2015年甘肃省天水市中考数学试卷及解析
- 格式:doc
- 大小:574.00 KB
- 文档页数:22
2015-2016学年甘肃省天水市麦积区九年级(上)期中数学试卷一、选择题:每小题3分,共36分。
1.(3分)下列根式是最简二次根式的是()A.B. C.D.2.(3分)下列式子中是一元二次方程的是()A.xy+2=1 B.(x2+5)x=0 C.x2﹣4x﹣5 D.x2=03.(3分)下列二次根式中与是同类二次根式的是()A. B. C. D.4.(3分)使等式成立的条件是()A.x>﹣1且x≠3 B.x≥﹣1且x≠3 C.x>3 D.x≥35.(3分)在△ABC中,D,E分别是AB,AC上的点,且DE∥BC,则下列结论不正确的是()A.=B.=C.=D.=6.(3分)用配方法解方程3x2﹣6x+1=0,则方程可变形为()A.(x﹣3)2= B.3(x﹣1)2=C.(x﹣1)2=D.(3x﹣1)2=17.(3分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,则k 的取值范围是()A.k>B.k≥C.k>且k≠1 D.k≥且k≠18.(3分)某商品经过连续两次降价,销售单价由原来的125元降到80元.设平均每次降价的百分率为x,由题意列方程:()A.125(1﹣x)2=80 B.125(1﹣2x)=80 C.125(1﹣2x)2=80 D.80(1﹣x)2=1259.(3分)一元二次方程(m+1)x2+3x+m2﹣3m﹣4=0的一个根是0,则m的值为()A.4或﹣1 B.4 C.﹣1 D.﹣4或﹣110.(3分)一个三角形的两边长为3和8,第三边的边长是x(x﹣9)﹣13(x ﹣9)=0的根,则这个三角形的周长是()A.20 B.20或24 C.9和13 D.2411.(3分)一元二次方程x2﹣2x﹣4=0和x2﹣x+2=0所有实数根的乘积等于()A.﹣8 B.﹣4 C.8 D.412.(3分)已知关于x的方程x2+px﹣15=0的两根之差的绝对值是8,则P的值是()A.±2 B.2 C.﹣2 D.±二、填空题:每小题4分,共32分。
2015年兰州市初中毕业生学业考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共60分)一、选择题:本大题共15小题,每小题4分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数解析式中,一定为二次函数的是()A.y=3x-1B.y=ax2+bx+cC.s=2t2-2t+1D.y=x2+1x2.由五个同样大小的立方体组成如图的几何体,则关于此几何体三种视图叙述正确的是()A.左视图与俯视图相同B.左视图与主视图相同C.主视图与俯视图相同D.三种视图都相同3.在下列二次函数中,其图象的对称轴为x=-2的是()A.y=(x+2)2B.y=2x2-2C.y=-2x2-2D.y=2(x-2)24.如图,△ABC中,∠B=90°,BC=2AB,则cos A=()A.√52B.12C.2√55D.√555.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B的坐标为(5,0),则点A的坐标为()A.(2,5)B.(2.5,5)C.(3,5)D.(3,6)6.一元二次方程x2-8x-1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x-4)2=17D.(x-4)2=157.下列命题错误..的是()A.对角线互相垂直平分的四边形是菱形B.平行四边形的对角线互相平分C.矩形的对角线相等D.对角线相等的四边形是矩形8.在同一直角坐标系中,一次函数y=kx-k与反比例函数y=kx(k≠0)的图象大致是()9.如图,经过原点O的☉P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A.80°B.90°C.100°D.无法确定10.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连结EF,则△AEF 的面积是()A.4√3B.3√3C.2√3D.