6.5二重积分
- 格式:ppt
- 大小:3.32 MB
- 文档页数:49
二重积分的概念及性质前面我们已经知道了,定积分与曲边梯形的面积有关。
下面我们通过曲顶柱体的体积来引出二重积分的概念,在此我们不作详述,请大家参考有关书籍。
二重积分的定义设z=f(x,y)为有界闭区域(σ)上的有界函数:(1)把区域(σ)任意划分成n个子域(△σk)(k=1,2,3,…,n),其面积记作△σk(k=1,2,3,…,n);(2)在每一个子域(△σk)上任取一点,作乘积;(3)把所有这些乘积相加,即作出和数(4)记子域的最大直径d.如果不论子域怎样划分以及怎样选取,上述和数当n→+∞且d→0时的极限存在,那末称此极限为函数f(x,y)在区域(σ)上的二重积分.记作:即:=其中x与y称为积分变量,函数f(x,y)称为被积函数,f(x,y)dσ称为被积表达式,(σ)称为积分区域.关于二重积分的问题对于二重积分的定义,我们并没有f(x,y)≥0的限.容易看出,当f(x,y)≥0时,二重积分在几何上就是以z=f(x,y)为曲顶,以(σ)为底且母线平行于z轴的曲顶柱体的体积。
上述就是二重积分的几何意义。
如果被积函数f(x,y)在积分区域(σ)上连续,那末二重积分必定存在。
二重积分的性质(1).被积函数中的常数因子可以提到二重积分符号外面去.(2).有限个函数代数和的二重积分等于各函数二重积分的代数和.(3).如果把积分区域(σ)分成两个子域(σ1)与(σ2),即(σ)=(σ1)+(σ2),那末:(4).如果在(σ)上有f(x,y)≤g(x,y),那末:≤(5).设f(x,y)在闭域(σ)上连续,则在(σ)上至少存在一点(ξ,η),使其中σ是区域(σ)的面积.二重积分的计算法直角坐标系中的计算方法这里我们采取的方法是累次积分法。
也就是先把x看成常量,对y进行积分,然后在对x进行积分,或者是先把y看成常量,对x进行积分,然后在对y进行积分。
为此我们有积分公式,如下:或在这里我们可能会有这个问题:累次积分的上下限是怎么确定的呢?累次积分上下限的确定方法我们先来对区域作些补充说明:如果经过区域(σ)内任意一点(即不是区域边界上的点)作平行于y轴(或x 轴)的直线,且此直线交(σ)的边界不超过两点,那末称(σ)为沿y轴(x轴)方向的正规区域.如果(σ)即是沿y轴方向也是沿x轴方向的正规区域,那末(σ)就称为正规区域.下图所示的即为正规区域:关于累次积分上下限的取法如下所述:(1).如果(σ)为沿y轴方向的正规区域,那末二重积分可化为先对y再对x的累次积分.其中对y的积分下限是(σ)的下部边界曲线所对应的函数y1(x),积分上限是上部边界曲线所对应的函数y2(x).对x的积分下限与上限分别是(σ)的最左与最右点的横坐标a与b.(2).如果(σ)为沿x轴方向的正规区域,那末二重积分可化为先对x再对y的累次积分.其中对x的积分下限是(σ)的左部边界曲线所对应的函数x1(y),积分上限是右部边界曲线所对应的函数x2(y).对y的积分下限与上限分别是(σ)的最低与最高点的横坐标c与d.(3).如果(σ)为正规区域,那末累次积分可以交换积分次序。
二重积分的计算二重积分的计算,是多元函数积分学的第一个难关,这一关过好了,对于其他类型(三重积分,曲线和曲面积分等)的积分,将开个好头,希望大家真正理解并掌握。
首先需要化点功夫弄明白二重积分的定义以及性质。
这里我就不写过多的内容,因为深入理解需要在具体的计算中才能加深理解,就事论事地背定义是很难有效果的。
二重积分的计算,最基本也是最根本的是要理解转化二重积分为累次积分的原理,即一个二重积分化为两个有先后次序的定积分,这2个定积分一般彼此存在着关系,先积分的那个定积分一般是后一个定积分的被积函数。
转化的前提是需要将被积区域D 表示为不等式形式。
二重积分的被积区域是个平面域,常用两种表示法:1)12()():x y x D a x b ϕϕ≤≤⎧⎨≤≤⎩,这时,累次积分的次序是“先y 后x ”,具体公式为2211()()()()(,)(,)(,)x x bb Da x a x f x y d f x y dy dx dx f x y dy ϕϕϕϕσ⎛⎫== ⎪ ⎪⎝⎭⎰⎰⎰⎰⎰⎰。
