第十六章 分式全章教材分析
- 格式:doc
- 大小:919.00 KB
- 文档页数:23
2019-2020年八年级数学下册第十六章分式全章教材教法的分析与讲解人教新课标版下面,从教材分析,教学目标的确定,教学过程的设计,教法、学法、教具的选择,教学评价与反馈措施等几个方面进行分析说明。
一、教材分析1、地位和作用代数第九章“分式”是初中阶段对有理式另一分支的研究,是整式的进一步发展,是进一步学习函数和方程等知识的基础,也是学习物理、化学等学科不可缺少的工具。
与其它数学知识一样,在具体情境中有着广泛的应用。
本节课是本章的起始课,正确了解分式的概念是学好本章教材的关键之一,有助于复习巩固分数的知识和整式的概念,能够用分式表示具体情境中的数量,对今后学习分式的四则运算和分式方程及函数等打下必要的基础。
2、教材结构教材在编排上具有以旧引新,从特殊到一般的特点,即是学生在掌握了整式的四则运算、多项式的因式分解的基础上,采用了具体情境中的图片、实例,类比两个数相除表示成分数的形式,建立分式的概念,进而建立有理式的概念。
较旧教材把分式的值为零这一知识点作为B组题,其目的是降低难度,减轻学生负担。
具体分七个部分设置教学内容:第一部分是本章的“引言”,包括插图及实例,引入了本章要学习的内容;第二部分利用已有知识,结合具体情境类比建立分式的概念;第三部分结合整式的概念,纳入知识系统,从而建立有理式的概念;第四部分运用分式的分母不能为零这一知识来解决例题;第五部分是三个练习题,练习1帮助学生理解分式的形式,练习2巩固有理式的概念,练习3是对例题的巩固;第六部分是教材的A组题,应注意对4题的指导;第七部分是B组题及“想一想”,拓展学生的思维。
3、重点、难点和关键重点:使学生了解分式的概念。
难点:使学生理解分式概念中的分母含有字母和字母的取值不能使分母的值为零。
关键:使学生正确了解分式概念中的分母必须含有字母。
这是因为正确了解分式的概念,是学好本章的关键,进而能了解分式与分数、分式与整式的区别及联系。
渗透了“数、式通性,类比”的数学思想,蕴含着“从特殊到一般”的认知规律,是培养学生思维能力的重要内容之一。
分式的基本性质说课稿我今天说课的内容是《分式的基本性质》。
我将从:教材分析、教学目标、教法分析、教学过程分析等几个方面的教学设计进行说明。
一、教材分析1、教材的地位及作用“分式的基本性质”是人教版八年级数学下册第16章第一节“分式”的重点内容之一,是在小学学习了分数的基本性质和初中学段掌握了整式的四则运算、多项式的因式分解及分式的概念的基础上进行的。
是分式变形的依据,也是进一步学习分式的通分、约分及四则运算的基础,使学生掌握本节内容是学好本章及以后学习方程、函数等问题的关键,对后续学习有重要影响。
2、学生情况分析在学习本节课之前,学生原有的知识是分数的基本性质的运用。
通过类比引出分式的基本性质应该没有阻力,但能否深入理解并灵活运用可能是学生的薄弱环节。
自然是本节的难点,同时也是本节的关键所在,因此还需要进行更深入的分析和各种基本训练,具体突破的方法可通过复习分数的通分、约分回顾分数的基本性质,定好新的知识生长点。
3、教学重难点分析根据以上学习任务和学情分析,确定本节课的教学重难点如下:教学重点:理解并掌握分式的基本性质,对分式基本性质的理解及其初步运用。
教学难点:灵活运用分式的基本性质,进行分式化简、变形。
二、教学目标教学目标应该从知识与技能、过程与方法、情感态度与价值观三个方面体现,而在教学过程中,这三个方面应该是相互融合的,相互补充的。
知识与技能1、了解分式的基本性质。
2、会用分式的基本性质将分式进行简单的恒等变形,并能熟练地进行分式的通分、约分。
过程与方法1、经历对分式基本性质及符号法则的探究过程,在探究中获得一些探索定理性质的初步经验2、通过类比、探索分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法,积累数学活动经验。
3、通过对分式的基本性质的探究,在探究中培养学生的观察能力、以及语言表达能力。
情感态度与价值观1、在探究过程中,培养学生善于观察、勇于探索和勤于思考的精神。
2、通过研究解决问题的过程,体验合作的快乐和成功,培养与他人交流的能力,增强合作交流的的意识。
华师大版八年级数学下册说课稿《第16章分式16.2.2分式的加减(第3课时)》一. 教材分析华师大版八年级数学下册第16章分式16.2.2分式的加减,是学生在学习了分式的概念、分式的乘除法之后,进一步深入学习分式的加减法。
本节课的内容是分式加减法的基本运算规则,包括分式的通分、约分,以及分式的加减运算。
这部分内容是分式运算的基础,对于学生理解和掌握分式的运算法则,提高解决实际问题的能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了分式的基本概念,以及分式的乘除法运算。
但是,对于分式的加减法运算,部分学生可能还存在一定的困难。
因此,在教学过程中,需要针对学生的实际情况,进行有针对性的教学,帮助学生理解和掌握分式的加减法运算。
三. 说教学目标1.知识与技能目标:学生能够理解分式加减法的运算规则,掌握分式的通分、约分方法,能够正确进行分式的加减运算。
2.过程与方法目标:通过小组合作、讨论交流的方式,培养学生的团队协作能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生的自主学习能力,使学生在学习过程中获得成就感。
四. 说教学重难点1.教学重点:分式加减法的运算规则,分式的通分、约分方法。
2.教学难点:分式加减法运算中,如何正确进行通分、约分,以及解决实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作法等,引导学生主动探究,提高学生的学习兴趣和参与度。
2.教学手段:利用多媒体课件、教学卡片等辅助教学,使抽象的数学概念形象化、具体化,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入新课:通过复习分式的概念和乘除法运算,引出本节课的内容——分式的加减法运算。
2.知识讲解:讲解分式加减法的运算规则,演示通分、约分的过程,让学生在理解的基础上,掌握分式的加减法运算。
3.案例分析:分析一些实际问题,让学生运用所学的分式加减法知识,解决问题,提高学生的应用能力。