√311.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2=1110B.(1+x)2=109C.1+2x=1110D.1+2x=10912.若点P1(x1,y1),P2(x2,y2)在反比例函数y=kx(k>0)的图象上,且x1=-x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=-y213.二次函数y=ax2+bx+c的图象如图,点C在y轴的正半轴上,且OA=OC,则()A.ac+1=bB.ab+1=cC.bc+1=aD.以上都不是14.二次函数y=x2+x+c的图象与x轴有两个交点A(x1,0),B(x2,0),且x1<x2,点P(m,n)是图象上一点,那么下列判断正确的是()A.当n<0时,m<0B.当n>0时,m>x2C.当n<0时,x1<m<x2D.当n>0时,m<x115.如图,☉O的半径为2,AB、CD是互相垂直的两条直径,点P是☉O上任意一点(P与A、B、C、D不重合),过点P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为()A.π4B.π2C.π6D.π3第Ⅱ卷(非选择题,共90分)二、填空题:本大题共5小题,每小题4分,共20分.16.若一元二次方程ax 2-bx-2 015=0有一根为x=-1,则a+b= . 17.如果a b =c d =ef =k(b+d+f ≠0),且a+c+e=3(b+d+f),那么k= .18.在一个不透明的袋中装有除颜色外其余均相同的n 个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数 100 1 000 5 000 10 000 50 000 100 000 摸出黑球次数 46 487 2 506 5 008 24 996 50 007根据列表,可以估计出n 的值是 .19.如图,点P 、Q 是反比例函数y=kx 图象上的两点,PA ⊥y 轴于点A,QN ⊥x 轴于点N,作PM ⊥x 轴于点M,QB ⊥y 轴于点B,连结PB 、QM,△ABP 的面积记为S 1,△QMN 的面积记为S 2,则S 1 S 2.(填“>”或“<”或“=”)20.已知△ABC 的边BC=4 cm,☉O 是其外接圆,且半径也为4 cm,则∠A 的度数是 .三、解答题:本大题共8小题,共70分.解答时写出必要的文字说明、证明过程或演算步骤.21.(本小题满分10分,每题5分) (1)计算:2-1-√3tan 60°+(π-2 015)0+|-12|;(2)解方程:x 2-1=2(x+1).22.(本小题满分5分)如图,在图中求作☉P,使☉P 满足以线段MN 为弦且圆心P 到∠AOB 两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)23.(本小题满分6分)为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练.球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传球三次.(1)请利用树状图列举出三次传球的所有可能情况;(2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?24.(本小题满分8分)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米.依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.25.(本小题满分9分)如图,四边形ABCD 中,AB ∥CD,AB ≠CD,BD=AC. (1)求证:AD=BC;(2)若E,F,G,H 分别是AB,CD,AC,BD 的中点.求证:线段EF 与线段GH 互相垂直平分.26.(本小题满分10分)如图,A (-4,12),B(-1,2)是一次函数y 1=ax+b 与反比例函数y 2=mx 图象的两个交点,AC ⊥x 轴于点C,BD ⊥y 轴于点D.