCD是正方形,所以O为AC中点.又因为E是PA的中点,所以PC∥OE,…(3分)因为PC⊄平面BDE,OE⊂平面BDE,所以PC∥平面BDE.…(6分)(Ⅱ)因为四边形ABCD是正方形,所以BD⊥AC.…(8分)因为PA⊥底面ABCD,且BD⊂平面ABCD,所以PA⊥BD.…(10分)又因为AC∩PA=A,所以BD⊥平面PAC,…(12分)又CE⊂平面PAC,所以BD⊥CE.…(13分)【点评】本题考查线面平行、线线垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.16.(13分)(2016秋•西城区期末)如图,PA⊥平面ABC,AB⊥BC,AB=PA=2BC=2,M为PB的中点.(Ⅰ)求证:AM⊥平面PBC;(Ⅱ)求二面角A﹣PC﹣B的余弦值.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(Ⅰ)推导出PA⊥BC,BC⊥AB,从而AM⊥BC,再求出AM⊥PB,由此能证明AM⊥平面PBC.(Ⅱ)在平面ABC内,作Az∥BC,则AP,AB,Az两两互相垂直,建立空间直角坐标系A﹣xyz.利用向量法能求出二面角A﹣PC﹣B的余弦值.【解答】(本小题满分13分)证明:(Ⅰ)因为PA⊥平面ABC,BC⊂平面ABC,所以PA⊥BC.因为BC⊥AB,PA∩AB=A,所以BC⊥平面PAB.…(2分)所以AM⊥BC.…(3分)因为PA=AB,M为PB的中点,所以AM⊥PB.…(4分)所以AM⊥平面PBC.…解:(Ⅱ)如图,在平面ABC内,作Az∥BC,则AP,AB,Az两两互相垂直,建立空间直角坐标系A﹣xyz.则A(0,0,0),P(2,0,0),B(0,2,0),C(0,2,1),M(1,1,0).=(2,0,0),=(0,2,1),=(1,1,0).…(8分)设平面APC的法向量为=(x,y,z),则,令y=1,得=(0,1,﹣2).…(10分)由(Ⅰ)可知=(1,1,0)为平面BPC的法向量,设二面角A﹣PC﹣B的平面角为α,则cosα===.…(12分)所以二面角A﹣PC﹣B的余弦值为.…(13分)【点评】本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.17.(13分)(2016秋•西城区期末)已知直线l过坐标原点O,圆C的方程为x2+y2﹣6y+4=0.(Ⅰ)当直线l的斜率为时,求l与圆C相交所得的弦长;(Ⅱ)设直线l与圆C交于两点A,B,且A为OB的中点,求直线l的方程.【考点】直线与圆的位置关系;待定系数法求直线方程.【分析】(Ⅰ)由已知,直线l的方程为y=x,圆C圆心为(0,3),半径为,求出圆心到直线l的距离,即可求l与圆C相交所得的弦长;(Ⅱ)设直线l与圆C交于两点A,B,且A为OB的中点,求出A的坐标,即可求直线l的方程.【解答】解:(Ⅰ)由已知,直线l的方程为y=x,圆C圆心为(0,3),半径为,…(3分)所以,圆心到直线l的距离为=.…所以,所求弦长为2=2.…(6分)(Ⅱ)设A(x1,y1),因为A为OB的中点,则B(2x1,2y1).…(8分)又A,B在圆C上,所以x12+y12﹣6y1+4=0,4x12+4y12﹣12y1+4=0.…(10分)解得y1=1,x1=±1,…(11分)即A(1,1)或A(﹣1,1).…(12分)所以,直线l的方程为y=x或y=﹣x.…(13分)【点评】本题考查直线方程,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.18.(13分)(2016秋•西城区期末)已知F1为椭圆+=1的左焦点,过F1的直线l与椭圆交于两点P,Q.(Ⅰ)若直线l的倾斜角为45°,求|PQ|;(Ⅱ)设直线l的斜率为k(k≠0),点P关于原点的对称点为P′,点Q关于x 轴的对称点为Q′,P′Q′所在直线的斜率为k′.若|k′|=2,求k的值.【考点】椭圆的简单性质.【分析】(Ⅰ)直线l的倾斜角为45°,直线l的方程为y=x+1,代入椭圆方程,由韦达定理及弦长公式即可求得|PQ|;(Ⅱ)设直线l:y=k(x+1),代入椭圆方程,利用韦达定理及直线的斜率公式求得丨k′丨=丨丨=丨丨=2,即可求得k的值.【解答】解:(Ⅰ)椭圆+=1,a=2,b=,c=1,椭圆的左焦点F1(﹣1,0),设P(x1,y1),Q(x2,y2),又直线l的倾斜角为45°,∴直线l的方程为y=x+1,…(1分)由,整理得:7x2+8x﹣8=0,…(3分)则x1+x2=﹣,x1•x2=﹣.