第十六章 分式16.1分式16.1.1从分数到分式一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 3.认知难点与突破方法难点是能熟练地求出分式有意义的条件,分式的值为零的条件.突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的联系与区别. 三、例、习题的意图分析本章从实际问题引出分式方程v+20100=v-2060,给出分式的描述性的定义:像这样分母中含有字母的式子属于分式. 不要在列方程时耽误时间,列方程在这节课里不是重点,也不要求解这个方程.1.本节进一步提出P4[思考]让学生自己依次填出:710,a s ,33200,sv .为下面的[观察]提供具体的式子,就以上的式子v+20100,v-2060,as ,sv ,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是 (即A ÷B )的形式.分数的分子A 与分母B 都是整数,而这些式子中的A 、B 都是整式,并且B 中都含有字母.P5[归纳]顺理成章地给出了分式的定义.分式与分数有许多类似之处,研究分式往往要类比分数的有关概念,所以要引导学生了解分式与分数的联系与区别.希望老师注意:分式比分数更具有一般性,例如分式BA可以表示为两个整式相除的商(除式不能为零),其中包括所有的分数 .2. P5[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B ≠0时,分式BA才有意义. 3. P5例1填空是应用分式有意义的条件—分母不为零,解出字母x 的值.还可以利用这道题,不改变分式,只把题目改成“分式无意义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础.4. P12[拓广探索]中第13题提到了“在什么条件下,分式的值为0?”,下面补充的例2为了学生更全面地体验分式的值为0时,必须同时满足两个条件:○1分母不能为零;○2分子为零.这两个条件得到的解集的公共部分才是这一类题目的解.B A四、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,as ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v-2060小时,所以v+20100=v-2060.3. 以上的式子v+20100,v-2060,as ,sv ,有什么共同点?它们与分数有什么相同点和不同点? 五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3) [分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解. [答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义? (1) (2) (3)3. 当x 为何值时,分式的值为0? (1) (2) (3)七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时. (3)x 与y 的差于4的商是 .1-m m32+-m m 112+-m m 4522--x x x x 235-+23+x x x 57+xx 3217-x x x --2212.当x 取何值时,分式 无意义?3. 当x 为何值时,分式的值为0? 八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x 7 , 238y y -,91-x2.(1)x ≠-2 (2)x ≠ (3)x ≠±2 3.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, b a s +,4y x -; 整式:8x, a+b, 4y x -;分式:x80, b a s + 2. X = 3. x=-116.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形. 二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形. 3.认知难点与突破方法教学难点是灵活应用分式的基本性质将分式变形. 突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形. 三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.x 802332xx x --212312-+x x四、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质. 五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.a b 56--, yx 3-, nm --2, nm 67--, yx 43---。
八年级下第十六章分式教材分析与教学建议一、教学目的1、使学生掌握分式的概念,分式的基本性质,能熟练地进行分式变形及约分通分。
2、使学生能准确地进行分式的乘除、加减以及混合运算。
3、使学生学会用科学记数法表示绝对值小于1的数,并能进行有关负整数指数幂的运算。
4、使学生掌握解分式方程的步骤,并能列出可化为一元一次方程的分式方程解决简单的实际问题。
二、本章知识结构网络图三、数学思想方法1、类比法:本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程。
2、转化思想:转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想。
如:分式除法转化为分式乘法;分式加减运算的基本思想:异分母的分式加减法转化为同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等.3、建模思想:本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义。
四、教材特点1、重视从实际问题抽象出数学模型,体现了学生学有用的数学,生活中的数学。
例如:16.1节,引进分式的概念时,用一幅江中航行的轮船为背景,引出了路程、速度和时间之间的数量关系,从而导出分式的概念;在16.3节又被用于引入分式方程的概念。