(1)根据图象直接回答:在第二象限内,当x 取何值时,y 1-y 2>0? (2)求一次函数解析式及m 的值;(3)P 是线段AB 上一点,连结PC,PD,若△PCA 和△PDB 面积相等,求点P 的坐标.27.(本小题满分10分)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D,以AB上一点O为圆心作☉O,使☉O经过点A和点D.(1)判断直线BC与☉O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求☉O的半径;②设☉O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的面积.(结果保留根号和π)28.(本小题满分12分)已知二次函数y=ax2的图象经过点(2,1).(1)求二次函数y=ax2的解析式;(2)一次函数y=mx+4的图象与二次函数y=ax2的图象交于A(x1,y1)、B(x2,y2)两点.①当m=3时(图①),求证:△AOB为直角三角形;2时(图②),△AOB的形状,并证明;②试判断当m≠32(3)根据第(2)问,说出一条你能得到的结论.(不要求证明)答案全解全析:一、选择题1.C根据二次函数的定义:形如y=ax2+bx+c(a、b、c为常数,且a≠0)的函数叫做二次函数,结合各选项知,选C.2.B左视图为,主视图为,俯视图为,故选B.评析本题主要考查物体的三视图,属容易题.3.A根据二次函数y=a(x-h)2+k(a≠0)的图象的对称轴为直线x=h,知只有A选项符合题意.4.D设AB=k(k>0),则BC=2k,∵∠B=90°,∴AC=√AB2+BC2=√5k,∴cos A=ABAC =√5k=√55,故选D.5.B设点A的坐标为(x,y),由位似图形的性质知,x1=y2=52,得x=2.5,y=5,则点A的坐标为(2.5,5).故选B.6.C变形得x2-8x=1,x2-8x+16=1+16,(x-4)2=17,故选C.7.D对角线相等的平行四边形是矩形,故D错误,选D.8.A分k>0和k<0两种情况讨论:当k>0时,反比例函数的图象经过第一、三象限,一次函数的图象经过第一、三、四象限,没有符合题意的选项;当k<0时,反比例函数的图象经过第二、四象限,一次函数的图象经过第一、二、四象限,故选A.9.B根据同弧所对的圆周角相等,得到∠ACB=∠AOB=90°,故选B.10.B连结AC,在菱形ABCD中,AB=BC,∵∠B=60°,∴△ABC是等边三角形,∵AE⊥BC,∴AE=2√3,∠EAC=30°,同理可得AF=2√3,∠CAF=30°,则△EAF为等边三角形,∴S△AEF=√34×(2√3)2=3√3.故选B.11.B设原价为1,则某天跌停后是0.9,根据题意可列方程为0.9(1+x)2=1,即(1+x)2=10,故选B.12.D由题意,得xy=k,因为k是定值,所以当x1=-x2时,y1=-y2,故选D.13.A由题意得点C的坐标为(0,c),∵OA=OC,∴点A的坐标为(-c,0).将(-c,0)代入二次函数解析式,得ac2-bc+c=0,∵c≠0,∴ac-b+1=0,即ac+1=b.故选A.14.C 由已知得,函数图象开口向上,对称轴在y 轴左侧,画出草图(如图),当n>0时,m<x 1或m>x 2;当n<0时,x 1<m<x 2.故选C.15.A 连结OP.∵∠PMO=∠PNO=∠MON=90°,∴四边形MPNO 为矩形,∵Q 为MN 的中点,∴Q 在OP 上,且OQ=12OP=1.∵点P 沿圆周转过45°,∴点Q 也沿相应的圆周转过45°,∴点Q 走过的路径长为45×1×π180=π4. 二、填空题16.答案 2 015解析 将x=-1代入方程得a+b-2 015=0,则a+b=2 015. 17.答案 3解析 由题意得a=bk,c=dk,e=fk,则a+c+e=k(b+d+f)=3(b+d+f),故k=3. 18.答案 10解析 当试验次数越多时,频率越接近概率,由题表得,概率为0.5,故n=10. 19.答案 =解析 由反比例函数的性质得,S矩形APMO =S矩形BONQ .同时减去公共部分后,所得两个矩形的面积仍相等,即2S △ABP =2S △MNQ ,故S 1=S 2. 20.答案 30°解析 ∵OB=OC=BC=4 cm,∴△OBC 为等边三角形, ∴∠BOC=60°,故∠A=30°.。
