高一物理弹力的试题分析
- 格式:doc
- 大小:97.00 KB
- 文档页数:4
高一级物理必修一第三章课后练习题及答案:弹力弹力是接触力,弹力只能存在于物体的相互接触处,但相互接触的物体之间,并不一定有弹力的作用。
查字典物理网为大家推荐了高一级物理必修一第三章课后练习题及答案,请大家仔细阅读,希望你喜欢。
1.下列关于弹力的说法正确的是( )A.只有弹簧才有可能施加弹力B.施加弹力的物体一定有形变C.物体的形变越大(弹性限度内),产生的弹力也越大D.形变大的物体产生的弹力一定比形变小的物体产生的弹力大解析:有弹力必有形变,弹力的大小不仅跟形变的大小有关,还跟劲度系数有关,不同的材料,其劲度系数是不同的。
答案:BC2.关于弹性形变,下列说法正确的是( )A.物体形状的改变叫弹性形变B.一根铁丝用力折弯后的形变就是弹性形变C.物体在外力停止作用后,能够恢复原状的形变叫弹性形变D.物体受外力作用后的形变叫弹性形变解析:所谓弹性形变就是发生形变的物体撤去外力后,能够恢复到原状。
答案:C3.(广东广州模拟)下列关于弹力产生的条件的说法中正确的是( )A.只要两个物体接触就一定产生弹力B.只要两个物体相互吸引就一定产生弹力C.只要物体发生形变就一定产生弹力D.只有发生弹性形变的物体才能产生弹力解析:弹力是接触力,因此要有弹力产生两物体必须接触,故选项B不正确。
当物体互相接触但不发生形变,即虚接触,物体之间也无弹力,选项A错误。
当物体发生了形变,但不恢复形变,也无弹力产生,只有当物体发生弹性形变时,物体之间才会有弹力。
选项C不正确,选项D正确。
答案:D4.一弹簧测力计的量程是10 N,刻度的总长度是5 cm,该弹簧测力计上弹簧的劲度系数是( )A.200 N/mB.2 N/mC.50 N/mD.5 000 N/m解析:知道最大弹力和最大伸长量,利用胡克定律f=kx即可求出。
答案:A5.一辆汽车停放在水平地面上,下列说法正确的是 ( )A.汽车受到向上的弹力,是因为汽车发生了向上的形变B.汽车受到向上的弹力,是因为地面发生了向下的形变C.地面受到向下的弹力,是因为汽车发生了向上的形变D.地面受到向下的弹力,是因为地面发生了向下的形变解析:弹力的定义是发生形变的物体,由于要恢复原状,就会对跟它接触使它发生形变的物体产生力作用,因此,汽车受到的弹力是因为地面要恢复形变,地面受到弹力是因为汽车要恢复形变。
[方法点拨](1)弹力产生条件:接触且发生弹性形变.(2)弹力的有无可用条件法、假设法或牛顿第二定律等判断.(3)接触面上的弹力方向总是垂直接触面,指向受力物体.(4)弹力大小与形变量有关,弹簧弹力遵循胡克定律(弹性限度内),接触面上的弹力、绳上的弹力往往由平衡条件或牛顿第二定律求解.1.(2017·河北石家庄第二中学月考)匀速前进的车厢顶部用细线竖直悬挂一小球,如图1所示,小球下方与一光滑斜面接触.关于小球的受力,下列说法正确的是()图1A.重力和细线对它的拉力B.重力、细线对它的拉力和斜面对它的支持力C.重力和斜面对它的支持力D.细线对它的拉力和斜面对它的支持力2.(2017·四川绵阳第一次段考)生活中常见手机支架,其表面采用了纳米微吸材料,用手触碰无粘感,接触到平整光滑的硬性物体时,会牢牢吸附在物体上.图2是手机被吸附在支架上静止时的侧视图,若手机的质量为m,手机平面与水平间夹角为θ,则手机支架对手机作用力()图2A.大小为mg,方向竖直向上B.大小为mg,方向竖直向下C.大小为mg cos θ,方向垂直手机平面斜向上D.大小为mg sin θ,方向平行手机平面斜向上3.两根劲度系数分别为k1和k2的轻质弹簧a、b串接在一起,a弹簧的一端固定在墙上,如图3所示,开始时弹簧均处于原长,现用水平力作用在b弹簧的P端缓慢向右拉动弹簧,当a弹簧的伸长量为L时,则()图3A .b 弹簧的伸长量为k 1L k 2B .b 弹簧的伸长量也为LC .P 端向右移动的距离为2LD .P 端向右移动的距离为⎝⎛⎭⎫1+k 2k 1L 4.(2018·广东省珠海二中等校联考)一根大弹簧内套一根小弹簧,大弹簧比小弹簧长0.20 m ,它们的下端固定在地面上,而上端自由,如图4甲所示,当施加力压缩此组合弹簧时,测得力和弹簧压缩距离之间的关系如图乙所示,则两弹簧的劲度系数分别是(设大弹簧的劲度系数为k 1,小弹簧的劲度系数为k 2)( )图4A .k 1=100 N /m ,k 2=200 N/mB .k 1=200 N /m ,k 2=100 N/mC .k 1=100 N /m ,k 2=300 N/mD .k 1=300 N /m ,k 2=200 N/m5.如图5所示,轻质弹簧一端系在质量为m =1 kg 的小物块上,另一端固定在墙上.物块在斜面上静止时,弹簧与竖直方向的夹角为37°,已知斜面倾角θ=37°,斜面与小物块间的动摩擦因数μ=0.5,斜面固定不动.设物块与斜面间的最大静摩擦力与滑动摩擦力大小相等,下列说法正确的是( )图5A .小物块可能只受三个力B .弹簧弹力大小一定等于4 NC .弹簧弹力大小可能等于10 ND.斜面对物块支持力可能为零6.(2018·广东东莞模拟)如图6所示,穿在一根光滑固定杆上的小球A、B通过一条跨过定滑轮的细绳连接,杆与水平面成θ角,不计所有摩擦,当两球静止时,OA绳与杆的夹角为θ,OB绳沿竖直方向,则下列说法正确的是()图6A.A可能受到2个力的作用B.B可能受到3个力的作用C.A、B的质量之比为1∶tan θD.A、B的质量之比为tan θ∶17.如图7,用橡皮筋将一小球(不计大小)悬挂在小车的架子上,系统处于平衡状态.现使小车从静止开始向左加速,加速度从零开始逐渐增大到某一值,然后保持此值,小球稳定地偏离竖直方向某一角度(橡皮筋在弹性限度内).与稳定在竖直位置时相比,小球的高度()图7A.一定升高B.一定降低C.保持不变D.升高或降低由橡皮筋的劲度系数决定答案精析1.A 2.A3.A [两根轻弹簧串联,弹力大小相等,根据胡克定律F =kx 得x 与k 成反比,则得b 弹簧的伸长量为k 1L k 2,故A 正确,B 错误;P 端向右移动的距离等于两根弹簧伸长量之和,即为L +k 1k 2L =⎝⎛⎭⎫1+k 1k 2L ,故C 、D 错误.] 4.A [x <0.2 m 时,只压缩大弹簧,所以0~0.2 m 过程中图线的斜率等于大弹簧的劲度系数,k 1=ΔF Δx=100 N /m.