江苏省涟水县红日中学七年级数学下册 9.5单项式乘多项式的再认识-因式分解(一)导学案
- 格式:doc
- 大小:125.00 KB
- 文档页数:2
9.5单项式乘多项式的再认识-因式分解(一)一、学习目标认识公因式,利用单项式乘多项式法则因式分解。
二、重点难点用提公因式法因式分解。
三、自学交流1、问题:计算375×2.8+375×4.9+375×2.32、(1)讨论上题的两种计算方法,分别提出各自的依据,然后比较哪种方法简便. (2)类似地,ab+ac+ad=3、了解以下知识点 (1)因式分解;(2)因式分解与整式乘法的关系;(3)提公因式法;四、展示点评例1:把下列各式分解因式:⑴ 6a 3b – 9a 2b 2c ;⑵6a 3b -9a 2b 2c +3a 2b(3) -8a 2b 2+4a 2b -2a b例2:把下式分解因式:()()y x b y x a +-+23例3:分解因式:(1) ()()a b y b a x -+- (2) ()()23126m n n m ---五、达标检测下列各式由左边到右边的变形,哪些是因式分解,哪些不是?多项式公因式 4x+4y -8ax+12ay8a3bx+12a2b2y(1)a b +a c +d =a (b +c )+d ; (2)a 2-1=(a +1)(a -1);(3)(a +1)(a -1)=a 2-1.1. (1)将多项式-5a 2+3a b 提出公因式-a 后,另一个因式是 ;(2)把多项式4(a +b )-2a (a +b )分解因式,应提出公因式 .2. 把下列各式分解因式;(1)4x 2-12x 3;(2)y xy y x 542-+-.xkb13. 计算:2.37×52.5+0.63×52.5-4×52.5;4. 把下列各式分解因式:(1)()()x y x y x x-+-632;(2)()()223155a b a b a a ---;六、反馈反思。
苏教科版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!苏科版初中数学和你一起共同进步学业有成!《9.5单项式乘多项式的再认识-因式分解(一)》学案学习目标:1.了解因式分解的意义,会用提公因式法进行因式分解.2.经历通过整式乘法逆向得出因式分解方法的过程,发展学生逆向思考问题的能力和推理能力.学习重点:会用提公因式法进行因式分解.学习难点:正确找出多项式中各项的公因式. 学习过程:1.用两种方法计算375×2.8+375×4.9+375×2.3上题的两种计算方法,哪种方法简便.2.类似地,ab+ac+ad 又能写成什么形式呢?这样变形的依据是什么呢?3.看p 70议一议.什么是“因式分解”,什么是“公因式”? 4.找出下列多项式各项的公因式并填写下表:5.例题讲解: 例1:把下列各式分解因式:⑴ 6a 3b – 9a 2b 2c ; ⑵6a 3b -9a 2b 2c +3a 2b (3) -8a 2b 2+4a 2b -2a b思路点拨:(1)找公因式,决定系数与字母.(2)在提出 “一” 号后, 括到括号里的各项都要变号.多项式 公因式 4x+4y -8ax+12ay 8a 3bx+12a 2b 2y6.“想一想”,如何把多项式()()y x b y x a +-+23分解因式?7.举例:分解因式:(1) ()()a b y b a x -+- (2) ()()23126m n n m ---8.练习:1. A :下列各式由左边到右边的变形,哪些是因式分解,哪些不是?(1)a b +a c +d =a (b +c )+d ;(2)a 2-1=(a +1)(a -1);(3)(a +1)(a -1)=a 2-1.2. (1)将多项式-5a 2+3a b 提出公因式-a 后,另一个因式是 ;(2)把多项式4(a +b )-2a (a +b )分解因式,应提出公因式 .3. 把下列各式分解因式;(1)4x 2-12x 3;相信自己,就能走向成功的第一步 教师不光要传授知识,还要告诉学生学会生活。
2017苏科版数学七年级下册9.5《单项式乘多项式的再认识-因式分解》word 练习题 《9、5单项式乘多项式的再认识-因式分解(一) 》习题》学案一、填空题1、 多项式24ab 2-32a 2b 提出公因式是 、2、 )2(_______)(63322+-=+-a a b ab b a 、3、 当x=90、28时,8、37x+5、63x -4x=____ _____、4、 若m 、n 互为相反数,则5m +5n -5=__________.5、 分解因式:=---22)()(n m y n m x 、二、选择题6、 下列式子由左到右的变形中,属于因式分解的是 ( ) A 。
22244)2(y xy x y x ++=+ B 、3)1(4222+-=+-x y xC 、 )1)(13(1232-+=--x x x xD 、mc mb ma c b a m ++=++)(7、多项式-5mx 3+25mx 2-10mx 各项的公因式是 ( )A 、5mx 2B 、-5mx 3C 、 m xD 、-5mx8、在下列多项式中,没有公因式可提取的是 ( )A 、3x -4yB 、3x+4xyC 、4x 2-3xyD 、4x 2+3x 2y9、已知代数式2346x x -+的值为9,则2463x x -+的值为 ( ) A 。
18 B.12 C 。
9 D 。
710、 20082009)8()8(-+-能被下列数整除的是 ( ) A 。
3 B 。
5 C 。
7 D 。
