控制系统的微分方程
- 格式:ppt
- 大小:931.50 KB
- 文档页数:36
控制系统的微分方程数学模型:描述系统输入、输出变量以及内部各变量之间关系的数学表达式。
描述各变量动态关系的表达式称为动态数学模型,常用的动态模型为微分方程。
建立数学模型的方法分为解析法和实验法。
解析法:依据系统及元件各变量之间所遵循的物理、化学定律列写出变量间的数学表达式,并实验验证。
实验法:对系统或元件输入一定形式的信号(阶跃信号、单位脉冲信号、正弦信号等),根据系统或元件的输出响应,经过数据处理而辨识出系统的数学模型。
建立微分方程的步骤:1、分析各元件的工作原理,明确输入、输出量;2、按照信号的传递顺序,列写各变量的动态关系式;3、化简(线性化、消去中间变量),写出输入、输出变量间的数学表达式。
例:RLC 无源网络如图所示,图中R 、L 、C 分别为电阻(Ω)、电感(H)、电容(F);建立输入电压u r (V)和输出电压u c (V)之间的动态方程。
解由基尔霍夫定律得:()1()()()r di t u t Ri t L i t dt dt C=++⎰1()()c C u t i t dt=⎰消去中间变量i (t ),可得:222()d ()2()()c c c rd u t u t T T u t u t dt dt ζ++=22()()()()c c c rd u t du t LC RC u t u t dt dt ++=令,则微分方程为:2,2LC T RC T ζ==式中:T 称为时间常数,单位为s,称为阻尼比,无量纲。
ζ例设有一弹簧、质量块、阻尼器组成的系统如图所示,当外力F 作用于系统时,系统将产生运动。
建立外力F 与质量块位移y (t )之间的动态方程。
其中弹簧的弹性系数为k ,阻尼器的阻尼系数为f ,质量块的质量为m 。
解对质量块进行受力分析,作用在质量块上的力有:外力: F 弹簧恢复力:Ky(t)阻尼力:()dy t f dt由牛顿第二定律得:22()()()d y t dy t m F f Ky t dt dt =−−22()()()d y t dy t m f Ky t Fdt dt ++=222()()2()d y t dy t T T y t kFdt dt ζ++=令,,/T m K =2/T f K ζ=1/k K =/2f mKζ=则微分方程可以写为该方程描述了由质量块、弹簧和阻尼器组成系统的动态关系,它是一个二阶线性定常微分方程。
第四节 控制系统的微分方程及线性化方程一、基本概念1、系统的微分方程——在时域内用来描述系统及其输入、输出三者之间的动态关系的数学模型。
(包括系统动态方程、运动方程或动力学模型)2、建立微分方程——根据支配系统动态特性的各种物理规律(力学、电学、液压等各种原理和规律),明确输入(一般为已知函数)和输出(一般作待求的未知函数),列出微分方程,并整理为标准形式(含输出项在等式左边,含输入项在等式右边,并按微分降幂排列)。
二、系统分类1、线性系统可用线性微分方程描述的系统。
(1)线性定常系统—线性微分方程中的系数与时间无关的系统。
(2)线性时变系统—线性微分方程中的系数与时间相关的系统。
特点:可应用线性加原理,分别处理各项输入引起的输出,最后将结果叠加。
2、非线性系统必须用非线性微分方程描述的系统,不能使用叠加原理。
本课程属经典控制论范畴,主要研究线性定常系统!三、微分方程的建立1、位移系统中元件的复阻抗(1)弹簧)的正方向相同,无论时受压还是受拉,都有:()()=f t Kx t即: ()()=F s Kx s(K为弹簧刚度系数)(为速度阻尼系数) B(M为质量)输入:()f t作用力 输出:()x t线位移根据牛顿第二定律F ma =设质量块正方向移动()x t ,()f t 作用力要克服弹簧和阻尼器的阻力K f 和B f 。
即:()()()()()K B f t f f maf t Kx t Bx t Mx t −−=⇒−−=移项标准化:()()()()Mxt Bx t Kx t f t ++=J K ——扭转弹簧刚度系数(N m ⋅/)rad τ——外加力矩(N m ⋅)J B ——转动粘性阻尼(/) N m s ⋅⋅rad 解:输入为力矩τ,输出为转角()t θ 根据转矩公式:M J ε=⋅力矩τ要使系统进行转动的话,必须克服弹簧和阻尼器的阻力矩。
()()()()J J J J K t B w J K t B t J t τθετθθ−⋅−⋅=⋅⇒−⋅−⋅= θ整理得:()()()J JJ t B t K t θθθτ+⋅+⋅= 例3:已知电机转矩为,负载转矩为m T L T ,为齿轮齿数,为各轴系粘性转动动阻尼系数,为各轴系转动惯量,i Z i B i J i θ为各轴系的角位移。