中考数学专题复习教案 圆内接等腰三角形
- 格式:doc
- 大小:62.65 KB
- 文档页数:4
第四章图形的性质第19节等腰三角形■知识点一:等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB=AC ∠B=∠C;②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD是对称轴.(2)判定①定义:有两边相等的三角形是等腰三角形;②等角对等边:即若∠B=∠C,则△ABC是等腰三角形.注意:三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立.失分点警示:当等腰三角形的腰和底不明确时,需分类讨论. 如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为 .■知识点二:等边三角形(1)性质①边角关系:三边相等,三角都相等且都等于60°.即AB=BC=AC,∠BAC=∠B=∠C=60°;②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.注意:(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=12AB. ■知识点三:角平分线21P COBA(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA ⊥OA ,PB ⊥OB ,则PA =PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上. ■知识点四:垂直平分线PC OBA(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP 垂直且平分AB ,则PA =PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.■考点1.等腰三角形 ◇典例:1. (2018年黑龙江省绥化市)已知等腰三角形的一个外角为130°,则它的顶角的度数为 .【考点】等腰三角形的性质【分析】等腰三角形的一个外角等于130°,则等腰三角形的一个内角为50°,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.解:当50°为顶角时,其他两角都为65°、65°,当50°为底角时,其他两角为50°、80°,所以等腰三角形的顶角为50°或80°.故答案为:50°或80°.【点评】本题考查了等腰三角形的性质,及三角形内角和定理;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.2.(2017年北京市)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D.求证:AD=BC.【考点】等腰三角形的判定与性质.【分析】根据等腰三角形的性质得到∠ABC=C=72°,根据角平分线的定义得到∠ABD=∠DBC=36°,∠BDC=72°,根据等腰三角形的判定即可得到结论.证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠DBC=36°,∴∠A=∠ABD,∴AD=BD,∵∠C=72°,∴∠BDC=72°,∴∠C=∠BDC,∴BC=BD,∴AD=BC.【点评】本题主要考查等腰三角形的性质和判定,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.◆变式训练1.(2018年内蒙古包头)如图,在△ABC中,AB=AC,△ADE的顶点D,E分别在BC,AC上,且∠DAE=90°,AD=AE.若∠C+∠BAC=145°,则∠EDC的度数为()A.17.5° B.12.5°C.12° D.10°2.( 2017年湖北武汉市)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7■考点2.等边三角形◇典例(2018年辽宁省葫芦岛市)如图,∠MON=30°,点B1在边OM上,且OB1=2,过点B1作B1A1⊥OM交ON于点A1,以A1B1为边在A1B1右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM、ON于点B2、A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM、ON于点B3、A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△A n A n+1C n的面积为.(用含正整数n的代数式表示)【考点】规律型:图形的变化类;等边三角形的性质【分析】由题意△A1A2C1是等边三角形,边长为,△A2A3C2是等边三角形,边长为×,△A3A4C3是等边三角形,边长为××=()2×,△A4A5C4是等边三角形,边长为×××=()3×,…,一次看到△A n B n+1C n的边长为()n﹣1×即可解决问题;解:由题意△A1A2C1是等边三角形,边长为,△A2A3C2是等边三角形,边长为×,△A3A4C3是等边三角形,边长为××=()2×,△A4A5C4是等边三角形,边长为×××=()3×,…,△A n A n+1C n的边长为()n﹣1×,∴△A n A n+1C n的面积为×[()n﹣1×]2=()2n﹣2×.【点评】本题考查等边三角形的性质、三角形的面积等知识,解题的关键是学会探究规律的方法,属于中考常考题型.