9三、解答题11、把下列各式分解因式:⑴18a 3bc -45a 2b 2c 2; ⑵-20a -15ab ;⑶18x n +1-24x n ; ⑷(m +n )(x -y )-(m +n)(x +y);⑸15(a -b)2-3y (b -a); ⑹c b c b a 33)(22+--、 12、计算:⑴39×37-13×81; ⑵29×20、09+72×20、09+13×20、09-20、09×14、13、已知312=-y x ,2=xy ,求 43342y x y x -的值、 【能力提升】14、 已知串联电路的电压U =IR 1+IR 2+IR 3,当R 1=12、9,R 2=18、5,R 3=18、6,I=2、3时,求U 的值、15、 把下列各式分解因式:-ab (a -b)2+a(b -a)2-ac(a -b )2、16、 已知a +b =-4,ab =2,求多项式4a 2b +4a b 2-4a -4b 的值、。
9.5 单项式乘多项式法则的再认识—因式分解(一)一.选择题1.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2 C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣42.将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1 B.a2+a C.a2+a﹣2 D.(a+2)2﹣2(a+2)+13.已知a、b、c 为三正整数,且a、b的最大公因子为12,a、c的最大公因子为18.若a 介于50与100之间,则下列叙述何者正确?()A.8是a的因子,8是b的因子B.8是a的因子,8不是b的因子C.8不是a的因子,8是c的因子D.8不是a的因子,8不是c的因子4.把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2) D.(a﹣2)2﹣45.把8a3﹣8a2+2a进行因式分解,结果正确的是()A.2a(4a2﹣4a+1)B.8a2(a﹣1)C.2a(2a﹣1)2D.2a(2a+1)26.分解因式a2b﹣b3结果正确的是()A.b(a+b)(a﹣b) B.b(a﹣b)2C.b(a2﹣b2)D.b(a+b)27.多项式77x2﹣13x﹣30可因式分解成(7x+a)(bx+c),其中a、b、c均为整数,求a+b+c 之值为何?()A.0 B.10 C.12 D.228.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:州、爱、我、苏、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美 B.苏州游 C.爱我苏州 D.美我苏州9.设681×2019﹣681×2018=a,2015×2016﹣2013×2018=b,,则a,b,c的大小关系是()A.b<c<a B.a<c<b C.b<a<c D.c<b<a10.多项式2x2﹣xy﹣15y2的一个因式为()A.2x﹣5y B.x﹣3y C.x+3y D.x﹣5y11.下列等式从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.2x2+8x﹣1=2x(x+4)﹣1C.a2﹣3a﹣4=(a+1)(a﹣4) D.12.下列因式分解错误的是()A.x2﹣y2=(x+y)(x﹣y) B.x2+y2=(x+y)2C.x2+xy=x(x+y) D.x2+6x+9=(x+3)213.下列各式中,不能用完全平方公式分解的个数为()①x2﹣10x+25;②4a2+4a﹣1;③x2﹣2x﹣1;④;⑤.A.1个B.2个C.3个D.4个14.已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,判断△ABC的形状()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形15.10名运动员参加乒乓球比赛,其中每两名恰好比赛一场,比赛中,没有平局,第一名胜x1局,负y1局;第二名胜x2局,负y2局;...;第十名胜x10局,负y10局,若记M=x12+x22+ (x102)N=y12+y22+…+y102,则()A.M<N B.M>NC.M=N D.M、N的大小关系不确定二.填空题16.分解因式:a3﹣4a2b+4ab2= .17.若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于.18.分解因式:2a(b+c)﹣3(b+c)= .19.分解因式:4x2﹣4xy+y2= .20.分解因式:(m+1)(m﹣9)+8m= .21.分解因式:(2a+b)2﹣(a+2b)2= .22.将m3(x﹣2)+m(2﹣x)分解因式的结果是.三.解答题23.分解因式(1)x3﹣6x2+9x;(2)a2(x﹣y)+4(y﹣x).24.阅读与思考:整式乘法与因式分解是方向相反的变形由(x+p)(x+q)=x2+(p+q)x+pq得,x2+(p+q)x+pq=(x+p)(x+q);利用这个式子可以将某些二次项系数是1的二次三项式分解因式,例如:将式子x2+3x+2分解因式.分析:这个式子的常数项2=1×2,一次项系数3=1+2,所以x2+3x+2=x2+(1+2)x+1×2.解:x2+3x+2=(x+1)(x+2)请仿照上面的方法,解答下列问题(1)分解因式:x2+7x﹣18=启发应用(2)利用因式分解法解方程:x2﹣6x+8=0;(3)填空:若x2+px﹣8可分解为两个一次因式的积,则整数p的所有可能值是.25.