光电效应
- 格式:doc
- 大小:55.00 KB
- 文档页数:3
一.对光电效应实验规律,方程以及图像的考查1.光电效应现象光电效应:在光的照射下金属中的电子从金属表面逸出的现象,叫做光电效应,发射出来的电子叫做.2.光电效应规律(1)每种金属都有一个.(2)光子的最大初动能与入射光的强度无关,只随入射光的频率增大而增大.(3)光照射到金属表面时,光电子的发射几乎是的.(4)光电流的强度与入射光的成正比.(1)光子说:空间传播的光的能量是不连续的,是一份一份的,每一份叫做一个光子.光子的能量为ε=hν,其中h是普朗克常量,其值为6.63×10-34 J·s.(2)光电效应方程:.其中hν为入射光的能量,E k为光电子的最大初动能,W0是金属的逸出功.4.遏止电压与截止频率(1)遏止电压:使光电流减小到零的反向电压U c.(2)截止频率:能使某种金属发生光电效应的频率叫做该种金属的截止频率(又叫极限频率).不同的金属对应着不同的极限频率.(3)逸出功:电子从金属中逸出所需做功的,叫做该金属的逸出功.1.1905年是爱因斯坦的“奇迹”之年,这一年他先后发表了三篇具有划时代意义的论文,其中关于光量子的理论成功的解释了光电效应现象.关于光电效应,下列说法正确的是(AD )A.当入射光的频率低于极限频率时,不能发生光电效应B.光电子的最大初动能与入射光的频率成正比C.光电子的最大初动能与入射光的强度成正比D.某单色光照射一金属时不发生光电效应,改用波长较短的光照射该金属可能发生光电效应2.用光照射某种金属,有光电子从金属表面逸出,如果光的频率不变,而减弱光的强度则A.逸出的光电子数减少,光电子的最大初动能不变B.逸出的光电子数减少,光电子的最大初动能减小C.逸出的光电子数不变,光电子的最大初动能减小D.光的强度减弱到某一数值,就没有光电子逸出了3.关于光电效应的规律,下列说法中正确的是(D)A.只有入射光的波长大于该金属的极限波长,光电效应才能产生B.光电子的最大初动能跟入射光强度成正比C.发生光电效应的反应时间一般都大于10-7 sD.发生光电效应时,单位时间内从金属内逸出的光电子数目与入射光强度成正比4.如图所示是用光照射某种金属时逸出的光电子的最大初动能随入射光频率的变化图线(直线与横轴的交点坐标为4.27,与纵轴交点坐标为0.5).由图可知(AC)A.该金属的截止频率为4.27×1014 HzB.该金属的截止频率为5.5×1014 HzC.该图线的斜率表示普朗克常量D.该金属的逸出功为0.5 eV5.在光电效应实验中,某金属的截止频率相应的波长为λ0,该金属的逸出功为______.若用波长为λ(λ<λ0)的单色光做该实验,则其遏止电压为______.已知电子的电荷量、真空中的光速和普朗克常量分别为e、c和h.答案hcλ0hc(λ0-λ)eλ0λ6.小明用金属铷为阴极的光电管,观测光电效应现象,实验装置示意图如图4甲所示.已知普朗克常量h=6.63×10-34 J·s,结果保留三位有效数字.(1)图甲中电极A为光电管的______(填“阴极”或“阳极”);(2)实验中测得铷的遏止电压U c与入射光频率ν之间的关系如图乙所示,则铷的截止频率νc=____Hz,逸出功W0=________J;(3)如果实验中入射光的频率ν=7.00×1014Hz,则产生的光电子的最大初动能E k=________J.答案:(1)阳极(2)5.15×1014(5.10×1014~5.20×1014均可) 3.41×10-19(3.38×10-19~3.45×10-19均可)(3)1.23×10-19(1.19×10-19~1.26×10-19均可)7. 研究光电效应的电路如图5所示.用频率相同、强度不同的光分别照射密封真空管的钠极板(阴极K),钠极板发射出的光电子被阳极A吸收,在电路中形成光电流.