当压缩量为0.3 m 时,大弹簧被压缩了0.3 m ,而小弹簧被压缩了0.1 m ,则F =k 1×0.3 m +k 2×0.1 m =50 N ,得k 2=200 N/m ,选项A 正确.]5.C [若不受弹簧的弹力,μmg cos θ<mg sin θ,则物块不可能静止,故物块一定受弹簧的压力,还受重力、斜面的支持力和静摩擦力,受四个力的作用而平衡,A 错误;若要物块静止,μ(mg cos 37°+F )≥mg sin θ,得:F ≥4 N ,故B 错误,C 正确;根据静摩擦力的产生条件,斜面对物块的支持力不可能为零,D 错误.]6.C [对A 球受力分析可知,A 受到重力,绳子的拉力以及杆对A球的弹力,三个力的合力为零,A 项错误;对B 球受力分析可知,B 受到重力,绳子的拉力,两个力合力为零,杆对B 球没有弹力,否则B 不能平衡,B 项错误;分别对A 、B 两球分析,运用合成法,如图:根据共点力平衡条件得F T =m B g ,F T sin θ=m A g sin (90°+θ)(根据正弦定理列式),故m A ∶m B =1∶tan θ,C 项正确,D 项错误.]7.A [小车静止时,橡皮筋弹力等于小球重力,即mg =kx 1,橡皮筋原长设为l ,则小球竖直向下的悬吊高度为l +x 1=l +mg k.小车匀加速运动时,设橡皮筋弹力为F ,橡皮筋与竖直方向夹角为θ,则F cos θ=mg ,橡皮筋长度为l +F k =l +mg k cos θ,可得小球竖直方向悬吊的高度为⎝⎛⎭⎫l +mg k cos θcos θ=l cos θ+mg k <l +mg k,所以小球的高度升高,选项A 正确.]。
高中物理弹簧问题考点大全及常见典型考题(总14页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除常见弹簧类问题分析高考要求轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视. 弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.一、与物体平衡相关的弹簧问题1.(1999年,全国)如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )k 1k2k2k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 - m2g/k2=m l g/k2.此题若求ml移动的距离又当如何求解参考答案:C和S2表示劲度系数分别为k1,和k2两根轻质弹簧,k1>k2;A和B表示质量分别为mA 和mB的两个小物块,mA>mB,将弹簧与物块按图示方式悬挂起来.现要求两根弹簧的总长度最大则应使( ).在上,A在上在上,B在上在上,A在上在上,B在上参考答案:D3.一根大弹簧内套一根小弹簧,大弹簧比小弹簧长,它们的一端固定,另一端自由,如图所示,求这两根弹簧的劲度系数k 1(大弹簧)和k2(小弹簧)分别为多少?(参考答案k1=100N/m k2=200N/m)4.(2001年上海高考)如图所示,一质量为m的物体系于长度分别为L1、L 2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.现将L2线剪断,求剪断瞬时物体的加速度.(1)下面是某同学对该题的一种解法:解设L1线上拉力为Tl,L2线上拉力为T2,重力为mg,物体在三力作用下保持平衡T l cosθ=mg,Tlsinθ=T2,T2=mgtanθ,剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度.因为mgtanθ=ma,所以加速度a=g tanθ,方向在T2反方向.你认为这个结果正确吗?清对该解法作出评价并说明理由.解答:错.因为L2被剪断的瞬间,L1上的张力大小发生了变化.此瞬间T2=mgcosθ, a=gsinθ(2)若将图中的细线Ll改为长度相同、质量不计的轻弹簧,其他条件不变,求解的步骤和结果与(1)完全相同,即a=gtanθ,你认为这个结果正确吗?请说明理由.解答:对,因为L2被剪断的瞬间,弹簧L1的长度未及发生变化,T1大小和方向都不变.二、与动力学相关的弹簧问题5.如图所示,在重力场中,将一只轻质弹簧的上端悬挂在天花板上,下端连接一个质量为M的木板,木板下面再挂一个质量为m的物体.当剪掉m后发现:当木板的速率再次为零时,弹簧恰好能恢复到原长,(不考虑剪断后m、M间的相互作用)则M与m之间的关系必定为 ( )>m =m <m D.不能确定参考答案:B6.如图所示,轻质弹簧上面固定一块质量不计的薄板,在薄板上放重物,用手将重物向下压缩到一定程度后,突然将手撤去,则重物将被弹簧弹射出去,则在弹射过程中(重物与弹簧脱离之前)重物的运动情况是 ( ) 参考答案:CA.一直加速运动 B.匀加速运动C.先加速运动后减速运动 D.先减速运动后加速运动[解析] 物体的运动状态的改变取决于所受合外力.所以,对物体进行准确的受力分析是解决此题的关键,物体在整个运动过程中受到重力和弹簧弹力的作用.刚放手时,弹力大于重力,合力向上,物体向上加速运动,但随着物体上移,弹簧形变量变小,弹力随之变小,合力减小,加速度减小;当弹力减至与重力相等的瞬间,合力为零,加速度为零,此时物体的速度最大;此后,弹力继续减小,物体受到的合力向下,物体做减速运动,当弹簧恢复原长时,二者分离.7.如图所示,一轻质弹簧竖直放在水平地面上,小球A由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的是()参考答案:CA.小球加速度方向始终向上B.小球加速度方向始终向下C.小球加速度方向先向下后向上D.小球加速度方向先向上后向下(试分析小球在最低点的加速度与重力加速度的大小关系)8.如图所示,一轻质弹簧一端系在墙上的O点,自由伸长到B点.今用一小物体m把弹簧压缩到A点,然后释放,小物体能运动到C点静止,物体与水平地面间的动摩擦因数恒定,试判断下列说法正确的是 ()A.物体从A到B速度越来越大,从B到C速度越来越小B.物体从A到B速度越来越小,从B到C加速度不变C.物体从A到B先加速后减速,从B一直减速运动D.物体在B点受到的合外力为零参考答案:C9.如图所示,一轻质弹簧一端与墙相连,另一端与一物体接触,当弹簧在O点位置时弹簧没有形变,现用力将物体压缩至A点,然后放手。