◆变式训练(2018年内蒙古通辽市)如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于M、N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=6,∠C=30°,则△ACD的面积为.■考点3.角平分线◇典例:(2018年山东省德州)如图,为的平分线.,..则点到射线的距离为__________.【考点】角平分线的性质【分析】过C作CF⊥AO,根据勾股定理可得CM的长,再根据角的平分线上的点到角的两边的距离相等可得CF=CM,进而可得答案.解:过C作CF⊥AO.∵OC为∠AOB的平分线,CM⊥OB,∴CM=CF.∵OC=5,OM=4,∴CM=3,∴CF=3.故答案为:3.【点睛】本题主要考查了角平分线的性质,关键是掌握角的平分线上的点到角的两边的距离相等.◆变式训练(2018年山东省东营)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是.■考点4.垂直平分线◇典例:(2018年贵州省安顺)已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A. B.C. D.【考点】作图—复杂作图,线段垂直平分线【分析】利用线段垂直平分线的性质以及圆的性质分别分得出即可.解:A、如图所示:此时BA=BP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;B、如图所示:此时PA=PC,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;C、如图所示:此时CA=CP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;D、如图所示:此时BP=AP,故能得出PA+PC=BC,故此选项正确;故选:D.【点评】此题主要考查了复杂作图,根据线段垂直平分线的性质得出是解题关键.◆变式训练(2018年山东省青岛)已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.一、选择题1.(2018 年广西梧州市)如图,已知 BG 是∠ABC 的平分线,DE⊥AB 于点 E,DF⊥BC 于点 F,DE=6,则 DF 的长度是()A.2 B.3 C.4 D.62.(2018年浙江省湖州市)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°3.(2018年四川省攀枝花市)如图,等腰直角三角形的顶点A.C分别在直线a、b上,若a∥b,∠1=30°,则∠2的度数为()A.30°B.15°C.10°D.20°4.(2018年甘肃省兰州市(a卷))如图,AB∥CD,AD=CD,∠1=65°,则∠2的度数是()A.50°B.60°C.65°D.70°5.(2018年福建省(A卷))如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°二、填空题6.(2018年湖南省湘潭市)如图,在等边三角形ABC中,点D是边BC的中点,则∠BAD= .7.(2018年贵州省遵义市)如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B为度.8.(2018年江苏省南京市)如图,在△ABC中,用直尺和圆规作AB、AC的垂直平分线,分别交AB、AC于点D、E,连接DE.若BC=10cm,则DE= cm.9.(2018年浙江省绍兴市)数学课上,张老师举了下面的例题:例1 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2 等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.三、解答题10.(2018年浙江省嘉兴市)已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.一、选择题1.(2018 年广西梧州市)如图,在△ABC 中,AB=AC,∠C=70°,△AB′C′与△ABC 关于直线 EF对称,∠CAF=10°,连接 BB′,则∠ABB′的度数是()A.30° B.35° C.40° D.45°2.(2018年青海省)如图,把直角三角形ABO放置在平面直角坐标系中,已知∠OAB=300,B点的坐标为(0,2),将∆ABO沿着斜边AB翻折后得到∆ABC,则点C的坐标是()A. B. C. D.3.(2018年黑龙江省大庆市)如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30° B.35° C.45° D.60°4.(2018年湖北省襄阳市)如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3cm,△ABD 的周长为13cm,则△ABC的周长为()A.16cm B.19cm C.22cm D.25cm5.(2018年江苏省扬州市)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC6.(2018年广西玉林市)如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行B.相交 C.垂直 D.平行、相交或垂直7.(2018年四川省巴中市)如图,在Rt△ABC中,∠C=90°,按下列步骤作图:①以点B为圆心,适当长为半径画弧,与AB,BC分别交于点D,E;②分别以D,E为圆心,大于DE的长为半径画弧,两弧交于点P;③作射线BP交AC于点F;④过点F作FG⊥AB 于点G.