20XX年甘肃省天水市初中毕业与升学考试(中考)试卷数学考生注意:请将正确答案填涂在答题卡上. 全卷满分 150 分,考试时间为 120 分钟 .一、选择题(此题 10 个小题,每题 4 分,满分 40 分,在每题给出的四个选项中,只有一项为哪一项正确的,请把正确的选项选出来)1.( 2014 甘肃省天水市,1,4 分)20XX年天水市初中毕业生约为47230 人,将这个数用科学记数法表示为A. 4.723 103B. 4.723 104C. 4.723 105D. 0.4723 105【答案】 B2.( 2014 甘肃省天水市,2, 4 分)若x 1 在实数范围内存心义,则x 的取值范围是A. x 1B. x 1C. x 1D. x 1【答案】 D3.( 2014 甘肃省天水市,3, 4 分)右图的主视图、左视图、俯视图是以下那个物体的三视图主视图左视图俯视图A. B.C.D.【答案】 A4.( 2014 甘肃省天水市,4, 4 分)将二次函数y x2的图像向左平移 1 个单位,再向下平移 2 个单位后,所得函数的函数分析式是A. y ( x1)2 2 B. y ( x1)22 C. y ( x 1)2 2 D. y ( x1)22【答案】 A5.( 2014 甘肃省天水市,5, 4 分)在数据1、3、 5、5、 7 中,中位数是【答案】 C6.( 2014 甘肃省天水市, 6, 4 分) 点 A 、 、C 是平面内不在同一条直线上的三点,点D 是B 该平面内随意一点,若点 A 、 B 、C 、D 四个点恰能组成一个平行四边形,则在该平面内切合这样条件的点 D 有A.1 个B.2 个C.3 个D.4 个【答案】 C7.( 2014 甘肃省天水市, 7, 4 分) 已知函数 ym m 0 ②的图像如下图,以下结论①x在每一个分支上 y 随 x 的增大而增大③若点 A ( -1,a )、点 B ( 2,b )在图像上, 则 ab④若点 P ( x ,y )在图像上,则点 P 1( -x , -y )也在图像上 .此中正确的个数是A. 4 个B. 3 个C. 2 个D.1 个yOx【答案】 B8.( 2014 甘肃省天水市, 8, 4 分) 如图,将矩形纸片 ABCD 折叠,使点 D 与点 B 重合,点C 落在 C '处,折痕为EF ,若 AB=1, BC=2 ,则△ ABE 和△ BC ' F 的周长之和为AEDBFCC'【答案】 C9.( 2014 甘肃省天水市, 9,4 分)如图,扇形 OAB ,动点 P 从点 A 出发,沿 AB 、线段 BO 、OA 匀速运动到点 A ,则 OP 的长度 y 与运动时间t 之间的函数图像大概是PA BOyyyyOxO xO xOxA.B.C.D.【答案】 D10.( 2014 甘肃省天水市, 10, 4 分) 如图,是某公园的一角,∠AOB=90 °, AB 的半径OA 长是 6 米,点 C 是 OA 的中点,点 D 在 AB 上, CD ∥OB ,则图中草坪区(暗影部 分)的面积是A. ( 39 3 )平方米 B.( 39 3 )平方米2 4 2C. ( 39 3 )平方米 D.(39 3 )平方米4DB草坪休闲区小道ACO【答案】 A二、填空题 (此题 8 个小题,每题4 分,共 32 分.只需求填写最后结果 .)11.( 2014 甘肃省天水市, 11, 4 分)写出一个图像经过点( -1,2)的函数分析式 .【答案】 y2x12.( 2014 甘肃省天水市,12, 4 分)对于x的方程ax110 有增根,则a=. x 1【答案】 -113.( 2014 甘肃省天水市,13, 4 分)某商品经过两次降价,销售价由本来的125 元降到了80 元,则均匀每次降价的百分率为.【答案】 20%14.