2)12()():y x y D c y d ψψ≤≤⎧⎨≤≤⎩,这时,累次积分的次序是“先x 后y ”,具体公式为2211()()()()(,)(,)(,)y y dd Dc y c y f x yd f x y dx dy dy f x y dx ψψψψσ⎛⎫== ⎪ ⎪⎝⎭⎰⎰⎰⎰⎰⎰。
上述公式表示的是在直角坐标系下的计算公式。
在直角坐标系下,对平面区域可以沿平行于坐标轴的直线来分划该区域,所以积分微元d dxdy σ=。
如果被积区域D 是一个矩形区域,则:c y dD a x b≤≤⎧⎨≤≤⎩,而且被积函数可表为(,)()()f x yg xh y =, 此时,二重积分实际变为两个独立定积分的乘积:(,)()()()()b d bdDa c a cf x y dg xh y d y d x g x d x h y d yσ⎛⎫==⎪⎝⎭⎰⎰⎰⎰⎰⎰, 这是二重积分计算中最简单的情况。
二重积分基本公式表
以下是二重积分的基本公式表:
1. 矩形区域上的常数函数:
∬_R c dA = c ×面积(R)
2. F(x, y) = 1 的情况:
∬_R dA = 面积(R)
3. F(x, y) = x 的情况:
∬_R x dA = x ×面积(R)
4. F(x, y) = y 的情况:
∬_R y dA = y ×面积(R)
5. 直角坐标系下一般函数 F(x, y) 的情况:
∬_R F(x, y) dA
6. 在极坐标系下的基本公式:
∬_D F(r, θ) r dr dθ
7. 边界为曲线的情况:
∬_D F(x, y) dA = ∫[a, b] ∫[c(x), d(x)] F(x, y) dy dx
8. 极坐标系下边界为曲线的情况:
∬_D F(r, θ) r dr dθ = ∫[α, β] ∫[r1(θ), r2(θ)] F(r, θ) r dr dθ
这些基本公式涵盖了二重积分的一些常见情况。
根据具体的函数和区域形状,可以使用这些公式进行二重积分的计算。
需要注意的是,具体的计算过程可能需要根据问题的具体要求进行适当的变量变换或分解,以便于求解。
二重积分算法二重积分算法1. 介绍二重积分是微积分中的一个重要概念,用于计算平面上某个区域内的函数值之和。
它的计算方法有多种,本文将介绍其中的三种常用算法:直角坐标系下的累次积分法、极坐标系下的累次积分法和面积元法。
2. 直角坐标系下的累次积分法直角坐标系下的累次积分法是最基本也是最常用的一种二重积分算法。
它将被积函数视为一个关于两个变量 x 和 y 的函数 f(x,y),并通过两次单变量积分来计算其在指定区域内的值。
具体来说,设被积函数为 f(x,y),要求在区域 D 内进行二重积分,则可以先固定 y 值,对 x 进行单变量积分得到一个关于 y 的函数 g(y),再对 g(y) 在 D 内进行单变量积分即可得到 f(x,y) 在 D 内的值。
公式表示为:∬Df(x,y)dxdy = ∫a∫b f(x,y) dxdy = ∫a∫b g(y) dy其中 a 和 b 分别是 x 轴方向上 D 区域边界线段对应点的横坐标。
3. 极坐标系下的累次积分法极坐标系下的累次积分法适用于计算具有旋转对称性的函数在极坐标系下的积分值。
它将直角坐标系下的二重积分转化为极坐标系下的二重积分,从而简化了计算过程。
具体来说,设被积函数为 f(x,y),要求在区域 D 内进行二重积分,则可以通过变量替换将直角坐标系下的 x 和 y 转化为极径 r 和极角θ,再通过两次单变量积分来计算其在指定区域内的值。
公式表示为:∬Df(x,y)dxdy = ∫θ1∫θ2 f(rcosθ,rsinθ)rdrdθ其中θ1 和θ2 分别是 D 区域边界线段对应点在极坐标系下的极角。
4. 面积元法面积元法是一种基于微小面元面积和被积函数在该面元上近似值之乘积来计算二重积分值的方法。
它适用于被积函数具有较强规律性且区域 D 的形状比较简单的情况。
具体来说,将区域D 划分为若干个微小面元,每个面元的面积为ΔS,其中心点为 (xi,yi),则可以将被积函数在该面元上的近似值视为f(xi,yi),从而得到二重积分的近似值:∬Df(x,y)dxdy ≈ ∑f(xi,yi)ΔS随着微小面元数量的增加,上式的近似值将越来越接近真实值。
二重积分的计算与应用在数学的领域中,二重积分是一种重要的数学工具,广泛应用于各个科学领域。
本文将探讨二重积分的计算方法以及其在实际问题中的应用。
一、二重积分的定义与计算方法二重积分是对二元函数在某个有界区域上的积分运算。