下列结论正确的是()A.CF=FG B.AF=AG C.AF=CF D.AG=FG二、填空题8.(2018年黑龙江省哈尔滨市)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为.9.(2018年广西桂林市)如图,在ΔABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是__________10.(2018年四川省南充市)如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C= 度.11.(2018年湖南省娄底市)如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,则BF= cm.三、解答题12.(2018年浙江省绍兴市)数学课上,张老师举了下面的例题:例1 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2 等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.13.(2018年湖北省孝感市)如图,△ABC中,AB=AC,小聪同学利用直尺和圆规完成了如下操作:①作∠BAC的平分线AM交BC于点D;②作边AB的垂直平分线EF,EF与AM相交于点P;③连接PB,PC.请你观察图形解答下列问题:(1)线段PA,PB,PC之间的数量关系是;(2)若∠ABC=70°,求∠BPC的度数.14.(2018年江苏省镇江市)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC= °.15.(2018年黑龙江省哈尔滨市)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.。
第20课等腰三角形【回顾与思考】等腰三角形60⎧⎧⎧⎪⎪⎨⎪⎪⎩⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩⎪⎪⎧⎧⎨⎪⎨⎪⎩⎪⎪⎪︒⎧⎪⎪⎨⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎩⎩等边对等角性质三线合一腰与底边不等的等腰三角形等角对等边判定定义三边相等性质三角都相等有一个角等于的等腰等边三角形三角形判定三边都相等(或三角都相等)的三角形 〖知识点〗 等腰三角形、等腰三角形的性质和判定、等边三角形、等边三角形的性质和判定、轴对称、轴对称图形〖考查重点与常见题型〗1、 等腰三角形和等边三角形的性质和判定的应用,证明线段、角相等2、 求线段的长度、角的度数,中考题中多以选择题、填空题为主,有时也考中档解答题,【例题经典】 根据等腰三角形的性质寻求规律例1.在△ABC 中,AB=AC ,∠1=12∠ABC ,∠2=12∠ACB ,BD 与CE 相交于点O ,如图,∠BOC 的大小与∠A 的大小有什么关系?若∠1=13∠ABC ,∠2=13∠ACB ,则∠BOC 与∠A 大小关系如何? 若∠1=1n ∠ABC ,∠2=1n∠ACB ,则∠BOC 与∠A 大小关系如何?【分析】在上述条件由特殊到一般的变化过程中,根据等腰三角形的性质,∠1=∠2,∠ABD=∠ACE , 即可得到∠1=12∠ABC ,∠2=12∠ACB 时,∠BOC=90°+12∠A ; ∠1=13∠ABC ,∠2=13∠ACB 时,∠BOC=120°+13∠A ; ∠1=1n ∠ABC ,∠2=1n ∠ACB 时,∠BOC=1n n-·180°+∠A . 【点评】在例1图中,若AE=1n AB ,AD=1n AC .类似上题方法同样可证得BD=CE .•上述规律仍然存在.会用等腰三角形的判定和性质计算与证明例2.如图,等腰三角形ABC 中,AB=AC ,一腰上的中线BD•将这个等腰三角形周长分成15和6两部分,求这个三角形的腰长及底边长.【分析】要分AB+AD=15,CD+BC=6和AB+AD=6,CD+BC=15两种情况讨论.利用等腰三角形的性质证线段相等例3.如图,P是等边三角形ABC内的一点,连结PA、PB、PC,•以BP为边作∠PBQ=60°,且BQ=BP,连结CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论.(2)若PA:PB:PC=3:4:5,连结PQ,试判断△PQC的形状,并说明理由.【分析】(1)把△ABP绕点B顺时针旋转60°即可得到△CBQ.•利用等边三角形的性质证△ABP≌△CBQ,得到AP=CQ.(2)连接PQ,则△PBQ是等边三角形.PQ=PB,AP=C Q故CQ:PQ:PC=PA:PB:PC=3:4:5,∴△PQC是直角三角形.【点评】利用等边三角形性质、判定、三角形全等、直角三角形的判定等知识点完成此题的证明.例4.如图,A、B是平面上两个定点,在平面上找一点C,使△A BC构成等腰直角三角形,且C为直角顶点,请问这样的点有几个?并在图中作出所有符合条件的点.(要求:用尺规作图,保留作图痕迹,不写作法)答案:有2个作图}连结AB 作AB的垂直平分线以AB为直径作圆圆与AB的中垂线的交点就是所求作的点。
中考一轮复习教案:等腰三角形与直角三角形一、教学目标1、学生能够掌握等腰三角形和直角三角形的定义、性质和判定定理。
2、能够运用等腰三角形和直角三角形的相关知识解决简单的几何问题。
3、培养学生的逻辑推理能力和空间想象能力。
二、教学重难点1、重点(1)等腰三角形的性质和判定。
(2)直角三角形的性质和判定。
2、难点(1)等腰三角形和直角三角形的综合应用。
(2)运用相关定理进行推理和证明。