( 2014 甘肃省天水市,14, 4 分)如图,方格纸中的每个小正方形都是边长为 1 个单位长度的正方形,每个小正方形的极点叫格点.△ ABC 的极点都在方格的格点上,则cosA=.AC B【答案】25 515.( 2014 甘肃省天水市,15,4 分)如图,PA、PB分别切⊙O于点A、B,点C在⊙O上,且∠ ACB=50 °,则∠ P=.APO CB【答案】 80°16.( 2014 甘肃省天水市,16, 4 分)天水市某校从三名男生和两名女生中选出两名同学作为“伏羲文化节”的志愿者,则选出一男一女的概率为.【答案】3517.( 2014 甘肃省天水市,17, 4 分)如图,点A是反比率函数y 6的图像上一点,过点2x的图像于点 C,则△ OAC 的A 作 AB⊥ x 轴,垂足为点 B,线段 AB 交反比率函数yx 面积为 .yACO B x【答案】 218.( 2014 甘省天水市,18, 4 分)如,一段抛物y x( x 1)(0 m 1)m1,它与 x 交点 O,A1,点 P1;将 m1点 A1旋 180°得 m2,交 x 于点 A2,点 P2;将 m2点 A2旋 180°得 m3,交 x 于点 A3,点 P3;⋯,这样行下去,直至得 m10,点 P10, P10的坐()y P1 P3m1 m3O A1 A 2 A3m2xP2【答案】(19,1)2 4三、解答(本 3 小,共28 分,解答写出必需的文字明及演算程)19.( 2014 甘省天水市,19, 9 分)依据道路管理定,在羲皇大道秦州至麦段上行的,限速60 千米 / .已知速站点M 距离羲皇大道l(直)的距离MN30 米(如所示) .有一汽由秦州向麦方向匀速行,得此从 A 点行到 B 点所用 6 秒,∠ AMN =60°,∠ BMN=45 °.(1)算 AB 的 .(2)通算判断此能否超速 .A NB lM【答案】解 (1)在 Rt△BMN 和 Rt△ AMN 中,∵∠ AMN=60 °,∠ BMN =45°∴AN = 3MN ,BN=MN ,∵MN =30∴AB =AN+BN= 30 30 3AB30 30 3(2) v(5 5 3) 米 /秒t6而 60 千米 /小时 =50米 /秒3∵ 5 505 33因此没有超速 .20.( 2014 甘肃省天水市, 20, 9 分)空气质量的好坏直接影响着人们的身体健康 .天水市某校兴趣小组,于 20XX 年 5 月某一周,对天水市里的空气质量指数(AQI )进行检测, 监测结果如右图所示 .请你回答以下问题:(1) 这一周空气质量指数的极差、众数分别是多少?(2) 当 0 AQI 50 时,空气质量为优 .这一周空气质量为优的频次是多少?(3) 依据以上信息,说说你对天水市里空气质量的见解.AQI80 73706050405040303520日一二三四五六【答案】 解: (1) 极差 =73-30=43 ,众数: 50(2) 5 7(3)略21.( 2014 甘肃省天水市, 21,10 分)如右图,点 D 为⊙ O 上一点,点 C 在直径 BA 的延伸线上,且∠ CDA =∠ CBD . (1) 判断直线 CD 和⊙ O 的地点关系,并说明原因 .(2) 过点 B 作⊙ O 的切线 BE 交直线 CD 于点 E ,若 AC=2,⊙ O 的半径是 3,求 BE 的长 .EDC A O B【答案】证明:如图,连结OD .∵AB 是⊙ O 的直径,∴∠ ADB=90°,∴∠ 1+∠ 3=90°.∵OA=OD,∴∠ 2=∠ 3,∴∠ 1+∠ 2=90°.又∠ CDA =∠ CBD,即∠ 4=∠ 1,∴∠ 4+∠ 2=90°,即∠ CDO=90°,∴OD⊥ CD.又∵ OD 是⊙ O 的半径,∴CD 是⊙ O 的切线;(2)由 (1)知,△ ODC 为直角三角形,AC=2, OA=3,∴OC=5, OD=3∴CD =4∵BE 是⊙ O 的切线∴OB⊥ BE∴∠ OBE=90°∴ △ ODC ∽△ CBE∴OD CD∴BE CB 3 4 BE 8∴BE=6ED4 2C3 1B A OB 卷( 50 分)四、解答题(此题 5 个小题,共50 分 .解答时写出必需的演算步骤及推理过程)22.