高一物理弹力典型例题1. 弹力的基本概念弹力,听起来就像是弹簧的舞蹈,是不是?简单来说,弹力是物体因为形变而产生的力。
比如说,你捏一个橡皮泥,它会变形,但当你放开时,它又会恢复原样。
这种“恢复”的力,就是弹力!真是神奇,对吧?想象一下,如果没有弹力,生活会多无趣,连玩具都没办法弹回来,大家岂不是都要愁眉苦脸?1.1 弹力的类型我们常见的弹力主要分为两种:伸长和压缩。
伸长的弹力就像是你拉弹簧的时候,那种“快放手吧,我要回到原来的样子”的感觉。
而压缩的弹力,就像你坐在沙发上,沙发对你的反抗力。
哈哈,感觉好像在和沙发打仗呢!1.2 勒让与胡扯弹力的计算就得提到胡克定律,这个名字一听就很高大上,其实就是告诉我们:弹力和形变成正比。
想象一下,弹簧越拉越长,它的弹力就越大。
这就好比你去健身房,越练越强壮,弹簧也是一样。
记住哦,弹簧的“力量”不容小觑!2. 弹力的应用说到应用,弹力可是无处不在哦!想象一下,你在游乐园玩过山车,那个令人肾上腺素飙升的瞬间,其实就是利用了弹力。
过山车在高空自由落体,突然一抬头,哇,那种“弹起来”的感觉,真是刺激!2.1 日常生活中的弹力在我们的日常生活中,弹力的身影随处可见。
你见过篮球吗?那球一弹,直接就能飞得老高,完全就是在和地球较劲呢!还有那些小孩子玩的蹦床,蹦蹦跳跳,简直乐开了花。
你看,弹力让生活充满乐趣,怎么能不爱呢?2.2 自然界的弹力再说说自然界,弹力同样扮演着重要的角色。
想象一下,树木的枝条在风中摇摆,那是因为有弹力在支撑着它们。
当狂风来袭,树木虽然会弯曲,但弹力会让它们挺直腰杆。
大自然的力量,真是让人叹为观止!3. 弹力的趣味实验说到实验,物理可真是个玩得不亦乐乎的领域。
我们可以做一个简单的实验:拿一根弹簧和一个重物,把重物挂在弹簧上,看看弹簧的长度变化。
哇哦,弹力的奥秘就这样展现在眼前!就像是一场魔术表演,你的眼睛绝对不会眨一下。
3.1 动手动脚你也可以试试用不同的重量,看看弹簧拉伸得有多远,或者用橡皮筋来比较一下。
一、对形变和弹力的理解例1 下列有关物体受外力及形变的说法正确的是( )A.有力作用在物体上,物体一定发生形变,撤去此力后形变完全消失B.有力作用在物体上物体不一定发生形变C.力作用在硬物体上,物体不发生形变;力作用在软物体上,物体才发生形变D.一切物体受到外力作用都要发生形变,外力撤去后形变不一定完全消失解析只要有力作用在物体上,物体就一定会发生形变,故 B 项错误;发生形变后的物体,当撤去外力后,有些能完全恢复原状,有些不能完全恢复原状,A项错误,D项正确;不管是硬物体还是软物体,只要有力作用都会发生形变, C 项错误.答案D(1) 对于弹性形变,当力撤去后可以恢复原状.(2) 若两个物体在直接接触的同时,也存在弹性形变,则两个物体间有弹力的作用.(3) 弹力大小与形变量有关,对于接触面情况一定的前提下,形变越大,弹力也越大.二、弹力有无的判断例2 如图3-2-9所示,细绳下悬挂一小球D,小球与光滑的静止斜面接触,且细绳处于竖直状态,则下列说法中正确的是( )A.斜面对 D 的支持力垂直于斜面向上B.D对斜面的压力竖直向下C.D与斜面间无相互作用力D.因D的质量未知,所以无法判定斜面对 D 支持力的大小和方向解析对 D 进行受力分析可知,D一定受到竖直向上的绳的拉力和竖直向下的重力,其中有无弹力可用假设法.假设去掉斜面, D 仍保持原来的静止状态,可判断出 D 与斜面间无相互作用力.答案C判断弹力是否存在一般有以下两种方法:①假设法;②根据物体的运动状态判断三、弹力方向的分析例 3 作出图3-2-10中物块、球、杆等受到各接触面作用的弹力示意图.图3-2-10解析分析此类问题的关键是确定接触面,对于点—面接触,面—面接触类问题容易确定,这里出现的面即为接触面;对于点—弧面接触,过接触点的弧面的切面即为接触面.各物体所受弹力如下图所示.答案见解析图四、弹力大小的计算图3-2-11例 4 如图3-2-11 所示,A、 B 两物体的重力分别是G A=3 N,G B= 4N.A 用细线悬挂在顶板上, B 放在水平面上,A、 B 间轻弹簧中的弹力F= 2 N,则细线中的张力F T及 B 对地面的压力F N的可能值分别是( )A.5 N和 6 N B.5 N和 2 NC.1 N和6 N D.1 N和2 N解析弹簧如果处于被拉伸的状态,它将有收缩到原状的趋势,会向下拉A,向上提B,则B 正确;如果处于被压缩的状态,将向两边恢复原状,会向上顶A,向下压B,则 C 正确,故选B、 C.答案BC判断弹簧弹力的方向时,要注意弹簧是被拉伸还是被压缩,或两者均有可能,计算弹簧弹力大小的方法一般是根据胡克定律,有时也根据平衡条件来计算.1. 下列说法正确的有( ) A.木块放在桌面上要受到一个向上的弹力,这是由于木块发生微小形变而产生的B.拿一细杆拨动水中的木头,木头受到细杆的弹力,这是由于木头发生形变而产生的C.绳对物体的拉力方向总是沿着绳而指向绳子收缩的方向D.挂在电线下面的电灯受到向上的拉力,是因为电线发生微小形变而产生的答案CD解析由弹力的概念可知,发生形变的桌子,由于要恢复原状,对跟它接触的木块产生了力的作用,即木块受到弹力是由于桌子发生形变而产生的,不是木块自己发生形变引起的,同理,木块受到细杆作用力是由于细杆发生形变而产生的,所以选项A、B 是错误的;用绳悬挂物体时,对物体的拉力是因为绳子发生形变,由于要恢复原状,对物体产生力的作用,故绳对物体的拉力是指向绳子收缩的方向,所以C、D 是正确的,应选C、D.2.关于弹力的方向,以下说法正确的是( )A.压力的方向总是垂直于接触面,并指向被压物体B.支持力的方向总是垂直于支持面,并指向被支持物体C.绳对物体拉力的方向总是沿着绳,并指向绳收缩的方向D.杆对物体的弹力方向总是沿着杆,并指向杆收缩的方向答案ABC解析需要注意的是杆对物体产生的弹力可能沿杆方向,也可能不沿杆方向,这点与绳是不同的.3.如图3-2-12 所示,弹簧的劲度系数为k,小球重为G,平衡时球在A 位置,今用力F 将小球向下拉长x 至B位置,则此时弹簧的弹力为()图3-2-12A.kx B.kx +GC.G-kx D.以上都不对答案B解析此题很容易误解而选A项,但选项A是错误的.