三、教学方法讲授法、练习法、讨论法四、教学过程(一)知识回顾1、等腰三角形的定义:有两边相等的三角形叫做等腰三角形。
2、等腰三角形的性质(1)等腰三角形的两腰相等。
(2)等腰三角形的两底角相等(简写成“等边对等角”)。
(3)等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”)。
3、等腰三角形的判定(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)。
(2)有两条边相等的三角形是等腰三角形。
4、直角三角形的定义:有一个角是直角的三角形叫做直角三角形。
5、直角三角形的性质(1)直角三角形的两个锐角互余。
(2)直角三角形斜边上的中线等于斜边的一半。
(3)直角三角形中,如果一个锐角等于 30°,那么它所对的直角边等于斜边的一半。
(4)直角三角形两条直角边的平方和等于斜边的平方(勾股定理)。
6、直角三角形的判定(1)如果三角形的三边长 a、b、c 满足 a²+ b²= c²,那么这个三角形是直角三角形。
(2)如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形。
(二)例题讲解例1:已知等腰三角形的一个内角为70°,求另外两个内角的度数。
解:分情况讨论:(1)当70°角为顶角时,底角的度数为:(180°70°)÷2 =55°,所以另外两个内角的度数分别为 55°,55°。
中考数学一轮复习第2019腰三角形教案1第2019等腰三角形一、复习目标1.理解等腰三角形的概念,掌握等腰三角形的有关性质2.熟练运用等腰三角形的性质和判定方法解决有关问题二、课时安排1课时三、复习重难点能灵活运用等腰三角形的性质和判定来解决问题。
四、教学过程(一)知识梳理等腰三角形的概念与性质有____相等的三角形是等腰三角形.相等的两边叫腰,第三边为底(6)等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成:___________)等边三角形线段的垂直平分线经过线段的中点与这条线段垂直的直线叫做这条线段的垂直平分线(二)题型、技巧归纳考点1等腰三角形的性质的运用技巧归纳:(1)利用线段的垂直平分线进行等线段转换,进而进行角度转换.(2)在同一个三角形中,等角对等边与等边对等角进行互相转换.考点2等腰三角形判定技巧归纳:要证明一个三角形是等腰三角形,必须得到两边相等,而得到两边相等的方法主要有(1)通过等角对等边得两边相等;(2)通过三角形全等得两边相等;(3)利用垂直平分线的性质得两边相等.考点3等腰三角形的多解问题技巧归纳:因为等腰三角形的边有腰与底之分,角有底角和顶角之分,等腰三角形的高线要考虑高在形内和形外两种情况.故当题中条件给出不明确时,要分类讨论进行解题,才能避免漏解情况.考点4等边三角形的判定与性质技巧归纳:等边三角形中隐含着三边相等和三个角都等于60°的结论,所以要充分利用这些隐含条件,证明全等或者构造全等.(三)典例精讲例1如图在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系,并说明理由.[解析] 先通过平行条件得到两对内错角相等,结合线段中点得到的线段相等,可证明两个三角形全等;由角相等的条件可证明△DFG是等腰三角形,再结合点E是DF的中点,根据等腰三角形“三线合一”的性质可证明结论.解: (1)证明:∵AD∥BC,∴∠ADE=∠BFE,∠DAE=∠FBE.∵E是AB的中点,∴AE=BE.∴△ADE≌△BFE.(2)EG与DF的位置关系是EG⊥DF.∵∠GDF=∠ADF,又∵∠ADE=∠BFE,∴∠GDF=∠BFE,∴GD=GF.由(1)得,DE=EF,∴EG⊥DF.例2、已知:如图锐角△ABC的两条高BD、CE相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的平分线上,并说明理由.[解析] (1)利用△BDC≌△CEB 证明∠DCB=∠EBC;(2)连接AO,通过HL证明△ADO≌△AEO,从而得到∠DAO=∠EAO,利用角平分线上的点到两边的距离相等,证明结论.解:(1)证明:∵OB=OC,∴∠OBC=∠OCB.∵BD、CE是两条高,∴∠BDC=∠CEB=90°.又∵BC=CB,∴△BD C≌△CEB (AAS).∴∠DBC=∠ECB, ∴AB=AC.∴△ABC是等腰三角形.(2)点O是在∠BAC的平分线上.连接AO.∵△BDC≌△CEB,∴DC=EB.∵OB =OC ,∴ OD =OE.又∵∠BDC =∠CEB =90°,AO =AO , ∴△ADO ≌△AEO(HL).∴∠DAO =∠EAO. ∴点O 是在∠BAC 的平分线上.例3 已知等腰△ABC 中,AD ⊥BC 于点D ,且AD =0.5 BC ,则△ABC 底角的度数为( ) A .45° B.75° C .45°或75° D.60°[解析] 首先根据题意画出图形,注意分别从∠BAC 是顶角与∠BAC 是底角去分析.如图(1):AB =AC ,∵AD ⊥BC ,∴BD =CD =12BC ,∠ADB =90°.∵AD =12BC ,∴AD =BD ,∴∠B =45°,即此时△ABC 底角的度数为45°; 如图(2),AC =BC , ∵AD ⊥BC ,∴∠ADC =90°.∵AD =12BC ,∴AD =12AC ,∴∠C =30°.∴∠CAB =∠B =180°-∠A 2=75°,即此时△ABC 底角的度数为75°. 综上,△ABC 底角的度数为45°或75°. 故选C.例4 数学课上,李老师出示了如下框中的题目.