在讨论分式的加减和乘除的过程中,先后按排了涉及容积、工作效率、耕作面积、增长率和工程进度等多个实际问题。
本章安排了大量的实际问题,通过分析与解决实际问题,提高了学生联系实际应用数学知识的意识、兴趣和能力。
新人教版八年级第十六章分式教学案§16.1.1 从分数到分式一.教学目标(1)知识与技能目标:掌握分式概念,学会判别分式何时有意义,能用分式表示数量关系。
(2)过程与方法目标:经历分式概念的自我建构过程及用分式描述数量关系的过程,学会与人合作,并获得代数学习的一些常用方法:类比转化、合情推理、抽象概括等。
(3)情感与态度目标:通过丰富的数学活动,获得成功的经验,体验数学活动充满着探索和创造,体会分式的模型思想。
二.教学重难点重点:分式的概念难点:识别分式有无意义;用分式描述数量关系三.教法与学法基于以上教材特点和学生情况的分析,我在本节课主要采用“引导—发现教学法”,借助于计算机课件,通过“问题情境—建立模型—解释、应用与拓展”的模式展开教学。
四.教学过程《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。
”为能更多地向学生提供从事数学活动的机会,我将本节课设为以下五个环节:发现新知—再探新知—应用新知—深化拓展—小结巩固,以期在多样的活动中激发学生的学习潜能,引导学生积极自主探索、合作交流与实践创新。
(一)发现新知在这儿我对教材进行了处理,课本引例是“土地沙化、固沙造林”问题,设问是“这一问题中有哪些等量关系?”我将引课方式改为通过学生自己构造代数式去发现分式,创设了这样的情境:1.创设情境:教师给出探究要求:“代数式”庄园的果树上挂满了“整式”的果子:t,300,s,n,a-x,0,180(n-2),请你任选其中的两个,分别运用整式的四则运算,合成四个代数式;并与同组的伙伴交流你的成果。
其中有新的一类代数式吗?请说一说。
作这样的改动,是基于以下考虑:原有引例不仅要求学生用分式表示数量关系,还需要列出分式方程。
针对我校学生的实际情况,我认为在起始课上这样的要求过高,而从学生熟悉的整式及其运算入手,引导学生从旧知中发现新知,与学生的原有认知水平更相吻合,有利于探索活动的展开,培养学生的创新意识。
2019-2020年八年级数学下册第十六章分式全章教案人教新课标版16.1.1从分数到分式一、教学目标1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.三、课堂引入1.让学生填写P4[思考],学生自己依次填出:,,,.2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程.设江水的流速为x千米/时.轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=.3. 以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?五、例题讲解P5例1. 当x为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围.[提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m为何值时,分式的值为0?(1)(2) (3)[分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2 (3)m=1六、随堂练习1.判断下列各式哪些是整式,哪些是分式?9x+4, ,, , ,2. 当x取何值时,下列分式有意义?(1)(2)(3)3. 当x为何值时,分式的值为0?(1)(2) (3)七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x个零件,则他8小时做零件个,做80个零件需小时. (2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是千米/时,轮船的逆流速度是千米/时.(3)x与y的差于4的商是 .2.当x取何值时,分式无意义?3. 当x为何值时,分式的值为0?八、答案:六、1.整式:9x+4, , 分式: , ,2.(1)x≠-2 (2)x≠(3)x≠±23.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, ,; 整式:8x, a+b, ;分式:,2.X = 3. x=-1课后反思:16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点: 理解分式的基本性质.2.难点:灵活应用分式的基本性质将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入1.请同学们考虑:与相等吗?与相等吗?为什么?2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.,,,,。
编写时间:2014年2月16 日 执教时间:2月 17日 序号:1第16章分式 课题:16.1.1分式 课型:新授教学目标:1、经历实际问题的解决过程,从中认识分式,并能概括分式2、使学生能正确地判断一个代数式是否是分式3、能通过回忆分数的意义,类比地探索分式的意义及分式的值如某一特定情况的条件,渗透数学中的类比,分类等数学思想。
教学重点:探索分式的意义及分式的值为某一特定情况的条件。
教学难点:能通过回忆分数的意义,探索分式的意义。