其原因是x 不是弹簧变化后的长度与未发生形变时弹簧长度的差值(即不是弹簧的总形变量),球在 A 位置时弹簧已经伸长了(令它为Δ x),这样球在B位置时,F弹=k(Δx +x)=kx +kΔx. 因为球在A位置平衡,有G=kΔx,所以F弹=kx+G.故选项B 是正确的.4.一条轻绳承受的拉力达到 1 000 N 时就会被拉断,若用此绳进行拔河比赛,两边的拉力大小都是600 N 时,则绳子()A.一定会断B.一定不会断C.可能断,也可能不断D.要是绳子两边的拉力相等,不管拉力多大,合力总为零,绳子永远不会断答案B解析因为绳子内的弹力处处相等,假设将绳子分为两部分,其中一部分对另一部分的拉力大小为600 N,小于绳子能承受的最大拉力 1 000 N,所以绳子图 3- 2- 135.如图 3-2-13所示,绳下吊一铁球,则球对绳有弹力, 绳对球也有弹力, 关于两个弹力的产生,下述说法正确的是 ( )A .球对绳的弹力,是球发生形变产生的弹 力作用于绳的B .球对绳的弹力,是绳发生形变产生的弹力作用于绳的C .绳对球的弹力,是绳发生形变产生的弹力作用于球的D .绳对球的弹力,是球发生形变产生的弹力作用于球的答案 AC解析 绳和球发生了弹性形变, 由于要恢复原状, 从而对跟它接触的物体产 生弹力作用,故 A 、C 正确.6.如图 3-2-14 所示,各接触面光滑且物体 A 静止,画出物体 A 所受弹力的示意图.图 3- 2- 14答案 如图所示.试由图线确定:定不会断裂.7.如图 3-2-15 所示,为一轻质弹簧的长度 l 和弹力 F 大小的关系图象,图 3- 2-15(1) 弹簧的原长;(2) 弹簧的劲度系数;(3) 弹簧长为0.20 m时弹力的大小.答案(1)10 cm (2)200 N/m(3)20 N解析读懂图象是求解本题的关键:(1) 当弹簧的弹力为零时,弹簧处于原长状态,由图可知原长l 0=10 cm.(2) 当弹簧长度为15 cm时,弹力大小为10 N,对应弹簧的伸长量为Δl =-2(15 -10) cm=5×10-2 m由胡克定律F=kx 得:F 10k=ΔF l=5×1100-2 N/m=200 N/m.(3) 当弹簧长为0.20 m时,弹簧伸长量为:Δl ′=(0.20 -0.10) m=0.10 m由胡克定律F=kx 得:F′=kΔl ′=200×0.10 N=20 N.8.下表是某同学为探究弹力和弹簧伸长量的关系所测的几组数据:(1) 请你在图3216 F x图3-2-16(2) 写出曲线所代表的函数(x 用m作单位) .(3) 解释函数表达式中常数的物理意义.答案见解析解析根据已有数据选好坐标轴每格所代表的物理量的多少,是作好图象的关键,作图象的方法:用平滑的曲线(或直线)将坐标纸上的各点连接起若是来,直线,应使各点均匀分布于直线两侧,偏离直线太大的点,应舍弃掉.(1) 将x 轴每一小格取为 1 cm,F 轴每一小格取为0.25 N,将各点点到坐标纸上,并连成直线,如下图所示.(2) 由图象得:F=20x.(3) 函数表达式中的常数:表示使弹簧伸长( 或压缩)1 m所需的拉力为20 N.。
3.2 弹力1.如下列图,球A在斜面上,被竖直挡板挡住而处于静止状态,关于球A所受的弹力,以下说法正确的答案是:〔〕A.球A仅受一个弹力作用,弹力的方向垂直斜面向上B.球A受两个弹力作用,一个水平向左,一个垂直斜面向下C.球A受两个弹力作用,一个水平向右,一个垂直斜面向上D.球A受三个弹力作用,一个水平向右,一个垂直斜面向上,一个竖直向下【答案】C2.如下列图,一根弹簧其自由端B在未悬挂重物时指针正对刻度5,在弹性限度内当挂上80N重物时指针正对刻度45,假设要指针正对刻度20,应挂重物是:〔〕A.40N B.30NC.20N D.35.6N【答案】B【解析】由胡可定律可知,80N能使弹簧伸长40个刻度,伸长一个刻度对应的拉力是2N,假设要指针正对刻度20,需要弹簧伸长15个刻度,此时的弹力应为30N,B正确。
3.两小球均处于静止状态,所有接触面均光滑,A、B之间一定有弹力作用的是:〔〕【答案】B【解析】弹力的产生必须满足两个条件:相互接触且发生弹性形变;由图可知,A、D中两个小球都相互接触,但它们之间并没有相互挤压的作用,也就不能发生弹性形变,从而不能产生弹力.AD错误;B图中的两个小球由于绳子的作用,而相互挤压,从而产生了相互作用的弹力;B正确;C图中的小球与斜面间无挤压,无弹力作用,应当选B。
【名师点睛】弹力的产生必须满足两个条件:相互接触且发生弹性形变;对于微小形变的物体,不易看出形变情况,可以用假设法,即假设这个弹力存在,看其所处状态是否与题给情况一致,假设产生矛盾,如此说明这个弹力不存在。
如此题的C答案,如果斜面对小球存在弹力,如此方向为垂直斜面向上,悬挂小球的细绳不能竖直,说明斜面对小球无弹力。
4.关于物体对水平支持面的压力F,如下说法正确的答案是:〔〕A.F就是物体的重力B.F是由于支持面发生微小形变而产生的C.F的作用点在物体上D.F的作用点在支持面上【答案】D【名师点睛】此题考查了学生对弹力的理解,要知道弹力是由于物体的形变而产生的对抗形变的力,方向与形变的方向相反,注意要搞清弹力而产生形变的物体;当物体静止与水平面上时物体对水平面的压力大小等于重力大小,而不能说就是重力.5.如下列图,细绳下悬挂一小球D,小球与光滑的静止斜面接触,且细绳处于竖直状态,如此如下说法中正确的答案是:〔〕A.斜面对D的支持力垂直于斜面向上B.D对斜面的压力竖直向下C.D与斜面间无相互作用力D .因D 的质量未知,所以无法判定斜面对D 支持力的大小和方向【答案】C【解析】小球和光滑斜面接触,根据平衡条件,由于细绳处于竖直状态,故小球受到重力和绳的拉力,斜面对小球没有弹力.应当选C.【名师点睛】此题采用假设法分析斜面的弹力是否存在,这是判断弹力和摩擦力是否存在常用的方法,也就是说假设斜面对小球有弹力,小球将受到三个力作用,重力和绳的拉力在竖直方向上,弹力垂直于斜面向上,三个力的合力不可能为零,小球将向左上方运动,与题设条件矛盾。