在等边三角形ABC 中,点E 在AB 上,点D在CB的延长线上,且ED=EC,如图试确定线段AE与DB的大小关系,并说明理由.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图20-4①,确定线段AE与DB的大小关系,请你直接写出结论:AE________DB(填“>”“<”或“=”)(1)(2)(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE________DB(填“>”“<”或“=”).理由如下:如图20-4②,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).(1)=(2)=方法一:等边三角形ABC中,∠ABC=∠ACB=∠BAC=60°,AB=BC=AC.∵EF∥BC,∴∠AEF=∠AFE=60°=∠BAC,∴△AEF是等边三角形,∴AE=AF=EF,∴AB-AE=AC-AF,即BE=CF.又∵∠ABC=∠EDB+∠BED=60°,∠ACB=∠ECB+∠FCE=60°,且ED=EC,∴∠EDB=∠ECB,∴∠BED=∠FCE.又∵∠DBE=∠EFC=120°,∴△DBE≌△EFC,∴DB=EF,∴AE=BD.方法二:在等边三角形ABC中,∠ABC=∠ACB=60°,∠ABD=120°.∵∠ABC=∠EDB+∠BED,∠ACB=∠ECB+∠ACE,ED=EC,∴∠EDB=∠ECB,∴∠BED=∠ACE.∵FE∥BC,∴∠AEF=∠AFE=60°=∠BAC,∴△AEF是正三角形,∠EFC=180°-∠ACB=120°=∠ABD.∴△EFC≌△DBE,∴DB=EF,而由△AEF是正三角形可得EF=AE.∴AE=DB.(3)3)1或3.(四)归纳小结本部分内容要求熟练掌握等腰三角形的概念、性质与判定、等边三角形、线段的垂直平分线的运用。
《中考复习——等腰三角形》教案〖知识点〗等腰三角形、等腰三角形的性质和判定、等边三角形、等边三角形的性质和判定、轴对称、轴对称图形〖大纲要求〗1.理解等腰三角形的概念,掌握等腰三角形的两底角相等、等腰三角形三线合一等性质,掌握两个角相等的三角形是等腰三角形等判定定理,并能运用它们进行简单的证明和计算;2.理解等边三角形的概念,掌握等边三角形的各角都是60°等性质,掌握三个角都相等的三角形或一个角是60°的等腰三角形都是等边三角形等判定,能运用它们进行简单的证明和计算;3.了解轴对称及轴对称图形的概念,会判断轴对称图形.〖考查重点与常见题型〗等腰三角形和等边三角形的性质和判定的应用,证明线段、角相等,求线段的长度、角的度数,中考题中多以选择题、填空题为主,有时也考中档解答题,如:(1)如果,等腰三角形的一个外角是125°,则底角为度;(2)等腰三角形一腰上的高与底边的夹角为45°,则这个三角形是()A.锐角三角形 B.钝角三角形 C.等边三角形 D.等腰直角三角形〖预习练习〗1.一个正三角形的边长为a,它的高是()(A) 3 (B)32(C)12(D)342.如果等腰三角形一腰长为8,底边长为10,那么连结这个三角形各边的中点所成的三角形各边的中点形成的三角形的周长为()(A)26 (B)14 (C)13 (D)93.等腰直角三角形的一条直角边为1cm,则斜边上的高为4.若等腰三角形的底角为15°,腰长为2,则腰上的高为5.已知等腰三角形的一边等于4cm,一边等于9cm,那么它的周长等于 cm6.等腰三角形的底边长为3,周长为11,则一腰长为7.等腰三角形的周长为2+ 3 ,腰长为1,底角等于度8.已知如图,在△ABC中,∠B=90°,AB=BC, BD=CE,M是AC的中点,求证:△DEM是等腰三角形考点训练1.等腰三角形周长是29,其中一边是7,则等腰三角形的底边长是()(A)15 (B)15或7 (C)7 (D)112.在△ABC中,AB=AC,BD平分∠ABC,若∠BDC=75°,则∠A的度数为()(A)30°(B)40°(C)45 °(D)60°3.等腰△ABC的顶角∠A=15°,P是△ABC内部的一点,且∠PBC=∠PCA,则∠BPC的度数为()(A)100°(B)130°(C)115 °(D)140°4.等腰三角形的对称轴有()(A)1条(B)2条(C)3条(D)1条或3条5.在△ABC中,AB=AC,用∠A表示∠B,则∠B=6.如图,CD、BD平分∠BCA及∠ABC,EF过D点且EF∥BC,则图中的等腰三角形有个,它们是7.如图△ABC中,AB=AC,∠A=36°,BD平分∠ABC,DE⊥AB于E,则∠C=,∠BDE=,AE=;若△BDC周长为24,CD=4,则BC=,△ABD的周长为,△ABC的周长为8.等腰三角形一腰上的中线把这个三角形的周长分为15厘米和11厘米两部分,则此三角形的底边长为9.如图,等腰三角形ABC中,AB=AC,∠A=90°,BD平分∠ABC,DE⊥BC且BC=10,求△DCE的周长.10.等边三角形ABC中,D是AC中点,E为BC延长线一点,且DB=DE,求证:△DCE是等腰三角形.解题指导1.如图,在△ABC中,∠ACB=90°,CD⊥AB于D,AF平分∠BAC交CD于E,交BC于F,EG∥AB交BC于G,求证:BG=CF.2.已知如图△ABC是边长为a的等边三角形,△BCD的顶角∠BDC=120°,DB=DC以D为顶点作一个60°的角,角的两边DM、DN分别交AB于M,交AC于N,连结MN,求△ABD的周长.3.如图在△ABC中,AE平分∠BAC,∠DCB=∠B-∠ACB,求证:△DCE是等腰三角形.4.如图在△ABC中,CD⊥AB于D,且E、F、G分别是AC、BC、AB的中点,求证:∠DEF=∠BGF独立训练1.