教学过程:一、P2:做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_(2/3)_米;(2)面积为S 平方米的长方形一边长a 米,则它的另一边长为_(S/a)_米;(3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是_{p/(m-n)}_元; 在小学算术里,两个整数相除,不能整除时可以用分数表示,且分数中的分子相当于被除数,分数中的分母相当于除数;那么,当两个整式不能整除时,它们的商怎么表示呢?二、概括: 形如BA (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母.(因为零不能做除数,所以分式中的分母B 不能是零) 整式和分式统称有理式, 即有理式 整式,分式.三、例题:例1 下列各有理式中,哪些是整式?哪些是分式?(1)x 1; (2)2x ; (3)yx xy +2; (4)33y x -. 解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式aS 中,a ≠0;在分式n m -9中,m ≠n. 四:随堂练习1:下列各式:a 27,2b a +,121-a ,π3-a ,112--x x ,x+53中分式的个数是( ) A .3 B.4 C.5 D.6例2当x 取什么值时,下列分式有意义? (1)11-x ; (2)322+-x x . 分析 要使分式有意义,必须且只须分母不等于零.解 (1)分母1-x ≠0,即x ≠1.所以,当x ≠1时,分式11-x 有意义. (2)分母23+x ≠0,即x ≠-23. 所以,当x ≠-23时,分式322+-x x 有意义. 四:随堂练习2:下列分式,当x=-3时,无意义的是( )A. 9313+--x xB. 3632--x xC. 15523--x xD. 15592+-x x 四:随堂练习3:若分式242+-x x 的值为0,则x 的值为( ) A.±2 B.2 C.5 D.4五、课时小结:什么是分式?什么是有理式? 形如BA (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母.(因为零不能做除数,所以分式中的分母B 不能是零)整式和分式统称有理式, 即有理式 整式,分式.六、作业:练习设计本上编写时间:2014年2月16 日 执教时间:2月 18日 序号:2 课题:16.1.2分式的基本性质 课型:新授教学目标:1、掌握分式的基本性质,掌握分式约分方法,熟练进行约分,并了解最简分式的意义。
⼋年级数学下册第⼗六章分式全章教材教法的分析与讲解⼈教新课标版【精品教案】9.1节“分式”下⾯,从教材分析,教学⽬标的确定,教学过程的设计,教法、学法、教具的选择,教学评价与反馈措施等⼏个⽅⾯进⾏分析说明。
⼀、教材分析1、地位和作⽤代数第九章“分式”是初中阶段对有理式另⼀分⽀的研究,是整式的进⼀步发展,是进⼀步学习函数和⽅程等知识的基础,也是学习物理、化学等学科不可缺少的⼯具。
与其它数学知识⼀样,在具体情境中有着⼴泛的应⽤。
本节课是本章的起始课,正确了解分式的概念是学好本章教材的关键之⼀,有助于复习巩固分数的知识和整式的概念,能够⽤分式表⽰具体情境中的数量,对今后学习分式的四则运算和分式⽅程及函数等打下必要的基础。
2、教材结构教材在编排上具有以旧引新,从特殊到⼀般的特点,即是学⽣在掌握了整式的四则运算、多项式的因式分解的基础上,采⽤了具体情境中的图⽚、实例,类⽐两个数相除表⽰成分数的形式,建⽴分式的概念,进⽽建⽴有理式的概念。
较旧教材把分式的值为零这⼀知识点作为B组题,其⽬的是降低难度,减轻学⽣负担。
具体分七个部分设置教学内容:第⼀部分是本章的“引⾔”,包括插图及实例,引⼊了本章要学习的内容;第⼆部分利⽤已有知识,结合具体情境类⽐建⽴分式的概念;第三部分结合整式的概念,纳⼊知识系统,从⽽建⽴有理式的概念;第四部分运⽤分式的分母不能为零这⼀知识来解决例题;第五部分是三个练习题,练习1帮助学⽣理解分式的形式,练习2巩固有理式的概念,练习3是对例题的巩固;第六部分是教材的A组题,应注意对4题的指导;第七部分是B组题及“想⼀想”,拓展学⽣的思维。
3、重点、难点和关键重点:使学⽣了解分式的概念。
难点:使学⽣理解分式概念中的分母含有字母和字母的取值不能使分母的值为零。
关键:使学⽣正确了解分式概念中的分母必须含有字母。
这是因为正确了解分式的概念,是学好本章的关键,进⽽能了解分式与分数、分式与整式的区别及联系。
第十六章 分式16.1分式16.1.1从分数到分式(一课时)一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 3.认知难点与突破方法难点是能熟练地求出分式有意义的条件,分式的值为零的条件.突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的联系与区别. 三、例、习题的意图分析本章从实际问题引出分式方程v+20100=v-2060,给出分式的描述性的定义:像这样分母中含有字母的式子属于分式. 不要在列方程时耽误时间,列方程在这节课里不是重点,也不要求解这个方程.1.本节进一步提出P4[思考]让学生自己依次填出:710,a s ,33200,sv .为下面的[观察]提供具体的式子,就以上的式子v+20100,v-2060,as ,sv ,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是 (即A ÷B )的形式.分数的分子A 与分母B 都是整数,而这些式子中的A 、B 都是整式,并且B 中都含有字母.P5[归纳]顺理成章地给出了分式的定义.分式与分数有许多类似之处,研究分式往往要类比分数的有关概念,所以要引导学生了解分式与分数的联系与区别.希望老师注意:分式比分数更具有一般性,例如分式BA可以表示为两个整式相除的商(除式不能为零),其中包括所有的分数 .2. P5[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B ≠0时,分式BA才有意义. 3. P5例1填空是应用分式有意义的条件—分母不为零,解出字母x 的值.还可以利用这道题,不改变分式,只把题目改成“分式无意义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础.4. P12[拓广探索]中第13题提到了“在什么条件下,分式的值为0?”,下面补充的例2为了学生更全面地体验分式的值为0时,必须同时满足两个条件:○1分母不能为零;○2分子为零.这两个条件得到的解集的公共部分才是这一类题目的解. 四、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,as ,33200,sv .BA2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v-2060小时,所以v+20100=v-2060.3. 以上的式子v+20100,v-2060,a s ,sv ,有什么共同点?