“十字相乘法”能把二次三项式分解因式,对于形如ax2+bxy+cy2的关于x,y的二次三项式来说,方法的关键是把x2项系数a分解成两个因数a1,a2的积,即a=a1•a2,把y2项系数c分解成两个因数c1,c2的积,即c=c1•c2,并使a1•c2+a2•c1正好等于xy项的系数b,那么可以直接写成结果:ax2+bxy+cy2=(a1x+c1y)(a2x+c2y).例:分解因式:x2﹣2xy﹣8y2.解:如图1,其中1=1×1,﹣8=(﹣4)×2,而﹣2=1×2+1×(﹣4).∴x2﹣2xy﹣8y2=(x﹣4y)(x+2y)而对于形如ax2+bxy+cy2+dx+ey+f的x,y的二元二次式也可以用十字相乘法来分解,如图2,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k);例:分解因式:x2+2xy﹣3y2+3x+y+2解:如图3,其中1=1×1,﹣3=(﹣1)×3,2=1×2;而2=1×3+1×(﹣1),1=(﹣1)×2+3×1,3=1×2+1×1;∴x2+2xy﹣3y2+3x+y+2=(x﹣y+1)(x+3y+2)请同学们通过阅读上述材料,完成下列问题:(1)分解因式:①6x2﹣17xy+12y2=②2x2﹣xy﹣6y2+2x+17y﹣12=③x2﹣xy﹣6y2+2x﹣6y=(2)若关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,求m的值.26.通过对《因式分解》的学习,我们知道可以用拼图来解释一些多项式的因式分解.如图1中1、2、3号卡片各若干张,如果选取1号、2号、3号卡片分别为1张、2张、3张,你能通过拼图2形象说明a2+3ab+2b2=(a+b)(a+2b)的分解结果吗?请在画出图形.27.把一个自然数所有数位上的数字先平方再求和得到一个新数,叫做第一次运算,再把所得新数所有数位上的数字先平方再求和又将得到一个新数,叫做第二次运算,…如此重复下去,若最终结果为1,我们把具有这种特征的自然数称为“快乐数”.例如:32→32+22=13→12+32=10→12+02=1,70→72+02=49→42+92=97→92+72=130→12+32+02=10→12+02=1,所以32和70都是“快乐数”.(1)写出最小的两位“快乐数”;判断19是不是“快乐数”;请证明任意一个“快乐数”经过若干次运算后都不可能得到4;(2)若一个三位“快乐数”经过两次运算后结果为1,把这个三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,求出这个“快乐数”.28.能被3整除的整数具有一些特殊的性质:(1)定义一种能够被3整除的三位数的“F”运算:把的每一个数位上的数字都立方,再相加,得到一个新数.例如=213时,则:21336(23+13+33=36)243(33+63=243).数字111经过三次“F”运算得,经过四次“F”运算得,经过五次“F”运算得,经过2016次“F”运算得.(2)对于一个整数,如果它的各个数位上的数字和可以被3整除,那么这个数就一定能够被3整除,例如,一个四位数,千位上的数字是a,百位上的数字是b,十位上的数字为c,个为上的数字为d,如果a+b+c+d可以被3整除,那么这个四位数就可以被3整除.你会证明这个结论吗?写出你的论证过程(以这个四位数为例即可).29.生活中我们经常用到密码,例如支付宝支付时.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2可以因式分解为(x ﹣1)(x+1)(x+2),当x=29时,x﹣1=28,x+1=30,x+2=31,此时可以得到数字密码283031.(1)根据上述方法,当x=15,y=5时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(2)已知一个直角三角形的周长是24,斜边长为11,其中两条直角边分别为x、y,求出一个由多项式x3y+xy3分解因式后得到的密码(只需一个即可).30.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的.A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.参考答案与试题解析一.选择题1.(2017•静安区一模)下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2 C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣4【分析】各项利用平方差公式及完全平方公式判断即可.【解答】解:A、原式不能分解;B、原式=(x+y)2﹣2=(x+y+)(x+y﹣);C、原式=(x+y)(x﹣y)+4(x+y)=(x+y)(x﹣y+4);D、原式=x2﹣(y﹣2)2=(x+y﹣2)(x﹣y+2),故选A【点评】此题考查了实数范围内分解因式,熟练掌握因式分解的方法是解本题的关键.2.(2016•潍坊)将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1 B.a2+a C.a2+a﹣2 D.(a+2)2﹣2(a+2)+1【分析】先把各个多项式分解因式,即可得出结果.【解答】解:∵a2﹣1=(a+1)(a﹣1),a2+a=a(a+1),a2+a﹣2=(a+2)(a﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,∴结果中不含有因式a+1的是选项C;故选:C.【点评】本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.3.(2016•台湾)已知a、b、c 为三正整数,且a、b的最大公因子为12,a、c的最大公因子为18.