在△ABC中,∠B=36°,D、E在BC边上,且AD和AE把∠BAC三等分,则图中等腰三角形的个数()(A )3 (B )4 (C )5 (D )62.如图,在△ABC 中,AB=AC ,BD=BC ,AD=DE=EB ,则∠A 等于( )(A )30° (B )36° (C )45 ° (D )54°3.等腰三角形的一个内角为70°,它的一腰上的高与底边所夹的角的度数是( )(A )35° (B )20° (C )35 °或 20°(D )无法确定4.等腰三角形的顶角等于一个底角的3倍,则顶角的度数为 ,底角的度数为2. 等腰三角形三个内角与顶角的外角之和等于260°,则它的底角度数为3. 等腰△ABC 中,AB=AC ,BC=6cm ,则△ABC 的周长的取值范围是7.如图,等边△ABC 中,O 点是∠ABC 及∠ACB 的角平分线的交点,OM ∥AB交BC 于M ,ON ∥AC 交BC 于N ,求证:M 、N 是BC 的三等分点.8.已知△ABC 中,AB=AC ,D 、M 分别为AC 、BC 的中点,E 为BC 延长线上一点,且CE=12BC ,求证:(1)∠DMC=∠DCM ;(2)DB=DE9.如图,在△ABC 中,∠A =90°,且AB=AC ,BE 平分∠ABC 交AC 于F ,过C 作BE 的垂线交BE 于E ,求证:BF=2CE10.如图,△ABC 为等边三角形,延长BC 到D ,延长BA 到E ,AE=BD ,连结EC 、ED ,求证:CE=DE。
滕州木石九年级数学《等腰三角形》教案授课时间2012-4-22 周一第三节考点分析:1. 理解等腰三角形的概念,掌握等腰三角形的性质及判定,并能运用它们进行简单的证明和计算;2. 理解等边三角形的概念,掌握等边三角及判定,能运用它们进行简单的证明和计算;3. 了解轴对称及轴对称图形的概念,会判断轴对称图形。
复习目标:1.能证明等腰三角形性质定理和判定定理;2.了解分析的思考方法;3.经历思考、猜想,并对操作活动的合理性进行证明的过程,不断感受证明的必要性,感受合情推理和演绎推理都是人们正确认识的事物的重要途径.二、学习重点:了解分析的思考方法;学习难点:合理添加辅助线.三、教学过程1.先回顾一下基础知识。
1师.等腰三角形定义与性质判定是什么?生1(1)定义:有两条边相等的三角形叫做等腰三角形。
生2(2)性质:①等腰三角形的两个底角相等。
②等腰三角形的顶角平分线,底边上的中线,底边上的高互相重合(三线合一)它所在的直线是等腰三角形的对称轴。
生3(3)判定:有两个内角相等的三角形是等腰三角形。
2. 师等边三角形性质与判定是什么?生4(1)定义:三条边都相等的三角形叫做等边三角形。
生5(2)性质:等边三角形的三个内角都相等,并且每个内角都等于60°。
生6(3)判定:①有一个角等于60°的等腰三角形是等边三角形。
②三个角都相等的三角形是等边三角形。
设计目的回顾等腰三角形性质与判断,形成知识网络。
2. 例1:如图,已知锐角△ABC的两条高BD,CE相交于点O,且OB=OC。
(1)求证:△ABC是等腰三角形。
(2)判断点O是否在∠BAC的角平分线上。
师证明等腰三角形有哪些方法?B 生 7回答判定方法师 由已知可证明那两个三角形全等?生8三角形OBE, 三角形 OCD 。
师 OB OC 相等吗?生9回答 设计目的 考擦等腰三角形判定方法3.例2:如图,在四边形ABCD 中,P 是对角线BD 的中点,E 、F 分别是AB 、CD 的中点,AD=BC, ∠PEF=18°,则∠PFE= 。
中考数学复习考点知识与题型专题讲解专题22等腰三角形【知识要点】等腰三角形概念:有两边相等的三角形角等腰三角形。
等腰三角形性质:1:等腰三角形的两个底角相等(简写成“等边对等角”)2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
(三线合一)等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”). 等边三角形概念:三条边都相等的三角形,叫等边三角形。
它是特殊的等腰三角形。
等边三角形性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60º。
(2)三个角都相等的三角形是等边三角形。
(3)有一个角是60º的等腰三角形是等边三角形。
(4)在直角三角形中,如果一个锐角等于30º,那么它所对的直角边等于斜边的一半。
(补充:(1)三角形三个内角的平分线交于一点,并且这一点到三边的距离等。
(2)三角形三个边的中垂线交于一点,并且这一点到三个顶点的距离相等。
(3)常用辅助线:①三线合一;②过中点做平行线【考查题型】考查题型一等腰三角形的定义【解题思路】考查等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.典例1.(2021·贵州黔南布依族苗族自治州·中考真题)已知等腰三角形的一边长等于4,一边长等于9,则它的周长为()A.9B.17或22C.17D.22变式1-1.(2021·广西玉林市·中考真题)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35度方向,B岛在A岛的北偏东80度方向,C岛在B岛的北偏西55度方向,则A,B,C三岛组成一个()A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形变式1-2.(2021·青海中考真题)等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A.55°,55°B.70°,40°或70°,55°C.70°,40°D.55°,55°或70°,40°变式1-3.