第二章 液体、固体介质的电气特性
- 格式:ppt
- 大小:469.00 KB
- 文档页数:45
第章液体和固体介质的电气特性(一)第章液体和固体介质的电气特性液体和固体介质的电气特性是电学中一个重要的研究领域,涉及到电光、电热、电磁等多个方面。
了解液体和固体介质的电气特性,对于电学理论的掌握和电气工程实践的应用都有着重要的作用。
一、液体介质的电气特性液体介质的电气特性主要包括电导率、介电常数和电容率等。
电导率是指液体介质的导电能力,其大小与介质中自由电荷的浓度和电荷运动的速度有关。
介电常数是指液体介质中电场强度和电荷密度之比,反映了介质对电场的响应程度。
电容率则是指液体介质中存储电荷的能力,与介质的物理结构和电荷分布有关。
液体介质的电气特性有着广泛的应用,在电解、电沉积、电化学计量、生物电化学等方面都有着重要的作用。
同时,液体介质的电气特性也对于电解质电容、宽带电容和电动机的设计有着重要的影响。
二、固体介质的电气特性固体介质的电气特性包括电极化、电阻率和电导率等。
电极化是指固体介质在电场作用下产生电极化效应,也就是产生电荷极化现象。
电阻率则是指固体介质的导电能力的倒数,其大小与介质中自由电子的浓度和电子的运动状态有关。
电导率则是指固体介质中电流的传导能力,其大小与电子的浓度和载流子的迁移率有关。
固体介质的电气特性也具有着广泛的应用。
例如,铜与铝的电导率较大,适合用于制作导线。
固体绝缘体的电阻率很大,适合用于制作电绝缘材料。
同时,固体半导体的电极化、电阻率和电导率等特性也对电子器件的设计和制造具有着重要的影响。
三、液体和固体介质的相互作用液体和固体介质也可以相互作用,改变彼此的电气特性。
例如在微电子制造过程中,采用溶胶-凝胶法制备的氧化铝涂层,可以显著提高铝导线的抗电迁移性。
固体-液体界面的电化学反应还可以生成一些有用的电化学产物,例如电镀硬化层和抗腐蚀层等。
总之,液体和固体介质的电气特性研究是电学中的一个重要领域。
了解液体和固体介质的电气特性不仅有助于电学理论的深入掌握,更能够推动电气工程实践的应用与发展。
⾼电压技术复习资料要点第⼀章电介质的电⽓强度1.1⽓体放电的基本物理过程1.⾼压电⽓设备中的绝缘介质有⽓体、液体、固体以及其他复合介质。
2.⽓体放电是对⽓体中流通电流的各种形式统称。
3.电离:指电⼦脱离原⼦核的束缚⽽形成⾃由电⼦和正离⼦的过程。
4.带电质点的⽅式可分热电离、光电离、碰撞电离、分级电离。
5.带电质点的能量来源可分正离⼦撞击阴极表⾯、光电⼦发射、强场发射、热电⼦发射。
6.带电质点的消失可分带电质点受电场⼒的作⽤流⼊电极、带电质点的扩散、带电质点的复合。
7.附着:电⼦与⽓体分⼦碰撞时,不但有可能引起碰撞电离⽽产⽣出正离⼦和新电⼦,也可能发⽣电⼦附着过程⽽形成负离⼦。
8.复合:当⽓体中带异号电荷的粒⼦相遇时,有可能发⽣电荷的传递与中和,这种现象称为复合。
(1)复合可能发⽣在电⼦和正离⼦之间,称为电⼦复合,其结果是产⽣⼀个中性分⼦;(2)复合也可能发⽣在正离⼦和负离⼦之间,称为离⼦复合,其结果是产⽣两个中性分⼦。
9.1、放电的电⼦崩阶段(1)⾮⾃持放电和⾃持放电的不同特点宇宙射线和放射性物质的射线会使⽓体发⽣微弱的电离⽽产⽣少量带电质点;另⼀⽅⾯、负带电质点⼜在不断复合,使⽓体空间存在⼀定浓度的带电质点。
因此,在⽓隙的电极间施加电压时,可检测到微⼩的电流。
由图1-3可知:(1)在I-U 曲线的OA 段:⽓隙电流随外施电压的提⾼⽽增⼤,这是因为带电质点向电极运动的速度加快导致复合率减⼩。
当电压接近时,电流趋于饱和,因为此时由外电离因素产⽣的带电质点全部进⼊电极,所以电流值仅取决于外电离因素的强弱⽽与电压⽆关。
(2)在I-U 曲线的B 、C 点:电压升⾼⾄时,电流⼜开始增⼤,这是由于电⼦碰撞电离引起的,因为此时电⼦在电场作⽤下已积累起⾜以引起碰撞电离的动能。
电压继续升⾼⾄时,电流急剧上升,说明放电过程⼜进⼊了⼀个新的阶段。
此时⽓隙转⼊良好的导电状态,即⽓体发⽣了击穿。
(3)在I-U 曲线的BC 段:虽然电流增长很快,但电流值仍很⼩,⼀般在微安级,且此时⽓体中的电流仍要靠外电离因素来维持,⼀旦去除外电离因素,⽓隙电流将消失。
高电压知识点汇总一、气体放电的基本概念。
1. 气体放电。
- 气体中流通电流的各种形式统称为气体放电。
在正常状态下,气体是良好的绝缘体,但在一定条件下(如高电压、强电场等),气体中会出现导电现象。
- 气体放电可分为自持放电和非自持放电。
非自持放电需要依靠外界电离因素(如紫外线、宇宙射线等)才能维持导电;自持放电一旦形成,即使外界电离因素消失,放电仍能持续。
2. 汤逊理论。
- 适用于低气压、短间隙均匀电场中的气体放电。
- 主要观点:电子崩和正离子撞击阴极产生二次电子发射是气体自持放电的主要机制。
- 汤逊第一电离系数α:表示一个电子在沿电场方向运动1cm的过程中与气体分子发生碰撞电离的次数。
- 汤逊第二电离系数β:表示一个正离子撞击阴极表面时产生的二次电子数。
- 根据汤逊理论,自持放电的条件为:e^α d=1+(α)/(β)(d为电极间距)。
3. 流注理论。
- 适用于高气压、长间隙、不均匀电场中的气体放电。
- 主要观点:电子崩发展到足够强时,电子崩中的空间电荷会使电场发生畸变,产生局部强电场,从而引发光电离,形成流注。
流注不断发展贯穿两极间的间隙,导致气体击穿。
- 与汤逊理论的区别:汤逊理论没有考虑空间电荷对电场的畸变作用,而流注理论强调了空间电荷和光电离在放电过程中的重要性。
二、液体和固体介质的电气特性。
1. 液体介质的电气特性。
- 极化。
- 液体介质在电场作用下会发生极化现象。
极化类型主要有电子式极化、离子式极化和偶极子极化。
- 电子式极化:电子云相对于原子核的位移产生的极化,其特点是极化建立时间极短(10^-15sim10^-16s),极化过程中不消耗能量。
- 离子式极化:离子晶体中正负离子在电场作用下的相对位移产生的极化,建立时间约为10^-13s,极化过程中也基本不消耗能量。
- 偶极子极化:极性分子在电场作用下沿电场方向取向产生的极化,建立时间较长(10^-10sim10^-2s),极化过程中消耗能量。