它们与分数有什么相同点和不同点?五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3) [分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义? (1) (2) (3)3. 当x 为何值时,分式的值为0? (1) (2) (3)布置 作业组长意见 课 后 反 思1-m m 32+-m m 112+-m m 452--x x x x 235-+23+x x x 57+xx 3217-x x x --2116.1.2分式的基本性质(两课时)一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形. 二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形. 3.认知难点与突破方法教学难点是灵活应用分式的基本性质将分式变形. 突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形. 三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质. 五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变. P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.4320152498343201524983a b 56--, yx 3-, nm --2, nm 67--, yx 43---。
[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变. 解:a b 56--= a b 56, y x 3-=y x 3-,n m --2=n m 2, n m 67--=nm67 ,y x 43---=yx 43。
六、随堂练习1.填空:(1) x x x 3222+= ()3+x (2) 32386b b a =()33a (3) c a b ++1=()cn an + (4) ()222y x y x +-=()y x -2.约分:(1)cab b a 2263 (2)2228mn n m (3)532164xyz yz x - (4)x y y x --3)(23.通分: (1)321ab 和c b a 2252 (2)xy a 2和23xb(3)223ab c 和28bc a-(4)11-y 和11+y 4.不改变分式的值,使下列分式的分子和分母都不含“-”号.(1) 233aby x -- (2) 2317b a --- (3) 2135x a -- (4) m b a 2)(-- 布置 作业 组长意见课 后 反 思16.2分式的运算16.2.1分式的乘除(一)(两课时)一、教学目标:理解分式乘除法的法则,会进行分式乘除运算. 二、重点、难点1.重点:会用分式乘除的法则进行运算. 2.难点:灵活运用分式乘除的法则进行运算 . 3. 难点与突破方法分式的运算以有理数和整式的运算为基础,以因式分解为手段,经过转化后往经过转化后往往可视为整式的运算.分式的乘除的法则和运算顺序可类比分数的有关内容得到.所以,教给学生类比的数学思想方法能较好地实现新知识的转化.只要做到这一点就可充分发挥学生的主体性,使学生主动获取知识.教师要重点处理分式中有别于分数运算的有关内容,使学生规范掌握,特别是运算符号的问题,要抓住出现的问题认真落实. 三、例、习题的意图分析1.P13本节的引入还是用问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的多少倍,这两个引例所得到的容积的高是n m ab v ⋅,大拖拉机的工作效率是小拖拉机的工作效率的⎪⎭⎫ ⎝⎛÷n b m a 倍.引出了分式的乘除法的实际存在的意义,进一步引出P14[观察]从分数的乘除法引导学生类比出分式的乘除法的法则.但分析题意、列式子时,不易耽误太多时间.2.P14例1应用分式的乘除法法则进行计算,注意计算的结果如能约分,应化简到最简.3.P14例2是较复杂的分式乘除,分式的分子、分母是多项式,应先把多项式分解因式,再进行约分. 4.P14例3是应用题,题意也比较容易理解,式子也比较容易列出来,但要注意根据问题的实际意义可知a>1,因此(a-1)2=a 2-2a+1<a 2-2+1,即(a-1)2<a 2-1.这一点要给学生讲清楚,才能分析清楚“丰收2号”单位面积产量高.(或用求差法比较两代数式的大小)四、课堂引入1.出示P13本节的引入的问题1求容积的高nmab v ⋅,问题2求大拖拉机的工作效率是小拖拉机的工作效率的⎪⎭⎫⎝⎛÷n b m a 倍. [引入]从上面的问题可知,有时需要分式运算的乘除.本节我们就讨论数量关系需要进行分式的乘除运算.我们先从分数的乘除入手,类比出分式的乘除法法则.1. P14[观察] 从上面的算式可以看到分式的乘除法法则.3.[提问] P14[思考]类比分数的乘除法法则,你能说出分式的乘除法法则? 类似分数的乘除法法则得到分式的乘除法法则的结论. 五、例题讲解P14例1.[分析]这道例题就是直接应用分式的乘除法法则进行运算.应该注意的是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,在计算结果.P15例2.[分析] 这道例题的分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.结果的分母如果不是单一的多项式,而是多个多项式相乘是不必把它们展开.P15例.[分析]这道应用题有两问,第一问是:哪一种小麦的单位面积产量最高?先分别求出“丰收1号”、“丰收2号”小麦试验田的面积,再分别求出“丰收1号”、“丰收2号”小麦试验田的单位面积产量,分别是15002-a 、()21500-a ,还要判断出以上两个分式的值,哪一个值更大.要根据问题的实际意义可知a>1,因此(a-1)2=a 2-2a+1<a 2-2+1,即(a-1)2<a 2-1,可得出“丰收2号”单位面积产量高. 