…(4分)丨PQ丨=•=•=,∴|PQ|=;…(Ⅱ)由,整理得:(3+4k2)x2+8k2x+4k2﹣12=0,…(6分)则x1+x2=﹣,x1•x2=,…(8分)依题意P′(﹣x1,﹣y1),Q′(x2,﹣y2),且y1=k(x1+1),y2=k(x2+1),∴丨k′丨=丨丨=丨丨,…(10分)其中丨x1﹣x2丨==,…(11分)∴丨k′丨=丨丨=2.…(12分)解得:7k2=9,k=±,k的值±..…(13分)【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,弦长公式及直线的斜率公式的应用,考查计算能力,属于中档题.19.(14分)(2014•东城区二模)如图,四棱锥E﹣ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,EA⊥ED,且AB=4,BC=CD=EA=ED=2.(Ⅰ)求证:BD⊥平面ADE;(Ⅱ)求BE和平面CDE所成角的正弦值;(Ⅲ)在线段CE上是否存在一点F使得平面BDF⊥平面CDE,请说明理由.【考点】平面与平面垂直的性质;直线与平面垂直的判定;直线与平面所成的角.【分析】(Ⅰ)证明BD⊥AD,利用平面EAD⊥平面ABCD,证明BD⊥平面ADE;(Ⅱ)建立空间直角坐标系,求出平面CDE的一个法向量,利用向量的夹角公式,即可求BE和平面CDE所成角的正弦值;(Ⅲ)求出平面BEF一个法向量,利用平面BEF⊥平面CDE,向量的数量积为0,即可得出结论.【解答】(I)证明:由BC⊥CD,BC=CD=2,可得.由EA⊥ED,且EA=ED=2,可得.又AB=4,所以BD⊥AD.又平面EAD⊥平面ABCD,平面ADE∩平面ABCD=AD,BD⊂平面ABCD,所以BD⊥平面ADE.…(II)解:建立空间直角坐标系D﹣xyz,则D(0,0,0),,,,,,.设=(x,y,z)是平面CDE的一个法向量,则令x=1,则=(1,1,﹣1).设直线BE与平面CDE所成的角为α,则sinα=所以BE和平面CDE所成的角的正弦值.…(10分)(III)解:设,λ∈[0,1].,,.则.设=(x',y',z')是平面BDF一个法向量,则令x'=1,则=(1,0,﹣).若平面BDF⊥平面CDE,则•=0,即,.所以,在线段CE上存在一点F使得平面BDF⊥平面CDE.…(14分)【点评】本题考查线面、面面垂直的判定,考查线面角,正确运用向量知识是关键.20.(14分)(2016秋•西城区期末)如图,过原点O引两条直线l1,l2与抛物线W1:y2=2px和W2:y2=4px(其中P为常数,p>0)分别交于四个点A1,B1,A2,B2.(Ⅰ)求抛物线W1,W2准线间的距离;(Ⅱ)证明:A1B1∥A2B2;(Ⅲ)若l1⊥l2,求梯形A1A2B2B1面积的最小值.【考点】抛物线的简单性质.【分析】(Ⅰ)根据抛物线的性质即可求出答案,(Ⅱ)设l1:y=k1x,代入抛物线方程,得A1,A2的横坐标分别是和,即可得到△OA1B1∽△OA2B2,即A1B1∥A2B2.(Ⅲ)A(x1,y1)B(x2,y2),直线A1B1方程为x=ty+m1,根据韦达定理和直线垂直的关系得到直线A1B1方程为x=ty+2p,A2B2方程为x=ty+4p,再根据弦长公式和两直线之间的距离公式,以及梯形的面积公式即可求出答案.【解答】解:(Ⅰ)由已知,抛物线W1,W2的准线分别为x=﹣和x=﹣p,所以,抛物线W1,W2准线间的距离为(Ⅱ)设l1:y=k1x,代入抛物线方程,得A1,A2的横坐标分别是和.∴==,同理=,所以△OA1B1∽△OA2B2,所以A1B1∥A2B2.(Ⅲ)设A(x1,y1)B(x2,y2),直线A1B1方程为x=ty+m1,代入曲线y2=2px,得y2﹣2pty﹣2pm1=0,所以y1+y2=2pt,y1y2=﹣2pm1.由l1⊥l2,得x1x2+y1y2=0,又y12=2px1,y22=2px2,所以+y1y2=0,由y1y2=﹣2pm1,得m1=2p.所以直线A1B1方程为x=ty+2p,同理可求出直线A2B2方程为x=ty+4p,所以|A1B1|=|y1﹣y2|=2p•,|A2B2|=4p•,平行线A1B1与A2B2之间的距离为d=,所以梯形A1A2B2B1的面积≥12p2当t=0时,梯形A1A2B2B1的面积达最小,最小值为12p2.【点评】本题考查了抛物线的性质直线和抛物线的位置关系,考查了学生的运算能力,以及转化能力,属于中档题.。