1.下列关于弹力产生条件的说法正确的是( )A.只要两个物体接触就一定有弹力产生B.只要两个物体相互吸引就一定有弹力产生C.只要物体发生运动就一定受到弹力作用D.只有发生弹性形变的物体才会产生弹力解析:弹力产生的条件:接触并产生弹性形变,二者缺一不可.A、C中都只有弹力产生的一个条件,故A、C都不一定能产生弹力.B中只说“相互吸引”,只能证明有力存在,不一定能产生弹力.D项同时具备两个条件.答案: D2.如右图所示,弹簧的劲度系数为k,小球重力为G,平衡时球在A位置.今用力F将小球向下拉长x至B位置,则此时弹簧的弹力大小为( )A.kx B.kx+GC.G-kx D.以上都不对答案: B3.铅球放在水平地面上处于静止状态,下列关于铅球和地面受力的叙述正确的是( )A.地面受到向下的弹力是因为地面发生了弹性形变;铅球坚硬没发生形变B.地面受到向下的弹力是因为地面发生了弹性形变;铅球受到向上的弹力,是因为铅球也发生了形变C.地面受到向下的弹力是因为铅球发生了弹性形变;铅球受到向上的弹力,是因为地面发生了形变D.铅球对地面的压力即为铅球的重力解析:两个物体之间有弹力,它们必定相互接触且发生了形变,地面受到向下的弹力是因为铅球发生了形变,故A、B错.铅球对地面的压力的受力物体是地面而不是铅球,D错.只有C项正确.答案: C4.如下图为P物体对Q物体的压力的示意图,有明显错误的是( )解析:P对Q物体的压力应作用在Q物体上且力的方向应垂直于接触面并指向Q物体,故B、C、D均是错误的.答案:BCD5.如右图所示,两人分别用100 N的力拉弹簧秤的秤钩和拉环,则弹簧秤的读数为( )A.50 N B.0C.100 N D.200 N解析:答案: C6.一个实验小组在“探究弹力和弹簧伸长的关系”的实验中,使用两条不同的轻质弹簧a和b,得到弹力与弹簧长度的图象如右图所示.下列表述正确的是( ) A.a的原长比b的长B.a的劲度系数比b的大C.a的劲度系数比b的小D.测得的弹力与弹簧的长度成正比解析:图象的横轴截距表示弹簧的原长,A错误,图象的斜率表示弹簧的劲度系数,B正确,C错误,图象不过原点,D错误.答案: B7.如下图所示,弹簧秤和细绳重力不计,不计一切摩擦,物体重G=5 N,当装置稳定时弹簧秤A和B的读数分别为( )A.5 N,0 B.5 N,10 NC.5 N,5 N D.10 N,5 Nw解析:弹簧秤的示数即为弹簧秤所承受的力的大小,图中无论弹簧秤的右端是固定在支架上还是挂上重物,其作用效果是相同的,弹簧秤承受的力都等于物体的重力.答案: C8.如右图所示,一根弹性杆的一端固定在倾角为30°的斜面上,杆的另一端固定一个质量为m=0.2 kg的小球,小球处于静止状态,弹性杆对小球的弹力为( ) A.大小为2 N,方向平行于斜面向上B.大小为1 N,方向平行于斜面向上C.大小为2 N,方向垂直于斜面向上D.大小为2 N,方向竖直向上解析:球受重力G和弹力F,由二力平衡条件可知,杆对球的弹力方向与重力方向相反,竖直向上,大小F=G=mg=2 N,故D正确.答案: D9.如图甲所示,一个弹簧一端固定在传感器上,传感器与电脑相连当对弹簧施加变化的作用力(拉力或压力)时,在电脑上得到了弹簧长度的形变量与弹簧产生的弹力大小的关系图象如图乙所示.则下列判断正确的是( )A.弹簧产生的弹力和弹簧的长度成正比B.弹簧长度的增加量与对应的弹力增加量成正比C.该弹簧的劲度系数是200 N/mD.该弹簧受到反向压力时,劲度系数不变解析:弹簧长度的增加量即形变量的增量,由F=kx得ΔF=kΔx,故B对;k=ΔFΔx=200 N/m,C正确.答案:BCD10.如右图a所示,将G=50 N的物体静止悬挂在轻质弹簧上,弹簧伸长了2.0 cm,弹簧的弹力是多大?将弹簧从挂钩处摘下,在O点施加一个竖直向上的50 N的拉力,如图b所示,物体仍然静止,那么弹簧的伸长量是多少?解析:物体静止,由二力平衡可得弹簧的弹力F=G=50 N.在O点施加一个竖直向上的50 N的拉力,与弹簧悬挂在天花板上的情况相同,弹簧的伸长量仍为2.0 cm.答案:50 N 2.0 cm11.如下图所示,各接触面光滑且物体A静止,画出物体A所受弹力的示意图.答案:如下图所示.12.如右图所示,为一轻质弹簧的长度l和弹力F大小的关系图象,试由图线确定:(1)弹簧的原长;(2)弹簧的劲度系数;(3)弹簧长为0.20 m时弹力的大小.解析:读懂图象是求解本题的关键.(1)当弹簧的弹力为零时,弹簧处于原长状态,由图可知原长l0=10 cm.(2)当弹簧长度为15 cm时,弹力大小为10 N对应弹簧的伸长量为Δl=(15-10) cm=5×10-2 m,由胡克定律F=kx得k=FΔl=105×10-2 N/m=200 N/m.(3)当弹簧长为0.20 m时,弹簧伸长量为Δl′=(0.20-0.10) m=0.10 m由胡克定律F=kx得F′=k•Δl′=200×0.10 N=20 N.答案:(1)10 cm (2)200 N/m (3)20 N。
高一物理弹力试题答案及解析1.一根轻质弹簧一端固定,用大小为的力压弹簧的另一端,平衡时长度为;改用大小为的力拉弹簧,平衡时长度为.弹簧的拉伸或压缩均在弹性限度内,该弹簧的劲度系数为A.B.C.D.【答案】C【解析】由胡克定律得 F=kx,式中x为形变量,设弹簧原长为l0,则有F1=k(l-l1),F2=k(l2-l),联立方程组可以解得。
所以C项正确【考点】本题考查了胡可定律。
2.关于力的概念,下列说法正确的是()A.一个力必定联系着两个物体,其中每个物体既是受力物体,又是施力物体B.放在桌面上的木块受到桌面对它向上的弹力,这是由于木块发生微小形变而产生的C.压缩弹簧时,手先给弹簧一个压力F,等弹簧再压缩x距离后才反过来给手一个弹力D.根据力的作用效果命名的不同名称的力,性质可能也不相同【答案】AD【解析】力是物体间的相互作用,受力物体同时也是施力物体,施力物体同时也是受力物体,所以A正确;产生弹力时,施力物体和受力物体同时发生形变,但弹力是由施力物体形变引起的,反作用力是由受力物体形变引起的,放在桌面上的木块受到桌面给它向上的弹力,这是由于桌面发生微小形变而产生的,故B不正确;力的作用是相互的,作用力和反作用力同时产生、同时消失,故C选项错误;根据力的作用效果命名的力,性质可能相同,也可能不相同,如向心力,可以是绳子的拉力,也可以是电场力,还可以是其他性质的力,D选项正确.3.如图所示,劲度系数为K2的轻质弹簧,竖直放在桌面上,上面压一质量为m的物块,劲度系数为K1的轻质弹簧竖直地放在物块上面,其下端与物块上表面连接在一起,现想使物块在静止时,下面弹簧承受物重的2/3,应将上面弹簧的上端A竖直向上提高的距离。