设有函数f(x, y) 定义在平面上的有界闭区域 D 上,记作:∬D f(x, y)dxdy其中,D 表示平面上一个有界区域,f(x, y) 表示在此区域内的函数,dxdy 表示对 x, y 的积分。
二重积分可以通过以下两种常用方法进行计算:1. 直角坐标系下的二重积分计算在直角坐标系下,二重积分可以表示为:∬D f(x, y)dxdy其中,D 表示 x 轴与 y 轴所围成的区域,f(x, y) 表示在此区域内的函数。
使用直角坐标系下的计算方法可以将二重积分转化为两个一重积分的运算,具体过程如下:将 D 区域划分为若干个小矩形或小平行四边形;在每个小矩形或小平行四边形上取一点(xi, yj);设Δxi 和Δyj 分别为小矩形或小平行四边形的宽度和高度;计算 f(xi, yj) 与Δxi Δyj 的乘积的和,即为所求的二重积分。
2. 极坐标系下的二重积分计算在极坐标系下,二重积分可以表示为:∬D f(x, y)dxdy其中,D 表示极坐标系下的一个有界区域,f(x, y) 表示在此区域内的函数。
使用极坐标系下的计算方法可以将二重积分转化为一重积分的运算,具体过程如下:将 D 区域在极坐标系下表示为R ≤ r ≤ S, α ≤ θ ≤ β;将x = rcosθ,y = rsinθ 进行替换,使得函数 f(x, y) 转化为 F(r, θ);计算F(r, θ) 与 r 的积分后再对θ 进行积分,即为所求的二重积分。
二、二重积分的应用1. 几何应用二重积分可用于计算平面图形的面积。
通过在直角坐标系或极坐标系下进行适当的变换,将图形转化为简单的几何图形(如矩形、圆、扇形等),然后进行二重积分的计算,便可得到所求图形的面积。
高等数学之二重积分计算方法总结
在考研中,对于二重积分重点要掌握二重积分的计算方法(直角坐标,极坐标),二重积分计算公式如下:
二重积分的计算主要在于把二重积分化为累次积分计算,而在化为累次积分计算时,坐标系的选择不仅要看积分域D的形状,而且还要看被积函数的形式。
(1)适合用极坐标计算的二重积分被积函数一般应具有以下形式:
f(y/x),f(x/y),f((x^2+y^2)^(1/2))
之所以适合极坐标是由于它们在极坐标下都可化为r或thetha的一元函数。
(2)适合用极坐标计算的二重积分的积分域一般应具有以下形状:
中心在原点的圆域,圆环域或它们的一部分(如扇形);中心在坐标轴上且边界圆过原点的圆域或者它们的一部分。
有时在计算二重积分时候需要利用被积函数的奇偶性和积分区域的对称性,常用的结论有以下两条:
(1)利用积分域的对称性和被积函数的奇偶性:
(2)利用变量的对称性:
题型一:在直角坐标下计算二重积分
例1:
解题思路:先画积分域D,不难看出该积分域关于两个坐标轴都对称,被积函数也有奇偶性,因此,应利用对称性和奇偶性。
解:
题型二:利用极坐标计算二重积分
例2:
解题思路:积分区域D关于y轴左右对称,被积函数(x+1)^2=x^2+2x+1,其中2x是x的奇函数,x^2+1是x的偶函数,先利用奇,偶性化简,然后再用极坐标计算。
解:。
二重积分及其应用
1 什么是二重积分
二重积分是数学中的重要概念,它是对平面上一个有界区域内的函数值进行求和的数学方法。
在坐标系中,二重积分依据被积函数与闭区域的关系,将闭区域分割成若干个小区域,对每个小区域进行积分,然后将所有小区域的积分结果相加得到闭区域内函数的积分。
2 二重积分的计算方法
二重积分可以使用极坐标、直角坐标等方法进行计算。
其中,直角坐标方法常常适合于矩形或直线边界的计算。
而极坐标方法常常适用于中心对称或具有某种环状边界的计算。
二重积分的计算方法通常需要使用到换元法,简化被积函数的形式。
3 二重积分的应用
二重积分在实际应用中有着广泛的应用。
在物理学中,二重积分可以用于求解物理中的质心、质量等物理量。
在工程学中,二重积分可以用于求解物体的面积、体积、抗压能力等问题。
在金融学中,二重积分可以用于建模分析股票、交易指数等复杂金融问题。
总之,二重积分在科学领域中有着广泛的应用。
4 总结
二重积分是一种数学方法,可以将平面上的有界区域内的函数值进行求和。
在实际应用中,二重积分有着广泛的应用,涉及到多个领
域。
在使用二重积分进行计算时,可以根据具体问题选用相应的计算方法,从而简化计算过程。