六、随堂练习计算(1)ab c 2c b a 22⋅ (2)322542n m m n ⋅- (3)⎪⎭⎫ ⎝⎛-÷x x y 27 (4)-8xy x y 52÷ (5)4411242222++-⋅+--a a a a a a (6))3(2962y y y y -÷++-七、课后练习计算(1)⎪⎪⎭⎫ ⎝⎛-⋅y xy x 132 (2)⎪⎭⎫ ⎝⎛-÷a bc ac b 2110352(3)()y x axy 28512-÷ (4)ba ab ab b a 234222-⋅- (5))4(12x x x x -÷-- (6)3222)(35)(42x y x xy x --⋅-布置 作业 组长意见 课 后 反 思16.2.1分式的乘除(二)(两课时)一、教学目标:熟练地进行分式乘除法的混合运算. 二、重点、难点1.重点:熟练地进行分式乘除法的混合运算. 2.难点:熟练地进行分式乘除法的混合运算. 3.认知难点与突破方法:紧紧抓住分式乘除法的混合运算先统一成为乘法运算这一点,然后利用上节课分式乘法运算的基础,达到熟练地进行分式乘除法的混合运算的目的.课堂练习以学生自己讨论为主,教师可组织学生对所做的题目作自我评价,关键是点拨运算符号问题、变号法则. 三、例、习题的意图分析1. P17页例4是分式乘除法的混合运算. 分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式.教材P17例4只把运算统一乘法,而没有把25x 2-9分解因式,就得出了最后的结果,教师在见解是不要跳步太快,以免学习有困难的学生理解不了,造成新的疑点.2, P17页例4中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题.四、课堂引入计算(1))(xy yx xy -⋅÷ (2) )21()3(43xyx yx -⋅-÷五、例题讲解(P17)例4.计算[分析] 是分式乘除法的混合运算. 分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.(补充)例.计算(1))4(3)98(23232b xb a xy y x ab -÷-⋅=x b b a xy y x ab 34)98(23232-⋅-⋅ (先把除法统一成乘法运算) =xb b a xy y x ab 349823232⋅⋅ (判断运算的符号) =32916ax b (约分到最简分式)(2) x x x x x x x --+⋅+÷+--3)2)(3()3(444622=x x x x x x x --+⋅+⋅+--3)2)(3(31444622 (先把除法统一成乘法运算) =x x x x x x --+⋅+⋅--3)2)(3(31)2()3(22(分子、分母中的多项式分解因式) =)3()2)(3(31)2()3(22---+⋅+⋅--x x x x x x =22--x六、随堂练习计算(1))2(216322b a a bc a b -⋅÷ (2)103326423020)6(25ba c c ab b ac ÷-÷ (3)x y y x x y y x -÷-⋅--9)()()(3432 (4)22222)(xy x xy y xy x x xy -⋅+-÷-七、课后练习计算(1))6(4382642z y x y x y x -÷⋅- (2)9323496222-⋅+-÷-+-a a b a b a a(3)229612316244y y y y y y --÷+⋅-+- (4)xyy xyy x xy x xy x -÷+÷-+222)(布置 作业组长 意见 课 后 反 思16.2.1分式的乘除(三)(两课时)一、教学目标:理解分式乘方的运算法则,熟练地进行分式乘方的运算. 二、重点、难点1.重点:熟练地进行分式乘方的运算.2.难点:熟练地进行分式乘、除、乘方的混合运算. 3.认知难点与突破方法讲解分式乘方的运算法则之前,根据乘方的意义和分式乘法的法则,计算 2)(b a =⋅b a b a =b b a a ⋅⋅=22b a ,3)(ba =⋅b a ⋅b a b a =b b b a a a ⋅⋅⋅⋅=33b a ,…… 顺其自然地推导可得:n b a )(=⋅b a ⋅⋅⋅⋅b a b a =b b b a a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n n b a ,即n b a )(=n nba . (n 为正整数)归纳出分式乘方的法则:分式乘方要把分子、分母分别乘方.三、例、习题的意图分析1. P17例5第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,在分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除..2.教材P17例5中象第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量显然少了些,故教师应作适当的补充练习.同样象第(2)题这样的分式的乘除与乘方的混合运算,也应相应的增加几题为好.分式的乘除与乘方的混合运算是学生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破这个难点.四、课堂引入计算下列各题:(1)2)(ba =⋅b ab a =( ) (2) 3)(b a =⋅b a ⋅b a b a=( ) (3)4)(ba =⋅b a ⋅b a b a ba⋅=( ) [提问]由以上计算的结果你能推出nba )((n 为正整数)的结果吗?五、例题讲解 (P17)例5.计算[分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除.n 个n 个n 个 n 个六、随堂练习1.判断下列各式是否成立,并改正.(1)23)2(a b =252a b (2)2)23(a b -=2249a b - (3)3)32(x y -=3398xy (4)2)3(b x x -=2229b x x - 2.计算(1) 22)35(y x (2)332)23(c b a - (3)32223)2()3(x ay xy a -÷ (4)23322)()(z x zy x -÷- 5))()()(422xy x y y x -÷-⋅- (6)232)23()23()2(ayx y x x y -÷-⋅-七、课后练习计算(1) 332)2(a b - (2) 212)(+-n ba(3)4234223)()()(c a ba cb ac ÷÷ (4) )()()(2232b a a b a ab b a -⋅--⋅-布置 作业 滋长 意见 课 后 反 思16.2.2分式的加减(一)(两课时)一、教学目标:(1)熟练地进行同分母的分式加减法的运算.