【答案】【解析】末态时物块受力分析,其中F1′与F2′分别是弹簧k1、k2的作用力,物块静止有F1′+F2′=mg初态时,弹簧k2(压缩)的弹力F2=mg末态时,弹簧k2(压缩)的弹力F2′=mg弹簧k2的长度变化量△x2==由F1′+F2′=mg,F2′=mg 得F1′=mg初态时,弹簧k1(原长)的弹力F1=0末态时,弹簧k1(伸长)的弹力F1′=mg弹簧k1的长度变化量△x1==所求距离为△x1+△x2=【考点】本题考查胡克定律。
弹簧问题归类一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F .【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为,弹簧秤的读数为.【解析】以整个弹簧秤为研究对象,利用牛顿运动定律得:12F F ma -=,即12F F a m-=,仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的.【答案】12F F a m-=1F二、质量不可忽略的弹簧【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【解析】弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度F a M=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:,x x F x T ma M F L M L===【答案】x x T F L=三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变.即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变.【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a =与B a =【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g .【答案】0说明:区别于不可伸长的轻质绳中张力瞬间可以突变.【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为() A.0B.大小为233g ,方向竖直向下 C.大小为233g ,方向垂直于木板向下D.大小为233g ,方向水平向右【解析】末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos N mgF θ=.撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的图图图3-7-2图3-7-1图3-7-3N F (三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为23cos 3N F g a g m θ===【答案】C.四、弹簧长度的变化问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有:11()F k x -=-,22F kx =.则:2121()()F F kx kx --=--,即F k x ∆=∆ 说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量.【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了,物块1的重力势能增加了.【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g,弹力的改变量也为12()mm g +.所以1k 、2k 弹簧的伸长量分别为:1211()m m g k +和1221()m m g k +故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++ 五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).【解析】系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A 受力可知:11sin A F kx m g θ==解得:1sin A m g x kθ=在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ=设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--=解得:()sin A B AF m m g a m θ-+=因物体A与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即()sin A B m m g d kθ+=【答案】()sin A B m m g d kθ+=六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化.结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程.【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物图图3-7-6 图3-7-8体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大?(2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少? 【解析】由题意可知,弹簧开始的压缩量0mg x k =,物体B 刚要离开地面时弹簧的伸长量也是0mgx k=. (1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F 所做的功等于物体A 增加的动能及重力势能的和.即:201222F x mg x mv ⋅=⋅+得:022v gx =(2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.在最低点有:001F mg kx ma -+=,式中k 为弹簧劲度系数,1a 为在最低点物体A 的加速度.在最高点,物体B 恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则:002(2)k x mg F ma +-=而0kx mg =,简谐运动在上、下振幅处12a a =,解得:032mgF =[也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由002xmg k F +=,解得:032mgF =.]【答案】022gx 32mg说明:区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关. 七.与弹簧相关的临界问题通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等.此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论。