下列光电流I 与A、K之间的电压U AK的关系图象中,正确的是___C_____.8.当用一束紫外线照射锌板时,产生了光电效应,这时 ( C )A.锌板带负电B.有正离子从锌板逸出C.有电子从锌板逸出D.锌板会吸附空气中的正离子9. 以往我们认识的光电效应是单光子光电效应,即一个电子在极短时间内只能吸收到一个 光子而从金属表面逸出.强激光的出现丰富了人们对于光电效应的认识,用强激光照射金属, 由于其光子密度极大,一个电子在极短时间内吸收多个光子成为可能,从而形成多光子光电效应,这已被实验证实.光电效应实验装置示意图如图7所示.用频率为ν的普通光源照射阴极K ,没有发生光电效应,换用同样频率ν的强激光照射阴极K ,则发生了光电效应;此时,若加上反向电压U ,即将阴极K 接电源正极,阳极A 接电源负极,在K 、A 之间就形成了使光电子减速的电场.逐渐增大U ,光电流会逐渐减小;当光电流恰好减小到零时,所加反向电压U可能是下列的(其中W 为逸出功,h 为普朗克常量,e 为电子电量)( B )A.U =hνe -W eB.U =2hνe -W eC.U =2hν-WD.U =5hν2e -W e10. 如图8所示,用a 、b 两种不同频率的光分别照射同一金属板,发现当a 光照射时验电器的指针偏转,b 光照射时指针未偏转,以下说法正确的是( D )A.增大a 光的强度,验电器的指针偏角一定减小B.a 光照射金属板时验电器的金属小球带负电C.a 光在真空中的速度大于b 光在真空中的速度D.a 光在真空中的波长小于b 光在真空中的波长11.如图所示的实验电路,当用黄光照射光电管中的金属涂层时,毫安表的指针发生了偏转.若将电路中的滑动变阻器的滑片P 向右移动到某一位置时,毫安表的读 数恰好减小到零,此时电压表读数为U .若此时增加黄光照射的强度,则毫安________(选填“有”或“无”)示数.若改用蓝光照射光电管中的金属涂层,则毫安 表________(选填“有”或“无”)示数.答案 无 有12.光电效应实验中,下列表述正确的是( CD )A.光照时间越长光电流越大B.入射光足够强就可以有光电流C.遏止电压与入射光的频率有关D.入射光频率大于极限频率时才能产生光电子13.光电效应的实验结论是:对于某种金属( AD )A.无论光强多强,只要光的频率小于极限频率就不能产生光电效应B.无论光的频率多低,只要光照时间足够长就能产生光电效应C.超过极限频率的入射光强度越弱,所产生的光电子的最大初动能就越小D.超过极限频率的入射光频率越高,所产生的光电子的最大初动能就越大14.入射光照射到某金属表面上发生光电效应,若入射光的强度减弱,而频率保持不变,下列说法中正确的是( D )A.有可能不发生光电效应B.从光照射到金属表面上至发射出光电子之间的时间间隔将明显增加C.逸出的光电子的最大初动能将减小D.单位时间内从金属表面逸出的光电子数目将减少15.对光电效应的理解正确的是 ( BD )A.金属钠的每个电子可以吸收一个或一个以上的光子,当它积累的动能足够大时,就能逸出金属B.如果入射光子的能量小于金属表面的电子克服原子核的引力而逸出时所需做的最小功,便不能发生光电效应C.发生光电效应时,入射光越强,光子的能量就越大,光电子的最大初动能就越大D.由于不同金属的逸出功是不相同的,因此使不同金属发生光电效应,入射光的最低频率也不同16.如图1是某金属在光的照射下产生的光电子的最大初动能E k 与入射光频率ν的关系图象.由图象可知( ABC )A.该金属的逸出功等于EB.该金属的逸出功等于hνcC.入射光的频率为2νc 时,产生的光电子的最大初动能为ED.入射光的频率为νc 2时,产生的光电子的最大初动能为E 217.用不同频率的紫外线分别照射钨和锌的表面而产生光电效应,可得到光电子的最大初动能E k 随入射光频率ν变化的E k —ν图象.