(2021·湖南张家界市·中考真题)已知等腰三角形的两边长分别是一元二次方程2680x x -+=的两根,则该等腰三角形的底边长为()A .2B .4C .8D .2或4考查题型二 根据等边对等角求角度典例2.(2021·广西中考真题)如图,AB 是⊙O 的弦,AC 与⊙O 相切于点A ,连接OA ,OB ,若∠O =130°,则∠BAC 的度数是( )A .60°B .65°C .70°D .75°变式2-1.(2021·甘肃兰州市·中考真题)如图,//AB CD ,AD CD =,165∠=︒,则2∠的度数是()A .50︒B .60︒C .65︒D .70︒变式2-2.(2021·山东临沂市·中考真题)如图,在ABC 中,AB AC =,40A ︒∠=,//CD AB ,则BCD ∠=( )A .40︒B .50︒C .60︒D .70︒变式2-3.(2021·浙江温州市·中考真题)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作□BCDE,则∠E的度数为()A.40°B.50°C.60°D.70°考查题型三根据三线合一求解典例3.(2021·广东深圳市·中考真题)如图,已知AB=AC,BC=6,尺规作图痕迹可求出BD=()A.2B.3C.4D.5变式3-1.(2021·铜仁市·中考真题)已知等边三角形一边上的高为)A.2B.3C.4D.变式3-2.(2021·四川中考真题)已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P 为该平面内一动点,且满足PC=2,则PM的最小值为()A.2B.﹣2C.+2D.考查题型四格点中画等腰三角形典例4在如图所示的网格纸中,有A、B两个格点,试取格点C,使得△ABC是等腰三角形,则这样的格点C的个数是()A.4B.6C.8D.10变式4-1.(2021·山东枣庄市一模)如图,A、B是4×5网格中的格点,网格中的每个小正方形的边长都是1,图中使以A、B、C为顶点的三角形是等腰三角形的格点C有()A.2个B.3个C.4个D.5个变式4-2.如图,正方形网格中的每个小正方形边长都是1.已知A、B是两格点,若△ABC为等腰三角形,且S△ABC=1.5,则满足条件的格点C有()A.1个B.2个C.3个D.4个考查题型五根据等角对等边证明等腰三角形典例5.要使得△ABC是等腰三角形,则需要满足下列条件中的()A.∠A=50°,∠B=60°B.∠A=50°,∠B=100°C.∠A+∠B=90°D.∠A+12∠B=90°变式5-1.(2021·无锡市模拟)下列能断定△ABC为等腰三角形的是()A.∠A=40°,∠B=50°B.∠A=2∠B=70°C.∠A=40°,∠B=70°D.AB=3,BC=6,周长为14变式5-2.如图,在△ABC 中,AB=AC,BO、CO 分别平分∠ABC、∠ACB,DE 经过点O,且DE∥BC,DE 分别交AB、AC 于D、E,则图中等腰三角形的个数为( )A .2B .3C .4D .5考查题型六 根据等角对等边求边长典例6.(2021·山东青岛市·中考真题)如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点.O 若5AE =,3BF =,则AO 的长为()A C ..变式6-1.(2021·山东济宁市·中考真题)一条船从海岛A 出发,以15海里/时的速度向正北航行,2小时后到达海岛B 处.灯塔C 在海岛在海岛A 的北偏西42°方向上,在海岛B 的北偏西84°方向上.则海岛B 到灯塔C 的距离是()A .15海里B .20海里C .30海里D .60海里变式6-2.(2021·河北九年级其他模拟)如图,在▱ABCD 中,AB =8,BC =5,以点A 为圆心,以任意长为半径作弧,分别交AD 、AB 于点P 、Q ,再分别以P 、Q 为圆心,以大于12PQ 的长为半径作弧,两弧在∠DAB 内交于点M ,连接AM 并延长交CD 于点E ,则CE 的长为( )A .3B .5C .2D .6.5考查题型七 等腰三角形性质与判定的综合典例7.(2021·浙江绍兴市·中考真题)问题:如图,在△ABD 中,BA =BD .在BD 的延长线上取点E ,C ,作△AEC ,使EA =EC ,若∠BAE =90°,∠B =45°,求∠DAC 的度数.答案:∠DAC =45°思考:(1)如果把以上“问题”中的条件“∠B =45°”去掉,其余条件不变,那么∠DAC 的度数会改变吗?说明理由;(2)如果把以上“问题”中的条件“∠B =45°”去掉,再将“∠BAE =90°”改为“∠BAE =n °”,其余条件不变,求∠DAC 的度数.变式7-1.(2021·江苏淮安市·中考真题)如图,三条笔直公路两两相交,交点分别为A 、B 、C ,测得30CAB ∠=︒,45ABC ∠=︒,8AC =千米,求A 、B 两点间的距离.(参考数据: 1.4≈,1.7≈,结果精确到1千米).变式7-2.(2021·辽宁鞍山市·中考真题)图1是某种路灯的实物图片,图2是该路灯的平面示意图,MN 为立柱的一部分,灯臂AC ,支架BC 与立柱MN 分别交于A ,B 两点,灯臂AC 与支架BC 交于点C ,已知60MAC ∠=︒,15ACB ∠=︒,40cm AC =,求支架BC 的长.(结果精确到1cm ,参考1.414≈ 1.732≈2.449≈)考查题型八 等边三角形的性质典例8.(2021·福建中考真题)如图,面积为1的等边三角形ABC 中,,,D E F 分别是AB ,BC ,CA 的中点,则DEF ∆的面积是()A .1B .12C .13D .14变式8-1.