一、对形变和弹力的理解例1 下列有关物体受外力及形变的说法正确的是( )A.有力作用在物体上,物体一定发生形变,撤去此力后形变完全消失B.有力作用在物体上物体不一定发生形变C.力作用在硬物体上,物体不发生形变;力作用在软物体上,物体才发生形变D.一切物体受到外力作用都要发生形变,外力撤去后形变不一定完全消失解析只要有力作用在物体上,物体就一定会发生形变,故B项错误;发生形变后的物体,当撤去外力后,有些能完全恢复原状,有些不能完全恢复原状,A项错误,D项正确;不管是硬物体还是软物体,只要有力作用都会发生形变,C 项错误.答案D(1)对于弹性形变,当力撤去后可以恢复原状.(2)若两个物体在直接接触的同时,也存在弹性形变,则两个物体间有弹力的作用.(3)弹力大小与形变量有关,对于接触面情况一定的前提下,形变越大,弹力也越大.二、弹力有无的判断图3-2-9例2 如图3-2-9所示,细绳下悬挂一小球D,小球与光滑的静止斜面接触,且细绳处于竖直状态,则下列说法中正确的是( )A.斜面对D的支持力垂直于斜面向上B.D对斜面的压力竖直向下C.D与斜面间无相互作用力D.因D的质量未知,所以无法判定斜面对D支持力的大小和方向解析对D进行受力分析可知,D一定受到竖直向上的绳的拉力和竖直向下的重力,其中有无弹力可用假设法.假设去掉斜面,D仍保持原来的静止状态,可判断出D与斜面间无相互作用力.答案C判断弹力是否存在一般有以下两种方法:①假设法;②根据物体的运动状态判断三、弹力方向的分析例3 作出图3-2-10中物块、球、杆等受到各接触面作用的弹力示意图.图3-2-10解析分析此类问题的关键是确定接触面,对于点—面接触,面—面接触类问题容易确定,这里出现的面即为接触面;对于点—弧面接触,过接触点的弧面的切面即为接触面.各物体所受弹力如下图所示.答案见解析图四、弹力大小的计算图3-2-11例4 如图3-2-11所示,A、B两物体的重力分别是G=3 N,G B=4 N.AA用细线悬挂在顶板上,B放在水平面上,A、B间轻弹簧中的弹力F=2 N,则细线中的张力F T及B对地面的压力F N的可能值分别是( )A.5 N和6 N B.5 N和2 NC.1 N和6 N D.1 N和2 N解析弹簧如果处于被拉伸的状态,它将有收缩到原状的趋势,会向下拉A,向上提B,则B正确;如果处于被压缩的状态,将向两边恢复原状,会向上顶A,向下压B,则C正确,故选B、C.答案BC判断弹簧弹力的方向时,要注意弹簧是被拉伸还是被压缩,或两者均有可能,计算弹簧弹力大小的方法一般是根据胡克定律,有时也根据平衡条件来计算.1.下列说法正确的有( )A.木块放在桌面上要受到一个向上的弹力,这是由于木块发生微小形变而产生的B.拿一细杆拨动水中的木头,木头受到细杆的弹力,这是由于木头发生形变而产生的C.绳对物体的拉力方向总是沿着绳而指向绳子收缩的方向D.挂在电线下面的电灯受到向上的拉力,是因为电线发生微小形变而产生的答案CD解析由弹力的概念可知,发生形变的桌子,由于要恢复原状,对跟它接触的木块产生了力的作用,即木块受到弹力是由于桌子发生形变而产生的,不是木块自己发生形变引起的,同理,木块受到细杆作用力是由于细杆发生形变而产生的,所以选项A、B是错误的;用绳悬挂物体时,对物体的拉力是因为绳子发生形变,由于要恢复原状,对物体产生力的作用,故绳对物体的拉力是指向绳子收缩的方向,所以C、D是正确的,应选C、D.2.关于弹力的方向,以下说法正确的是( )A.压力的方向总是垂直于接触面,并指向被压物体B.支持力的方向总是垂直于支持面,并指向被支持物体C.绳对物体拉力的方向总是沿着绳,并指向绳收缩的方向D.杆对物体的弹力方向总是沿着杆,并指向杆收缩的方向答案ABC解析需要注意的是杆对物体产生的弹力可能沿杆方向,也可能不沿杆方向,这点与绳是不同的.3.如图3-2-12所示,弹簧的劲度系数为k,小球重为G,平衡时球在A 位置,今用力F将小球向下拉长x至B位置,则此时弹簧的弹力为( )图3-2-12A.kx B.kx+GC.G-kx D.以上都不对答案B解析此题很容易误解而选A项,但选项A是错误的.其原因是x不是弹簧变化后的长度与未发生形变时弹簧长度的差值(即不是弹簧的总形变量),球在A 位置时弹簧已经伸长了(令它为Δx),这样球在B位置时,F弹=k(Δx+x)=kx +kΔx.因为球在A位置平衡,有G=kΔx,所以F弹=kx+G.故选项B是正确的.4.一条轻绳承受的拉力达到1 000 N时就会被拉断,若用此绳进行拔河比赛,两边的拉力大小都是600 N时,则绳子( )A.一定会断B.一定不会断C.可能断,也可能不断D.要是绳子两边的拉力相等,不管拉力多大,合力总为零,绳子永远不会断答案B解析因为绳子内的弹力处处相等,假设将绳子分为两部分,其中一部分对另一部分的拉力大小为600 N,小于绳子能承受的最大拉力1 000 N,所以绳子一定不会断裂.图3-2-135.如图3-2-13所示,绳下吊一铁球,则球对绳有弹力,绳对球也有弹力,关于两个弹力的产生,下述说法正确的是( )A.球对绳的弹力,是球发生形变产生的弹力作用于绳的B.球对绳的弹力,是绳发生形变产生的弹力作用于绳的C.绳对球的弹力,是绳发生形变产生的弹力作用于球的D.绳对球的弹力,是球发生形变产生的弹力作用于球的答案AC解析绳和球发生了弹性形变,由于要恢复原状,从而对跟它接触的物体产生弹力作用,故A、C正确.6.如图3-2-14所示,各接触面光滑且物体A静止,画出物体A所受弹力的示意图.图3-2-14答案如图所示.图3-2-157.