若a介于50与100之间,则下列叙述何者正确?()A.8是a的因子,8是b的因子B.8是a的因子,8不是b的因子C.8不是a的因子,8是c的因子D.8不是a的因子,8不是c的因子【分析】根据a、b的最大公因子为12,a、c的最大公因子为18,得到a为12与18的公倍数,再由a的范围确定出a的值,进而表示出b,即可作出判断.【解答】解:∵(a,b)=12,(a,c)=18,∴a为12与18的公倍数,又[12,18]=36,且a介于50与100之间,∴a=36×2=72,即8是a的因子,∵(a,b)=12,∴设b=12×m,其中m为正整数,又a=72=12×6,∴m和6互质,即8不是b的因子.故选B【点评】此题考查了公因式,弄清公因式与公倍数的定义是解本题的关键.4.(2016•自贡)把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2) D.(a﹣2)2﹣4【分析】直接提取公因式a即可.【解答】解:a2﹣4a=a(a﹣4),故选:A.【点评】此题主要考查了提公因式法分解因式,关键是掌握找公因式的方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.5.(2016•聊城)把8a3﹣8a2+2a进行因式分解,结果正确的是()A.2a(4a2﹣4a+1)B.8a2(a﹣1)C.2a(2a﹣1)2D.2a(2a+1)2【分析】首先提取公因式2a,进而利用完全平方公式分解因式即可.【解答】解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2.故选:C.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.6.(2016•梅州)分解因式a2b﹣b3结果正确的是()A.b(a+b)(a﹣b) B.b(a﹣b)2C.b(a2﹣b2)D.b(a+b)2【分析】直接提取公因式b,进而利用平方差公式分解因式得出答案.【解答】解:a2b﹣b3=b(a2﹣b2)=b(a+b)(a﹣b).故选:A.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用平方差公式是解题关键.7.(2016•台湾)多项式77x2﹣13x﹣30可因式分解成(7x+a)(bx+c),其中a、b、c均为整数,求a+b+c之值为何?()A.0 B.10 C.12 D.22【分析】首先利用十字交乘法将77x2﹣13x﹣30因式分解,继而求得a,b,c的值.【解答】解:利用十字交乘法将77x2﹣13x﹣30因式分解,可得:77x2﹣13x﹣30=(7x﹣5)(11x+6).∴a=﹣5,b=11,c=6,则a+b+c=(﹣5)+11+6=12.故选C.【点评】此题考查了十字相乘法分解因式的知识.注意ax2+bx+c(a≠0)型的式子的因式分解:这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2).8.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:州、爱、我、苏、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美 B.苏州游 C.爱我苏州 D.美我苏州【分析】对(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,即可得到结论.【解答】解:∵(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),∵x﹣y,x+y,a+b,a﹣b四个代数式分别对应爱、我,苏,州,∴结果呈现的密码信息可能是“爱我苏州”,故选C.【点评】本题考查了公式法的因式分解运用,熟练掌握因式分解的方法是解本题的关键.9.(2016•厦门)设681×2019﹣681×2018=a,2015×2016﹣2013×2018=b,,则a,b,c的大小关系是()A.b<c<a B.a<c<b C.b<a<c D.c<b<a【分析】根据乘法分配律可求a,将b变形为2015×2016﹣(2015﹣2)×(2016+2),再注意整体思想进行计算,根据提取公因式、平方差公式和算术平方根可求c,再比较大小即可求解.【解答】解:∵a=681×2019﹣681×2018=681×(2019﹣2018)=681×1=681,b=2015×2016﹣2013×2018=2015×2016﹣(2015﹣2)×(2016+2)=2015×2016﹣2015×2016﹣2×2015+2×2016+2×2=﹣4030+4032+4=6,c=====<681,∴b<c<a.故选:A.【点评】本题考查了因式分解的应用,熟记乘法分配律、平方差公式的结构特点是解题的关键.注意整体思想的运用.10.多项式2x2﹣xy﹣15y2的一个因式为()A.2x﹣5y B.x﹣3y C.x+3y D.x﹣5y【分析】直接利用十字相乘法分解因式得出即可.【解答】解:2x2﹣xy﹣15y2=(2x+5y)(x﹣3y).故选:B.【点评】此题主要考查了十字相乘法分解因式,熟练应用十字相乘法分解因式是解题关键.11.下列等式从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.2x2+8x﹣1=2x(x+4)﹣1C.a2﹣3a﹣4=(a+1)(a﹣4)D.【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【解答】解:A、是单项式乘单项式的逆运算,不符合题意;B、右边结果不是积的形式,不符合题意;C、a2﹣3a﹣4=(a+1)(a﹣4),符合题意;D、右边不是几个整式的积的形式,不符合题意.