(2)会把异分母的分式通分,转化成同分母的分式相加减.二、重点、难点1.重点:熟练地进行异分母的分式加减法的运算.2.难点:熟练地进行异分母的分式加减法的运算.3.认知难点与突破方法进行异分母的分式加减法的运算是难点,异分母的分式加减法的运算,必须转化为同分母的分式加减法,,然后按同分母的分式加减法的法则计算,转化的关键是通分,通分的关键是正确确定几个分式的最简公分母,确定最简公分母的一般步骤:(1)取各分母系数的最小公倍数;(2)所出现的字母(或含字母的式子)为底的幂的因式都要取;(3)相同字母(或含字母的式子)的幂的因式取指数最大的.在求出最简公分母后,还要确定分子、分母应乘的因式,这个因式就是最简公分母除以原分母所得的商.异分母的分式加减法的一般步骤:(1)通分,将异分母的分式化成同分母的分式;(2)写成“分母不便,分子相加减”的形式;(3)分子去括号,合并同类项;(4)分子、分母约分,将结果化成最简分式或整式.三、例、习题的意图分析1. P18问题3是一个工程问题,题意比较简单,只是用字母n 天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的311++n n .这样引出分式的加减法的实际背景,问题4的目的与问题3一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2. P19[观察]是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自己说出分式的加减法法则.3.P20例6计算应用分式的加减法法则.第(1)题是同分母的分式减法的运算,第二个分式的分子式个单项式,不涉及到分子变号的问题,比较简单,所以要补充分子是多项式的例题,教师要强调分子相减时第二个多项式注意变号;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则.(4)P21例7是一道物理的电路题,学生首先要有并联电路总电阻R 与各支路电阻R 1, R 2, …, R n 的关系为n R R R R 111121+⋅⋅⋅++=.若知道这个公式,就比较容易地用含有R 1的式子表示R 2,列出5011111++=R R R ,下面的计算就是异分母的分式加法的运算了,得到)50(5021111++=R R R R ,再利用倒数的概念得到R 的结果.这道题的数学计算并不难,但是物理的知识若不熟悉,就为数学计算设置了难点.鉴于以上分析,教师在讲这道题时要根据学生的物理知识掌握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,可以考虑是否放在例8之后讲.四、课堂堂引入1.出示P18问题3、问题4,教师引导学生列出答案.引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2.下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗?3. 分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?4.请同学们说出2243291,31,21xy y x y x 的最简公分母是什么?你能说出最简公分母的确定方法吗? 五、例题讲解(P20)例6.计算[分析] 第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.(补充)例.计算(1)2222223223y x y x y x y x y x y x --+-+--+[分析] 第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式. 解:2222223223y x y x y x y x y x y x --+-+--+ =22)32()2()3(y x y x y x y x --++-+ =2222y x y x -- =))(()(2y x y x y x +-- =yx +2 (2)96261312--+-+-x x x x [分析] 第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式. 解:96261312--+-+-x x x x =)3)(3(6)3(2131-+-+-+-x x x x x =)3)(3(212)3)(1()3(2-+---++x x x x x =)3)(3(2)96(2-++--x x x x=)3)(3(2)3(2-+--x x x =623+--x x 六、随堂练习计算 (1)ba ab b a b a b a b a 22255523--+++ (2)m n m n m n m n n m -+---+22 (3)96312-++a a (4)b a b a b a b a b a b a b a b a ---+-----+-87546563七、课后练习计算 (1) 22233343365cba b a c ba a b bc a b a +--++ (2) 2222224323ab b a b a b a b a a b ----+--- (3) 122+++-+-b a ab a b a b (4) 22643461461x y x y x y x -----作业布置组长意见课后反思16.2.2分式的加减(二)(两课时)一、教学目标:明确分式混合运算的顺序,熟练地进行分式的混合运算.二、重点、难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面.三、例、习题的意图分析1. P21例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.例8只有一道题,训练的力度不够,所以应补充一些练习题,使学生熟练掌握分式的混合运算.2. P22页练习1:写出第18页问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.四、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.