已知钨的逸出功是3.28 eV ,锌的逸出功是3.34 eV ,若将二者的图线画在同一个坐标图中,以实线表示钨,虚线表示锌,如图所示,则正确反映这一过程的图象是 ( A )18.在光电效应实验中,飞飞同学用同一光电管在不同实验条件下得到了三条光电流与电压之间的关系曲线(甲光、乙光、丙光),如图2所示,则可判断出( B )A.甲光的频率大于乙光的频率B.乙光的波长大于丙光的波长C.乙光的频率大于丙光的频率D.甲光对应的光电子最大初动能大于丙光的光电子最大初动能19.如图3所示是光电管的原理图,已知当有波长为λ0的光照到阴极K上时,电路中有光电流,则( B )A.若换用波长为λ1(λ1>λ0)的光照射阴极K时,电路中一定没有光电流B.若换用波长为λ2(λ2<λ0)的光照射阴极K时,电路中一定有光电流C.增加电路中电源电压,电路中光电流一定增大D.若将电源极性反接,电路中一定没有光电流产生12.2009年诺贝尔物理学奖得主威拉德·博伊尔和乔治·史密斯主要成就是发明了电荷耦合器件(CCD)图象传感器.他们的发明利用了爱因斯坦的光电效应原理.如图4所示电路可研究光电效应规律.图中标有A和K的为光电管,其中K为阴极,A为阳极.理想电流计可检测通过光电管的电流,理想电压表用来指示光电管两端的电压.现接通电源,用光子能量为10.5 eV的光照射阴极K,电流计中有示数;若将滑动变阻器的滑片P 缓慢向右滑动,电流计的读数逐渐减小,当滑至某一位置时电流计的读数恰好为零,读出此时电压表的示数为6.0 V;现保持滑片P位置不变,光电管阴极材料的逸出功为______,若增大入射光的强度,电流计的读数______(选填“为零”或“不为零”).答案 4.5 eV为零13.现有a、b两种单色光,其波长关系为λa>λb,用a光照射某种金属时,恰好发生光电效应.则:(1)用b光照射该金属时,________发生光电效应;(填“能”或“不能”)(2)增加a光的强度,释放出光电子的最大初动能________增大.(填“会”或“不会”)答案(1)能(2)不会二、光的波粒二象性,物质波光既具有波动性,又具有粒子性,两者不是孤立的,而是有机的统一体,其表现规律为:(1)个别光子的作用效果往往表现为粒子性;大量光子的作用效果往往表现为波动性.(2)频率越低波动性越显著,越容易看到光的干涉和衍射现象;频率越高粒子性越显著,越不容易看到光的干涉和衍射现象,而贯穿本领越强.(3)光在传播过程中往往表现出波动性;在与物质发生作用时,往往表现为粒子性.1、关于物质的波粒二象性,下列说法中不正确的是(D)A.不仅光子具有波粒二象性,一切运动的微粒都具有波粒二象性B.运动的微观粒子与光子一样,当它们通过一个小孔时,都没有特定的运动轨道C.波动性和粒子性,在宏观现象中是矛盾的、对立的,但在微观高速运动的现象中是统一的D.实物的运动有特定的轨道,所以实物不具有波粒二象性2.用很弱的光做双缝干涉实验,把入射光减弱到可以认为光源和感光胶片之间不可能同时有两个光子存在,如图3所示是不同数量的光子照射到感光胶片上得到的照片.这些照片说明(D)A.光只有粒子性没有波动性B.光只有波动性没有粒子性C.少量光子的运动显示波动性,大量光子的运动显示粒子性D.少量光子的运动显示粒子性,大量光子的运动显示波动性3.下列说法正确的是(C)A.有的光是波,有的光是粒子B.光子与电子是同样的一种粒子C.光的波长越长,其波动性越显著;波长越短,其粒子性越显著D.γ射线具有显著的粒子性,而不具有波动性4.物理学家做了一个有趣的实验:在双缝干涉实验中,在光屏处放上照相底片,若减弱光的强度.使光子只能一个一个地通过狭缝.实验结果表明,如果曝光时间不太长,底片上只能出现一些不规则的点;如果曝光时间足够长,底片上就会出现规则的干涉条纹.对这个实验结果下列认识正确的是(BCD)A.曝光时间不长时,光的能量太小,底片上的条纹看不清楚,故出现不规则的点B.单个光子的运动没有确定的规律C.干涉条纹中明亮的部分是光子到达机会较多的地方D.只有大量光子的行为才表现出波动性。