如图3-2-15所示,为一轻质弹簧的长度l和弹力F大小的关系图象,试由图线确定:(1)弹簧的原长;(2)弹簧的劲度系数;(3)弹簧长为0.20 m时弹力的大小.答案(1)10 cm(2)200 N/m(3)20 N解析读懂图象是求解本题的关键:(1)当弹簧的弹力为零时,弹簧处于原长状态,由图可知原长l=10 cm.(2)当弹簧长度为15 cm时,弹力大小为10 N,对应弹簧的伸长量为Δl=(15-10) cm=5×10-2m由胡克定律F=kx得:k=FΔl=105×10-2N/m=200 N/m.(3)当弹簧长为0.20 m时,弹簧伸长量为:Δl′=(0.20-0.10) m=0.10 m由胡克定律F=kx得:F′=kΔl′=200×0.10 N=20 N.8.下表是某同学为探究弹力和弹簧伸长量的关系所测的几组数据:弹力:F/N0.5 1.0 1.5 2.0 2.5弹簧的伸长量:x/cm 2.6 5.0 6.8 9.8 12.4(1)请你在图3-2-16中的坐标纸上作出F-x的图象.图3-2-16(2)写出曲线所代表的函数(x用m作单位).(3)解释函数表达式中常数的物理意义.答案见解析解析根据已有数据选好坐标轴每格所代表的物理量的多少,是作好图象的关键,作图象的方法:用平滑的曲线(或直线)将坐标纸上的各点连接起来,若是直线,应使各点均匀分布于直线两侧,偏离直线太大的点,应舍弃掉.(1)将x轴每一小格取为1 cm,F轴每一小格取为0.25 N,将各点点到坐标纸上,并连成直线,如下图所示.(2)由图象得:F=20x.(3)函数表达式中的常数:表示使弹簧伸长(或压缩)1 m所需的拉力为20 N.。
3.2 弹力(学案)
一、学习目标
1. 知道弹力是接触力,本质是电磁力;
2. 知道形变、弹性形变的概念,理解弹性限度;
3. 知道什么是弹力,理解弹力产生的条件;
4. 知道压力、支持力、绳的拉力都是弹力,会确定它们的方向;
5. 知道弹簧形变与弹力的关系,会用胡克定律计算弹簧弹力的大小。
二、【要点导学】
1.形变______________________________________________ 2.弹性形变_________________________________________ 3.弹性限度__________________________________________ 4.弹力_________________________________________________ 5.弹力产生的条件:
(1)____________________________
(2)_______________________________________
弹力是接触力.只有两物体直接接触时才有弹力产生,但两物体直接接触却不一定有弹力产生,还要看物体是否发生弹性形变.
6.弹力的方向是从施力物体指向受力物体,与施力物体的形变方向相反.具体地说:
(1)压力的方向__________________支持力的方向________________ (2)绳的拉力方向________________________ 7.【实验探究】弹簧弹力与弹簧伸长量的关系 探究结果:_________________________________________
8.胡克定律 公式:F kx k 为弹簧劲度系数,单位:牛顿每米
三、实验 (一)步骤
1、首先将实验装置调整妥当(如整个装置是否竖直平稳,标尺与弹簧的距离是否合适,标尺面与弹簧上的指针是否在同一平面内,是否便于读数等).
2、读出弹簧自然下垂时指针所指刻度.
3、悬挂50g 钩码一个,待稳定后,读出弹簧上指针所指刻度。
4、逐个增加钩码,重复第3步,至少做5组数据。
5、计算出钩码重力、弹簧的伸长量记入表格 .
6、观察数据,总结规律。
(二)注意事项
(1)本实验要求定量测量,因此要尽可能减小实验误差.标尺要竖直且靠近指针以减小读数带来的误差,每次改变悬挂钩码个数后,要待系统稳定后再读数.
(2)实验中所提供的米尺精确度为1 mm,应估读到mm的下一位.
(3)弹簧伸长量的计算,要用对应的两个数据。
(三)表格
四、课堂练习
1、水平桌面上放着一本书,下列有关书与桌面之间作用力的说法中,正确的
是()
A.书的重力就是桌面受到的压力。
B.桌面发生了弹性形变,对书产生了支持力。
C.书发生了弹性形变,因此书受到了支持力。
D.桌面受到的压力和书受到的支持力,都是弹力。
2、关于弹力的产生,下列说法正确的是
A.木块放在桌面上受到向上的弹力,是由于木块发生微小形变而产生的
B.木块放在桌面上受到向上的弹力,是由于桌面发生微小形变而产生的
C.挂在悬线下的物体受到向上的拉力,是由于悬线发生微小形变而产生的
D.挂在悬线下的物体受到向上的拉力,是由于物体发生微小形变而产生的
3、关于弹力的下列说法中, 错误的是:()
A.发生弹性形变的物体,会对它接触的物体产生弹力。
B.只有受弹簧作用的物体才受到弹力
C.通常所说的压力、支持力和绳子的拉力都是弹力。
D.压力和支持力的方向总是垂直接触面。
4、如图中,A、B叠放在水平地面上,则地面受到的压力是( )
A.B的重力
B.A和B的重力
C.只有B对地面的压力
D.A和B对地面的压力之和
5、在下图中,a、b(a 、b均处于静止状态)间一定有弹力的是( )
接触面光滑
6、分析球受到的弹力
无处不在的弹簧
在我们的日常生活中,弹簧形态各异,处处都在为我们服务。
常见的弹簧是螺旋形的,叫螺旋弹簧。
做力学实验用的弹簧测力计、扩胸器的弹簧等都是螺旋弹簧。
螺旋弹簧有长有短,有粗有细:扩胸器的弹簧就比弹簧测力计的粗且长;在抽屉锁里,弹簧又短又细,约几毫米长;有一种用来紧固螺母的弹簧垫圈,只有一圈,在紧固螺丝螺母时都离不开它。
螺旋弹簧在拉伸或压缩时都要产生反抗外力作用的弹力,而且在弹性限度内,形变越大,产生的弹力也越大;一旦外力消失,形变也消失。
有的弹簧制成片形的或板形的,叫簧片或板簧。
在口琴、手风琴里有铜制的发声簧片,在许多电器开关中也有铜制的簧片,在玩具或钟表里的发条是钢制的板簧,在载重汽车车厢下方也有钢制的板簧。
它们在弯曲时会产生恢复原来形状的倾向。
弯曲得越厉害,这种倾向越强。
有的弹簧像蚊香那样盘绕,例如,实验室的电学测量仪表(电流表、电压表)内、机械钟表中都安装了这种弹簧。
这种弹簧在被扭转时也会产生恢复原来形状的倾向,叫做扭簧。