故选C.【点评】本题考查了因式分解的意义.这类问题的关键在于能否正确应用分解因式的定义来判断;同时还要注意变形是否正确.12.下列因式分解错误的是()A.x2﹣y2=(x+y)(x﹣y)B.x2+y2=(x+y)2C.x2+xy=x(x+y)D.x2+6x+9=(x+3)2【分析】分别利用平方差公式以及完全平方公式和提取公因式法分别分解因式进而判断即可.【解答】解:A、x2﹣y2=(x+y)(x﹣y),正确,不合题意;B、x2+y2,无法分解因式,故此选项正确;C、x2+xy=x(x+y),正确,不合题意;D、x2+6x+9=(x+3)2,正确,不合题意;故选:B.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用公式分解因式是解题关键.13.下列各式中,不能用完全平方公式分解的个数为()①x2﹣10x+25;②4a2+4a﹣1;③x2﹣2x﹣1;④;⑤.A.1个B.2个C.3个D.4个【分析】分别利用完全平方公式分解因式得出即可.【解答】解:①x2﹣10x+25=(x﹣5)2,不符合题意;②4a2+4a﹣1不能用完全平方公式分解;③x2﹣2x﹣1不能用完全平方公式分解;④=﹣(m2﹣m+)=﹣(m﹣)2,不符合题意;⑤不能用完全平方公式分解.故选:C.【点评】此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.14.已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,判断△ABC的形状()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【分析】首先把等式的左右两边分解因式,再考虑等式成立的条件,从而判断△ABC的形状.【解答】解:由a2c2﹣b2c2=a4﹣b4,得a4+b2c2﹣a2c2﹣b4=(a4﹣b4)+(b2c2﹣a2c2)=(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=(a2﹣b2)(a2+b2﹣c2)=(a+b)(a﹣b)(a2+b2﹣c2)=0,∵a+b>0,∴a﹣b=0或a2+b2﹣c2=0,即a=b或a2+b2=c2,则△ABC为等腰三角形或直角三角形.故选:D.【点评】本题考查勾股定理的逆定理的应用、分类讨论.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.15.10名运动员参加乒乓球比赛,其中每两名恰好比赛一场,比赛中,没有平局,第一名胜x1局,负y1局;第二名胜x2局,负y2局;...;第十名胜x10局,负y10局,若记M=x12+x22+ (x102)N=y12+y22+…+y102,则()A.M<N B.M>NC.M=N D.M、N的大小关系不确定【分析】根据题意,对M和N作差,然后与零比较大小即可解答本题.【解答】解:由题意可得,x n+y n=9,∴y n=(9﹣x n),∴M﹣N=x12+x22+…+x102﹣(y12+y22+…+y102)=x12+x22+…+x102﹣,=﹣810+18(x1+x2+…+x10),∵10名运动员参加乒乓球比赛,其中每两名恰好比赛一场,比赛中,没有平局,x1+x2+…+x10=45,∴﹣810+18(x1+x2+…+x10)=﹣810+18×45=﹣810+810=0,∴M=N,故选C.【点评】本题考查因式分解的应用,解题的关键是明确题意,找出所求问题需要的条件.二.填空题16.分解因式:a3﹣4a2b+4ab2= a(a﹣2b)2.【分析】首先提公因式a,然后利用完全平方公式即可分解.【解答】解:原式=a(a2﹣4ab+4b2)=a(a﹣2b)2.故答案是:a(a﹣2b)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.17.(2016•黔南州)若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于﹣2 .【分析】首先提取公因式ab,进而将已知代入求出即可.【解答】解:∵ab=2,a﹣b=﹣1,∴a2b﹣ab2=ab(a﹣b)=2×(﹣1)=﹣2.故答案为:﹣2.【点评】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.18.(2016•南京)分解因式:2a(b+c)﹣3(b+c)= (b+c)(2a﹣3).【分析】直接提取公因式b+c即可.【解答】解:原式=(b+c)(2a﹣3),故答案为:(b+c)(2a﹣3).【点评】此题主要考查了提公因式法分解因式,关键是正确找出公因式.19.(2016•赤峰)分解因式:4x2﹣4xy+y2= (2x﹣y)2.【分析】符合完全平方公式的特点:两项平方项,另一项为两底数积的2倍,直接利用完全平方公式分解因式即可.【解答】解:4x2﹣4xy+y2,=(2x)2﹣2×2x•y+y2,=(2x﹣y)2.【点评】本题考查运用完全平方公式分解因式,熟练掌握公式结构特点是解题的关键.20.(2016•荆门)分解因式:(m+1)(m﹣9)+8m= (m+3)(m﹣3).【分析】先利用多项式的乘法运算法则展开,合并同类项后再利用平方差公式分解因式即可.【解答】解:(m+1)(m﹣9)+8m,=m2﹣9m+m﹣9+8m,=m2﹣9,=(m+3)(m﹣3).故答案为:(m+3)(m﹣3).【点评】本题考查了利用公式法分解因式,先利用多项式的乘法运算法则展开整理成一般多项式是解题的关键.21.