物理学中的光电效应光电效应是物理学中最基本的现象之一,它被广泛应用于现代技术和科学研究中。
在本文中,我们将深入探讨光电效应的定义、原理和应用。
一、光电效应的定义光电效应指的是,当光线照射到某些物质表面时,该物质表面会释放出电子。
这些电子称为光电子,它们的释放是由光子的能量来驱动的。
光电效应的本质是光的粒子性,即光子是具有一定能量和动量的微观粒子。
光电效应是一个基本的物理现象,它的研究使人们更好地理解了光的本质和量子力学的基本规律。
在实际应用中,光电效应被广泛用于电子学、照相和医学等领域。
二、光电效应的原理光电效应的产生原理与光子的能量和物质内部的电子结构有关。
当光线照射到物质表面时,能量高的光子会使物质表面上的电子吸收光子的能量并跃迁到较高能级的轨道上。
当电子达到足够高的能量时,它们就能够克服束缚在物质内部的力,逃离原子表面成为自由电子。
这些被释放出来的电子称为光电子,它们的动能等于光子能量减去电子与物质表面脱离时需要克服的势能。
光电效应的原理可以通过光电离截面可视化,光电离截面正比于光子能量,即当光子能量大于物质表面的结合能时,就会发生光电效应。
三、光电效应的应用光电效应在现代科技和工程领域有着广泛的应用。
以下列举了几个实际的例子:1. 光电池光电池利用光电效应将太阳光转化为电能,是一个环保节能的新型能源。
太阳能电池就是应用了光电效应的光电池的一种。
2. 光电传感器光电传感器是一种能够将光电效应应用于传感器技术中的传感器。
它可以将光信号转化为电信号,从而实现各种物理量的测量。
例如,照度传感器就是一种可以通过光电效应测量光强度的传感器。
3. 照相机照相机也是一种应用了光电效应的技术。
当光线进入相机时,会穿过透镜并照射到相机内部的感光器上。
感光器会将光线转化为电信号,并将其保存在记忆卡中。
4. 医学应用光电效应还被应用于医学领域。
例如,拍摄X光照片时,X光线照射到人体内部的某些物质上,这些物质中的电子就会受到光的作用并释放出电子。
式中(1/2)mv^2是脱出物体的光电子的初动能。
金属内部有大量的自由电子,这是金属的特征,因而对于金属来说,I项可以略去,爱因斯坦方程成为hυ=(1/2)mv^2+W 假如hυ<W,电子就不能脱出金属的表面。
对于一定的金属,产生光电效应的最小光频率(极限频率) u0。
由hυ0=W确定。
相应的极限波长为λ0=C/υ0=hc/W。
发光强度增加使照射到物体上的光子的数量增加,因而发射的光电子数和照射光的强度成正比。
算式在以爱因斯坦方式量化分析光电效应时使用以下算式:光子能量= 移出一个电子所需的能量+ 被发射的电子的动能代数形式: hf=φ+Em φ=hf0 Em=(1/2)mv^2 其中h是普朗克常数,h = 6.63 ×10^-34 J·s,f是入射光子的频率,φ是功函数,从原子键结中移出一个电子所需的最小能量,f0是光电效应发生的阀值频率,Em是被射出的电子的最大动能, m是被发射电子的静止质量,v是被发射电子的速度注:如果光子的能量(hf)不大于功函数(φ),就不会有电子射出。
功函数有时又以W标记。
这个算式与观察不符时(即没有射出电子或电子动能小于预期),可能是因为系统没有完全的效率,某些能量变成热能或辐射而失去了。
爱因斯坦因成功解释了光电效应而获得1921年诺贝尔物理学奖。
基于外光电效应的电子元件有光电管、光电倍增管。
光电倍增管能将一次次闪光转换成一个个放大了的电脉冲,然后送到电子线路去,记录下来。
内光电效应当光照在物体上,使物体的电导率发生变化,或产生光生电动势的现象。