(2021·山西中考真题)中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到12AC BD cm ==,C ,D 两点之间的距离为4cm ,圆心角为60︒,则图中摆盘的面积是()A .280cm πB .240cm πC .224cm πD .22cm π变式8-2.(2021·甘肃天水市·中考真题)如图,等边OAB 的边长为2,则点B 的坐标为()1,1B.C.D.A.()考查题型九等边三角形的性质与判定的综合典例9.(2021·内蒙古中考真题)如图,一个人骑自行车由A地到C地途经B地当他由A地出发时,发现他的北偏东45︒方向有一电视塔P,他由A地向正北方向骑行了到达B地,发现电视塔P在他北偏东75︒方向,然后他由B地向北偏东15︒方向骑行了6km到达C地.(1)求A地与电视塔P的距离;(2)求C地与电视塔P的距离.变式9-1.(2021·内蒙古鄂尔多斯市·中考真题)(1)(操作发现)如图1,在边长为1个单位长度的小正方形组成的网格中,ABC的三个顶点均在格点上.①请按要求画图:将ABC绕点A顺时针方向旋转90°,点B的对应点为点B',点C的对应点为点C'.连接BB';∠AB B=°.②在①中所画图形中,'(2)(问题解决)如图2,在Rt ABC中,BC=1,∠C=90°,延长CA到D,使CD=1,将斜边AB绕点A顺时针旋转90°到AE ,连接DE ,求∠ADE 的度数.(3)(拓展延伸)如图3,在四边形ABCD 中,AE ⊥BC ,垂足为E ,∠BAE =∠ADC ,BE =CE =1,CD =3,AD =kAB (k 为常数),求BD 的长(用含k 的式子表示).考查题型十 含30°角的直角三角形典例10.(2021·海南中考真题)如图,在Rt ABC 中, 90,30,1,C ABC AC cm ∠=︒∠=︒=将Rt ABC 绕点A 逆时针旋转得到Rt AB C ''△,使点C '落在AB 边上,连接BB ',则BB '的长度是( )A .1cmB .2cmCD .变式10-1.(2021·湖北中考真题)如图,点,,,A B C D 在O 上,OA BC ⊥,垂足为E .若30ADC ∠=︒,1AE =,则BC =( )A .2B .4C .11 / 11 变式10-2.(2021·山东枣庄市·中考真题)如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,30AOB B ∠=∠=︒,2OA =,将AOB ∆绕点O 逆时针旋转90︒,点B 的对应点B '的坐标是()A.(1,2-+ B.() C.(2+D.(-。
DCOPEBA中考圆专题——等腰三角形与圆教学目标:1、复习等腰三角形的“三线合一”性质在圆的证明与计算中的运用。
2、在“三线合一”的背景下灵活解决圆的综合问题。
【例1】如图,PA 为⊙O 的切线,A 为切点,过A 作OP 的垂线AB ,垂足为点C ,交⊙O 于点B ,延长BO 交⊙O 于点D ,与PA 的延长线交于点E , (1)求证:PB 为⊙O 的切线,; (2)若tan ∠ABE= 12,求sinE 的值。
举一反三:已知:如图, AB 是⊙O 的直径, AB=AC, BC 交⊙O 于点D, 延长CA 交⊙O 于点F, 连接DF, DE ⊥CF 于点E .(1) 求证:DE 是⊙O 的切线; (2) 若AB=10, 4cos 5C ∠=, 求EF 的长.E DO BA F【例2】如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于D,交AC于E,过点D作DF⊥AC于F。
(1)求证:DF为⊙O的切线,;(2)若5AB=52,求AE的长.举一反三:如图,在△ABC中,AB=AE,以AB为直径作⊙O交BE于C,过C作CD⊥AE于D,DC 的延长线与AB的延长线交于点P .(1)求证:PD为⊙O的切线,;(2)若AE=5,BE=6,求DC的长.【例3】已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=4,cosC=13时,求⊙O的半径.【例4】已知:如图,在△ABC中,AB=AC,点D是边BC的中点.以BD为直径作圆O,交边AB于点P,连结PC,交AD于点E.(1)求证:AD是圆O的切线;(2)若PC是圆O的切线,BC=8,求DE的长.,AF 【例5】如图,在△ABC中,AB=AE,以AB为直径作⊙O交AB于D,DE BE平分∠ABC,且AF⊥EC。
4、认真思考,看谁能找到所有的答案。
一定要加油呦!
已知平面直角坐标系中有一点A (1,1),等腰△OAB 的顶点B 在x 轴上.这样的B 点可能有几个?并分别画出图形.
),02( ,),02(,),01(,),02(
若隐去上题中的圆这个大背景,思考并回答下列问题: 1、以AB 为底,C 点在什么位置? 2、以AB 为腰,∠B 为顶角时,C 点在什么位置? 3、以AB 为腰,∠A 为顶角时,C 点在什么位置?
学生讲解 ①C 为等腰三角形的一个顶点; ②C 点在圆上。
3题隐去了圆这个大的背景构造等腰三角形,则C 点应满足的条件去掉一个。
把线段放入平面直角坐标系中继续探究,使学生利用3题的结论解题。
引导学生举一反三,善于捕捉问题关键,提高解题能力。
活动三:
课堂小结
“本节课你的收获”是什么?
学生归纳总结本节课所学内容
理清知识脉络,强化所学知识和技能。
培养学生总结归纳概括能力。
板书设计
圆内接等腰三角形
A B
B4B3B1
A
B2y
o
x
一线两圆
以AB 为底(C 为顶角处顶点)
作线段的垂直平分线
以AB 为腰
A 为顶角处顶点
B 为顶角处顶点
以A 为圆心,AB 长为半径画圆
以B 为圆心,AB 长为半径画圆。