(2016•威海)分解因式:(2a+b)2﹣(a+2b)2= 3(a+b)(a﹣b).【分析】原式利用平方差公式分解即可.【解答】解:原式=(2a+b+a+2b)(2a+b﹣a﹣2b)=3(a+b)(a﹣b).故答案为:3(a+b)(a﹣b).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.22.(2016•贺州)将m3(x﹣2)+m(2﹣x)分解因式的结果是m(x﹣2)(m﹣1)(m+1).【分析】先提公因式,再利用平方差公式进行因式分解即可.【解答】解:原式=m(x﹣2)(m2﹣1)=m(x﹣2)(m﹣1)(m+1).故答案为:m(x﹣2)(m﹣1)(m+1).【点评】本题考查的是多项式的因式分解,掌握提公因式法和平方差公式是解题的关键.三.解答题23.分解因式(1)x3﹣6x2+9x;(2)a2(x﹣y)+4(y﹣x).【分析】(1)原式提取x,再利用完全平方公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=x(x2﹣6x+9)=x(x﹣3)2;(2)原式=a2(x﹣y)﹣4(x﹣y)=(x﹣y)(a2﹣4)=(x﹣y)(a+2)(a﹣2).【点评】此题考查了因式分解﹣分组分解法,以及提公因式法,熟练掌握因式分解的方法是解本题的关键.24.阅读与思考:整式乘法与因式分解是方向相反的变形由(x+p)(x+q)=x2+(p+q)x+pq得,x2+(p+q)x+pq=(x+p)(x+q);利用这个式子可以将某些二次项系数是1的二次三项式分解因式,例如:将式子x2+3x+2分解因式.分析:这个式子的常数项2=1×2,一次项系数3=1+2,所以x2+3x+2=x2+(1+2)x+1×2.解:x2+3x+2=(x+1)(x+2)请仿照上面的方法,解答下列问题(1)分解因式:x2+7x﹣18= (x﹣2)(x+9)启发应用(2)利用因式分解法解方程:x2﹣6x+8=0;(3)填空:若x2+px﹣8可分解为两个一次因式的积,则整数p的所有可能值是7或﹣7或2或﹣2 .【分析】(1)原式利用题中的方法分解即可;(2)方程利用因式分解法求出解即可;(3)找出所求满足题意p的值即可.【解答】解:(1)原式=(x﹣2)(x+9);(2)方程分解得:(x﹣2)(x﹣4)=0,可得x﹣2=0或x﹣4=0,解得:x=2或x=4;(3)﹣8=﹣1×8;﹣8=﹣8×1;﹣8=﹣2×4;﹣8=﹣4×2,则p的可能值为﹣1+8=7;﹣8+1=﹣7;﹣2+4=2;﹣4+2=﹣2.故答案为:(1)(x﹣2)(x+9);(3)7或﹣7或2或﹣2.【点评】此题考查了因式分解﹣十字相乘法,弄清题中的分解因式方法是解本题的关键.25.“十字相乘法”能把二次三项式分解因式,对于形如ax2+bxy+cy2的关于x,y的二次三项式来说,方法的关键是把x2项系数a分解成两个因数a1,a2的积,即a=a1•a2,把y2项系数c分解成两个因数c1,c2的积,即c=c1•c2,并使a1•c2+a2•c1正好等于xy项的系数b,那么可以直接写成结果:ax2+bxy+cy2=(a1x+c1y)(a2x+c2y).例:分解因式:x2﹣2xy﹣8y2.解:如图1,其中1=1×1,﹣8=(﹣4)×2,而﹣2=1×2+1×(﹣4).∴x2﹣2xy﹣8y2=(x﹣4y)(x+2y)而对于形如ax2+bxy+cy2+dx+ey+f的x,y的二元二次式也可以用十字相乘法来分解,如图2,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k);例:分解因式:x2+2xy﹣3y2+3x+y+2解:如图3,其中1=1×1,﹣3=(﹣1)×3,2=1×2;而2=1×3+1×(﹣1),1=(﹣1)×2+3×1,3=1×2+1×1;∴x2+2xy﹣3y2+3x+y+2=(x﹣y+1)(x+3y+2)请同学们通过阅读上述材料,完成下列问题:(1)分解因式:①6x2﹣17xy+12y2= (3x﹣4y)(2x﹣3y)②2x2﹣xy﹣6y2+2x+17y﹣12= (x﹣2y+3)(2x+3y﹣4)③x2﹣xy﹣6y2+2x﹣6y= (x﹣3y)(x+2y+2)(2)若关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,求m的值.【分析】(1)①直接用十字相乘法分解因式;②把某个字母看成常数用十字相乘法分解即可;③同②的方法分解;(2)用十字相乘法把能分解的集中情况全部列出求出m值.【解答】解:(1)①6x2﹣17xy+12y2=(3x﹣4y)(2x﹣3y),②2x2﹣xy﹣6y2+2x+17y﹣12=(x﹣2y+3)(2x+3y﹣4),③x2﹣xy﹣6y2+2x﹣6y=(x﹣3y)(x+2y+2),故答案为:①(3x﹣4y)(2x﹣3y),②(x﹣2y+3)(2x+3y﹣4),③(x﹣3y)(x+2y+2),(2)如图,m=3×9+(﹣8)×(﹣2)=43或m=9×(﹣8)+3×(﹣2)=﹣78.【点评】此题是因式分解﹣十字相乘法,主要考查了二元二次多项式的分解因式的方法,解本题的关键是选好那个字母当做常数对待,再用十字相乘法分解.26.通过对《因式分解》的学习,我们知道可以用拼图来解释一些多项式的因式分解.如图1中1、2、3号卡片各若干张,如果选取1号、2号、3号卡片分别为1张、2张、3张,你能通过拼图2形象说明a2+3ab+2b2=(a+b)(a+2b)的分解结果吗?请在画出图形.【分析】根据题意可知:a2+3ab+2b2=(a+b)(a+2b),可以看作长为a+2b,宽为a+b的长方形面积,由此画出图形.