分为光电导效应和光生伏特效应(光伏效应)。
单光子光电效应我们常说的光电效应为单光子光电效应,每个电子同一时间只吸收一个光子。
多光子光电效应当单位体积内同时相互作用的能量子的数目大到使得发射光的能量子可以从几个入射能量子中取得能量,这就是多光子光电效应1931年,M.Göpper-Mayer用量子力学计算了辐射与原子系统的相互作用的问题,预言了在足够高的光强下,多光子吸收即多光子光电效应是存在的。
名词解释光电效应
光电效应,又称光伏效应或光生伏打效应。
是指物质受到外界的照射后能产生电流的现象。
在一定条件下,只要有足够强度的光源照射,就会发出与入射光波长相同、频率相同而振幅相等的光子。
这种由外界光源的照射引起的感应电动势称为光电效应。
如果光子的数目足够多,那么,这些光子将组成很大的电压,在这个电场中,不论加在两点之间还是之上,都可以看作无穷远处为零的点电荷,它们在空间的运动都遵循库仑定律。
如果把光电效应的应用范围限制在直线传播方向,则称为光的衍射效应。
问题:光电效应名词解释。
光电效应
在近代物理学中,光电效应验证了光的量子性。
1905年爱因斯坦在普朗克量子假设的基础上圆满地解释了光电效应,约十年后密立根以精确的光电效应实验证实了爱因斯坦的光电效应方程,并测定了普朗克常数。
今天光电效应已经广泛地应用到各个科技领域。
利用光电效应制成的光电器件如光电管、光电池、光电倍增管等已成为生产和科技领域中不可缺少的器件。
一. 实验目的
1. 了解光电效应的基本规律,加深对光量子性的理解。
2. 了解光电管的结构和性能,并测定其基本特性曲线。
3. 验证爱因斯坦光电效应方程,测定普朗克常数。
二. 实验仪器
光电管、光源、滤色片、微电流计、电压表、滑线电阻、直流电源、开关和导线等。
三. 实验原理
1. 光电效应及其规律
在一定频率的光的照射下,电子从金属(或金属化合物)表面逸出的现象称为光电效应,从金属(或金属化合物)表面逸出的电子称为光电子。
研究光电效应的电路图如图3-19-1所示。
实验表明光电效应有如下规律:
(1)只有当入射光频率大于某一定值时,才会有光电子产生,若光的频率低于这个值,则无论光强度多大,照射时间多长,都不会有光电子产生。
即光电效应存在一个频率阈值υ0,称为截止频率。
(2)光电子的多少与光的强度有关,即饱和光电流I H 与入射光的光强成正比。
如图3-19-2所示,I ~U 曲线称为光电管伏安特性曲线,曲线(2)的光强是曲线(1)光强的一半。
(3) 光电子的动能(2
21mv )与入射光的频率υ成正比,
与光强无关。
实验中反映初动能大小的是遏止电位差U a 。
在
图3-19-1电路中,将光电管阳极与阴极连线对调,即在光
电管两极间加反向电压,则K 、A 间的电场将对阴极逸出的
电子起减速作用,若反向电压增加,则光电流I 减小,当反
向电压达到U a 时,光电流为零(如图3-19-2所示),此时电
场力对光电子所作的功eU a 等于光电子的初动能2
21mv ,即
2
21mv eU a ,U a 称为遏止电位差。
以不同频率υ的光照射
时,U a ~υ关系曲线为一直线,如图3-19-3所示。
光电效应的这些实验规律,用光的电磁波理论不能作出圆满的
解释。
1905年爱因斯坦提出了一个著名的理论——光量子理论,成功
地解释了光电效应现象。
他认为一束频率为υ的光是一束以光
速c 运动的、具有能量hv 的粒子流。
这些粒子称为光量子,简
称光子。
h 为普朗克常数。
图3-19-1 光电效应实验电路图
按照光子论和能量守恒定律,爱因斯坦提出了一个著名的方程: A h mv -=ν221 (3-19-1)
金属中自由电子,从入射光中吸收一个光子的能量hv ,克服电子从金
属表面逸出时所需的逸出功A 后,逸出表面,具有初动能221mv 。