五、例题讲解(P21)例8.计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(补充)计算(1)x x x x x x x x -÷+----+4)44122(22 [分析] 这道题先做括号里的减法,再把除法转化成乘法,把分母的“-”号提到分式本身的前边.. 解: x x x x x x x x -÷+----+4)44122(22 =)4(])2(1)2(2[2--⋅----+x x x x x x x =)4(])2()1()2()2)(2([22--⋅-----+x x x x x x x x x x =)4()2(4222--⋅-+--x x x x x x x =4412+--x x(2)2224442y x x y x y x y x y y x x +÷--+⋅- [分析] 这道题先做乘除,再做减法,把分子的“-”号提到分式本身的前边. 解:2224442yx x y x y x y x y y x x +÷--+⋅- =22222224))((2x y x y x y x y x y x y y x x +⋅-+-+⋅- =2222))((yx y x y x y x xy --⋅+- =))(()(y x y x x y xy +-- =y x xy +-六、随堂练习计算 (1) x x x x x 22)242(2+÷-+- (2))11()(ba ab b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a七、课后练习1.计算 (1) )1)(1(y x x y x y +--+(2) 22242)44122(aa a a a a a a a a -÷-⋅+----+ (3) zxyz xy xy z y x ++⋅++)111( 2.计算24)2121(aa a ÷--+,并求出当=a -1的值. 布置作业组长意见课后反思16.2.3整数指数幂(两课时)一、教学目标:1.知道负整数指数幂n a -=na 1(a ≠0,n 是正整数). 2.掌握整数指数幂的运算性质.3.会用科学计数法表示小于1的数.二、重点、难点1.重点:掌握整数指数幂的运算性质.2.难点:会用科学计数法表示小于1的数.3.认知难点与突破方法 复习已学过的正整数指数幂的运算性质:(1)同底数的幂的乘法:n m n m a a a +=⋅(m,n 是正整数);(2)幂的乘方:mn n m aa =)((m,n 是正整数); (3)积的乘方:n n nb a ab =)((n 是正整数);(4)同底数的幂的除法:n m n m a a a -=÷( a ≠0,m,n 是正整数,m >n);(5)商的乘方:n nn ba b a =)((n 是正整数); 0指数幂,即当a ≠0时,10=a . 在学习有理数时,曾经介绍过1纳米=10-9米,即1纳米=9101米.此处出现了负指数幂,也出现了它的另外一种形式是正指数的倒数形式,但是这只是一种简单的介绍知识,而没有讲负指数幂的运算法则.学生在已经回忆起以上知识的基础上,一方面由分式的除法约分可知,当a ≠0时,53a a ÷=53a a =233a a a ⋅=21a;另一方面,若把正整数指数幂的运算性质n m n m a a a -=÷(a ≠0,m,n 是正整数,m >n)中的m >n 这个条件去掉,那么53a a ÷=53-a =2-a .于是得到2-a =21a(a ≠0),就规定负整数指数幂的运算性质:当n 是正整数时,n a -=n a 1(a ≠0),也就是把n m n m a a a -=÷的适用范围扩大了,这个运算性质适用于m 、n 可以是全体整数.三、例、习题的意图分析1. P23思考提出问题,引出本节课的主要内容负整数指数幂的运算性质.2. P24观察是为了引出同底数的幂的乘法:n m n m a a a +=⋅,这条性质适用于m,n 是任意整数的结论,说明正整数指数幂的运算性质具有延续性.其它的正整数指数幂的运算性质,在整数范围里也都适用.3. P24例9计算是应用推广后的整数指数幂的运算性质,教师不要因为这部分知识已经讲过,就认为学生已经掌握,要注意学生计算时的问题,及时矫正,以达到学生掌握整数指数幂的运算的教学目的.4. P25例10判断下列等式是否正确?是为了类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来.四、课堂引入1.回忆正整数指数幂的运算性质:(1)同底数的幂的乘法:n m n m a a a +=⋅(m,n 是正整数);(2)幂的乘方:mn n m aa =)((m,n 是正整数); (3)积的乘方:n nn b a ab =)((n 是正整数);(4)同底数的幂的除法:n m n m a a a -=÷( a ≠0,m,n 是正整数,m >n); (5)商的乘方:n nn ba b a =)((n 是正整数); 2.回忆0指数幂的规定,即当a ≠0时,10=a .3.你还记得1纳米=10-9米,即1纳米=9101米吗? 4.计算当a ≠0时,53a a ÷=53a a =233a a a ⋅=21a,再假设正整数指数幂的运算性质n m n m a a a -=÷(a ≠0,m,n 是正整数,m >n)中的m >n 这个条件去掉,那么53a a ÷=53-a =2-a .于是得到2-a =21a(a ≠0),就规定负整数指数幂的运算性质:当n 是正整数时,n a -=n a1(a ≠0). 五、例题讲解(P24)例9.计算[分析] 是应用推广后的整数指数幂的运算性质进行计算,与用正整数指数幂的运算性质进行计算一样,但计算结果有负指数幂时,要写成分式形式.(P25)例10. 判断下列等式是否正确?[分析] 类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来,然后再判断下列等式是否正确.(P26)例11.[分析] 是一个介绍纳米的应用题,是应用科学计数法表示小于1的数.六、随堂练习1.填空(1)-22=(2)(-2)2= (3)(-2) 0= (4)20= ( 5)2 -3= ( 6)(-2) -3=2.计算(1) (x 3y -2)2 (2)x 2y -2 ·(x -2y)3 (3)(3x 2y -2) 2 ÷(x -2y)3布置作业组长意见课后反思。