【解答】解:如图所示:∵大长方形的面积=a2+3ab+2b2,大长方形的面积=(a+b)(a+2b),∴a2+3ab+2b2=(a+b)(a+2b).【点评】此题主要考查因式分解的运用,注意利用已知的等式转化为图形解决问题,这是数形结合思想的运用.27.把一个自然数所有数位上的数字先平方再求和得到一个新数,叫做第一次运算,再把所得新数所有数位上的数字先平方再求和又将得到一个新数,叫做第二次运算,…如此重复下去,若最终结果为1,我们把具有这种特征的自然数称为“快乐数”.例如:32→32+22=13→12+32=10→12+02=1,70→72+02=49→42+92=97→92+72=130→12+32+02=10→12+02=1,所以32和70都是“快乐数”.(1)写出最小的两位“快乐数”;判断19是不是“快乐数”;请证明任意一个“快乐数”经过若干次运算后都不可能得到4;(2)若一个三位“快乐数”经过两次运算后结果为1,把这个三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,求出这个“快乐数”.【分析】(1)根据“快乐数”的定义计算即可;(2)设三位“快乐数”为100a+10b+c,根据“快乐数”的定义计算.【解答】解:(1)∵12+02=1,∴最小的两位“快乐数”10,∵19→12+92=82→82+22=68→62+82=100→12+02+02=1,∴19是快乐数;证明:∵4→37→58=68→89→125→30→9→81→65→61→37,37出现两次,所以后面将重复出现,永远不会出现1,所以任意一个“快乐数”经过若干次运算后都不可能得到4.(2)设三位“快乐数”为100a+10b+c,由题意,经过两次运算后结果为1,所以第一次运算后结果一定是10或者100,则a2+b2+c2=10或100,∵a、b、c为整数,且a≠0,∴当a2+b2+c2=10时,12+32+02=10,①当a=1,b=3或0,c=0或3时,三位“快乐数”为130,103,②当a=2时,无解;③当a=3,b=1或0,c=0或1时,三位“快乐数”为310,301,同理当a2+b2+c2=100时,62+82+02=100,所以三位“快乐数”有680,608,806,860.综上一共有130,103,310,301,680,608,806,860八个,又因为三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,所以只有310和860满足已知条件.【点评】本题考查的是因式分解的定义、“快乐数”的定义,正确理解“快乐数”的定义、掌握分情况讨论思想是解题的关键.28.能被3整除的整数具有一些特殊的性质:(1)定义一种能够被3整除的三位数的“F”运算:把的每一个数位上的数字都立方,再相加,得到一个新数.例如=213时,则:21336(23+13+33=36)243(33+63=243).数字111经过三次“F”运算得351 ,经过四次“F”运算得153 ,经过五次“F”运算得153 ,经过2016次“F”运算得153 .(2)对于一个整数,如果它的各个数位上的数字和可以被3整除,那么这个数就一定能够被3整除,例如,一个四位数,千位上的数字是a,百位上的数字是b,十位上的数字为c,个为上的数字为d,如果a+b+c+d可以被3整除,那么这个四位数就可以被3整除.你会证明这个结论吗?写出你的论证过程(以这个四位数为例即可).【分析】(1)根据“F运算”的定义得到111经过三次“F运算”的结果,经过四次“F运算”的结果,经过五次“F运算”的结果,经过2016次“F运算”的结果即可;(2)首先根据题意可设a+b+c+d=3e,则此四位数1000a+100b+10c+d可表示为999a+99b+9c+a+b+c+d,即3(333a+33b+3c)+3e,所以可得这个四位数就可以被3整除.【解答】(1)解:1113(13+13+13=3)27(33=27)351(23+73=351)153(33+53+13=153)153(13+53+33=153)153(33+53+13=153).故数字111经过三次“F”运算得351,经过四次“F”运算得153,经过五次“F”运算得153,经过2016次“F”运算得 153.(2)证明:设a+b+c+d=3e(e为整数),这个四位数可以写为:1000a+100b+10c+d,∴1000a+100b+10c+d=999a+99b+9c+a+b+c+d=3(333a+33b+3c)+3e,∴=333a+33b+3c+e,∵333a+33b+3c+e是整数,∴1000a+100b+10c+d可以被3整除.故答案为:351,153,153,153.【点评】本题考查了规律型:数字的变化类:认真观察、仔细思考,善用联想是解决这类问题的方法.同时考查了数的整除性问题.注意四位数的表示方法与整体思想的应用.29.生活中我们经常用到密码,例如支付宝支付时.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2可以因式分解为(x ﹣1)(x+1)(x+2),当x=29时,x﹣1=28,x+1=30,x+2=31,此时可以得到数字密码283031.(1)根据上述方法,当x=15,y=5时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(2)已知一个直角三角形的周长是24,斜边长为11,其中两条直角边分别为x、y,求出一个由多项式x3y+xy3分解因式后得到的密码(只需一个即可).【分析】(1)先分解因式得到x3﹣xy2=x(x﹣y)(x+y),然后利用题中设计密码的方法写出所有可能的密码;(2)利用勾股定理和周长得到x+y=13,x2+y2=121,再利用完全平方公式可计算出xy=24,然后与(1)小题的解决方法一样.