式(3-19-1)即为爱因斯坦光电效应方程,由此方程可圆满的解释光
电效应的实验规律。
同样,由式(3-19-1)可知,要能够产生光电效应,需221mv ≥0,即
h υ-A ≥0,υ≥h A ,而h A 就是截止频率υ0,h A =0υ。
实验时,测出不同频率υ的光入射时的遏止电位差U a 后,作U a ~υ曲线,U a 与υ成线性关系:
h mv eU a ==
221υ-A
即: e h U a =(υ-υ0) (3-19-2) 从直线斜率可求出普朗克常数h ,由直线的截距可求得截止频率υ0。
式(3-19-2)中的e 为电子的电量。
2. 光电管
光电管是利用光电效应制成的能将光信号转化为电信号的光电器件。
在一个
真空的玻璃泡内装有两个电极,一个是阳极A ,另一个是光电阴极K ,如图
3-19-4所示。
光电阴极是附在玻璃泡内壁的一个薄层(有的附在璃泡内的半
圆形金属片的内侧),此薄层由具有表面光电效应的材料制成(常用锑铯金属
化和物)。
在阴极的前面,装有金属丝制成的单根(或圈成一个小环)的阳极。
阴极受到光线照射的时候便发射电子,电子在外场的作用下向阳极运动形成
光电流。
除真空式光电管以外,还有一种充气式的光电管。
它的构造和真空式的完全
相同,所不同的仅仅在真空的玻璃泡内充入了少量的惰性气体,如氩气等。
当光电阴极被光线照射时便发射电子,发射的电子在趋向阳极的途中撞击惰
性气体的分子,使气体游离成为正离子、负离子以及电子。
撞击出的负离子、
电子以及阴极发射的电子共同被阳极吸收,因此阳极的总电流便增大了,故充气式光电管比真空式光电管有较高的灵敏度。
(1)光电管的伏安特性
当以一定频率和强度的光照射光电管时,光电流随两极间电压变化的特性称之为光电管的伏安特性,其曲线如图3-19-2所示。
图中AB 段表示光电流随阳极电压的增加而增大,BC 段表示当阳极电压的增大到某一值后,光电流不再增加,此时的光电流叫做饱和光电流I H ,饱和光电流相当于所有被激发出来的电子全部到达阳极。
实验表明,饱和光电流和入射光的光通量成正比,因此用不同强度的光照射阴极K 时,可得到不同的伏安特性曲线。
(2)光电管的光电特性
当照射光电管的光的频率和两极间电压一定时,饱和光电流I H 随照射光强度E 变化的特性称之为光电管的光电特性。
对于真空式光电管,其曲线成线性关系,如图3-19-5所示。
四. 实验内容
1. 仪器调节
按图3-19-1接好电路,选择好微电流计的量程,并调节其零点。
2. 测光电管的伏安特性
把光源放在距光电管约30cm处,点亮光源,打开光电管盒上的盖子,使光正好射到光电管上。
改变电压U,使光电管上的电压由0逐渐增加到30V,记录下光电流I随电压U变化的情况。
然后给光电管加反向电压(将光电管两极连线对调),改变电压,同时测出不同电压下的电流值。
以I为纵坐标,以U为横坐标,作伏安特性曲线,从曲线上得到饱和电流I H。
3. 测定光电管的光电特性
将光电管极间电压固定在使光电流达到饱和区域的某一适当数值,使光电管位置不动,移动光源,使微电流计读数n等间隔的变化,记下相应的L值。
以n为纵坐标,以1/L2为横坐标作曲线图。
4. 测定普朗克常数
(1)测光电管的暗电流
在无光照的情况下,改变光电管两端电压,记下相应暗电流值。
(2)测光电管的反向伏安特性
给光电管加反向电压,并使光源对准暗盒窗口,打开盖子,换上相应波长的滤色片。
测量反向电压由零逐渐增加到反向电流达到饱和时不同电压下的光电流值。
测量时,先观察一下不同电压下的光电流变化情况,在反向电流开始有明显变化处附近多测几组数据。
换上不同波长的滤色片,重复上述步骤。
五. 问题讨论
1. 了解光电管的伏安特性及光电特性有何意义?
2. 测定普朗克常数时有哪些误差来源?实验中如何减少这些误差?。