【解答】解:(1)x3﹣xy2=x(x﹣y)(x+y),当x=15,y=5时,x﹣y=10,x+y=20,可得数字密码是151020;也可以是152010;101520;102015,201510,201015;(2)由题意得:解得xy=24,而x3y+xy3=xy(x2+y2),所以可得数字密码为24121.【点评】本题考查了因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题;考查了用类比的方法解决问题;(2)小题中计算出xy 的值为解决问题的关键.30.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的 C .A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?不彻底.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果(x﹣2)4.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.【分析】(1)根据分解因式的过程直接得出答案;(2)该同学因式分解的结果不彻底,进而再次分解因式得出即可;(3)将(x2﹣2x)看作整体进而分解因式即可.【解答】解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C;(2)该同学因式分解的结果不彻底,原式=(x2﹣4x+4)2=(x﹣2)4;故答案为:不彻底,(x﹣2)421。
9.5单项式乘多项式的再认识-因式分解(一)制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日一、填空题1. 多项式24ab 2-32a 2b 提出公因式是. 2. )2(_______)(63322+-=+-a a b ab b a .3. 当x=x -4x=____ _____.4. 假设m 、n 互为相反数,那么5m +5n -5=__________.5. 分解因式:=---22)()(n m y n m x . 二、选择题6. 以下式子由左到右的变形中,属于因式分解的是〔 〕A .22244)2(y xy x y x ++=+ B.3)1(4222+-=+-x y xC. )1)(13(1232-+=--x x x xD.mc mb ma c b a m ++=++)(7.多项式-5mx 3+25mx 2-10mx 各项的公因式是2 B.-5mx3 C. mx D.-5mx8.在以下多项式中,没有公因式可提取的是22+3x 2y 2346x x -+的值是9,那么2463x x -+的值是 A .18 B .12 C .9 D .710. 20082009)8()8(-+-能被以下数整除的是〔 〕 A .3B .5C .7D .9 三、解答题11.把以下各式分解因式:⑴18a 3bc -45a 2b 2c 2; ⑵-20a -15ab ;⑶18xn +1-24x n ; ⑷〔m +n 〕〔x -y 〕-〔m +n 〕〔x +y 〕;⑸15〔a -b 〕2-3y 〔b -a 〕; ⑹c b c b a 33)(22+--.12.计算:⑴39×37-13×81; ⑵29×+72×+13×-×14.13.312=-y x ,2=xy ,求 43342y x y x -的值.14. 串联电路的电压U =IR 1+IR 2+IR 3,当R 1=,R 2=18.5,R 3时,求U 的值.15. 把以下各式分解因式:-ab〔a-b〕2+a〔b-a〕2-ac〔a-b〕2.16. a+b=-4,ab=2,求多项式4a2b+4ab2-4a-4b的值.制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日。
9.5单项式乘多项式的再认识-因式分解(一)
一、学习目标
认识公因式,利用单项式乘多项式法则因式分解。
二、重点难点
用提公因式法因式分解。
三、自学交流
1、问题:计算375×2.8+375×4.9+375×2.3
2、(1)讨论上题的两种计算方法,分别提出各自的依据,
然后比较哪种方法简便. (2)类似地,ab+ac+ad=
3、了解以下知识点 (1)因式分解;
(2)因式分解与整式乘法的关系;
(3)提公因式法;
四、展示点评
例1:把下列各式分解因式:
⑴ 6a 3b – 9a 2b 2c ;
⑵6a 3b -9a 2b 2c +3a 2b
(3) -8a 2b 2+4a 2b -2a b
例2:把下式分解因式:()()y x b y x a +-+23
例3:分解因式:(1) ()()a b y b a x -+- (2) ()()23126m n n m ---
五、达标检测
下列各式由左边到右边的变形,哪些是因式分解,哪些不是?
8a3bx+12a2b2y
(1)a b +a c +d =a (b +c )+d ; (2)a 2-1=(a +1)(a -1);
(3)(a +1)(a -1)=a 2-1.
1. (1)将多项式-5a 2+3a b 提出公因式-a 后,另一个因式是 ;
(2)把多项式4(a +b )-2a (a +b )分解因式,应提出公因式 .
2. 把下列各式分解因式;
(1)4x 2-12x 3;
(2)y xy y x 542-+-.
3. 计算:2.37×52.5+0.63×52.5-4×52.5;
4. 把下列各式分解因式:
(1)()()x y x y x x -+-632;
(2)()()223155a b a b a a ---;
六、反馈反思。