(2014 甘肃省天水市,22,8 分)如图,在正方形ABCD中,点E、F分别在边AB、BC上,∠ ADE =∠ CDF(1)求证: AE=CF(2)连结 DB 交 EF 于点 O,延伸 OB 至点 G,使 OG=OD,连结 EC、 FG ,判断四边形DEGF 是不是菱形,并说明原因 .D CFOBA EG【答案】证明: (1) ∵四边形ABCD 是正方形,∴AD=CD ,∠ A=∠ C=90°,∵∠ ADE=∠ CDF ,∴Rt△ADE ≌ Rt△FDC ,∴AE=CF(2)四边形 DEGF 是菱形.∵四边形ABCD 是正方形,∴∠ ABD=∠ DBC=45°(正方形的对角线均分一组对角),AB=BC (正方形邻边相等),∵AE=CF (已证),∴AB-AE=BC-CF (等式的性质),即 BE=BF ,易得△BOE ≌△ BOF ,∴OE=OF ,∵OD=OG ,∴四边形AEGF 是平行四边形,(对角线相互均分的四边形是平行四边形),∵ AE=DF ,∴平行四边形 AEGF 是菱形.23.( 2014 甘肃省天水市, 23,9 分)如图,⊙ M 经过坐标原点 O ,分别交两坐标轴于 A(1,0) ,B(0,2) 两点,直线 CD 交 x 轴于点 C(6,0),交 y 轴于点 D(0,3),过点 O 作直线 OF ,分别交⊙ M 于点 E ,交直线 CD 于点 F.(1) 求证:∠ CDO =∠ BAO(2) 求证: OE OF OA OC (3) 若 OE32 ,试求点 F 的坐标 .2yDBFMEOACx【答案】证明: (1) A(1,0) , B(0,2) , C(6,0) ,D (0,3) ∴ O A=1 , OB=2 , OC=6 ,OD=3即OAOB OD OC∵ ∠ AOB=∠ DOC∴△ AOB=△ DOC ∴∠ CDO=∠ BAO(2) 连结 AE∵ OA OA∴∠ 2=∠ 3 由(1) 知,∠ 1=∠ 2∴∠ 1=∠3又 ∵ ∠ EOA=∠ FOC ∴△ EOA ∽△ COF∴OEOA CO OF∴ OE OF OA OCyDB F2E31OAGCx(3) 作 FG ⊥OC 于 G∵ OE 322由(2) 知 OE OFOA OC获得 OF = 2 2在 Rt △COD 中∵tan 1OD1 CO2FG 1 ∴ 在 Rt △ FGC 中 tan 1CG2获得 CG=2FG在 Rt △FGO 中, OF 2 OG 2 FG 2即 (2 2) 2FG 2 (6 2FG) 2解得: FG =2 或 FG=142 2 (舍)5因此 OG=2 因此 F ( 2,2)24.( 2014 甘肃省天水市, 24, 9 分)天水市某校为了展开“阳光体育”活动,需购置某一品牌的羽毛球 .甲、乙两商场均以每只 3 元的价钱销售,并对一次性购置这一品牌羽毛球不低于 100 只得用户均推行优惠:甲商场每只羽毛球按原价的八折销售;乙商场送 15 只,其他羽毛球每只按原价的九折销售.(1) 请你任选一商场,一次性购置x ( x100且 x 为整数)只该品牌羽毛球,写出所付钱y(元)与 x 之间的函数关系 .(2) 若共购置 260 只该品牌羽毛球,此中在甲商场以甲商场的优惠方式购置一部分,剩下的又在乙商场以乙商场的优惠方式购置 .购置 260 只该品牌羽毛球起码需付多少元钱?这时在甲、乙两商场分别购置该品牌羽毛球多少只?【答案】解: (1) 甲: y3 2.4x(x 100)乙: y 3 0.9( x 15) 2.7 x(2) 设在甲商场买 x 件,则乙商场买( 260-x )件,依题意得y2.7(260 x 15)=661.5 ( 100 x 160 )因此当x 160时,y min25.( 2014 甘肃省天水市, 25, 12 分) 如图,排球运动员站在 O 处练习发球,将球从点 O 正上方 2 米的点 A 处发出,把球当作点, 其运转的高度 y (米)与运转的水平距离 (x 米)知足关系式 ya( x 6)2 h .已知球网与点 O 的水平距离为 9 米,高度为 2.43 米,球场的界限点 O 的水平距离为 18 米 . (1) 当 h= 2.6 时,求 y 与 x 的关系式 .(2) 当 h=2.6 时,求可否超出网球?球会不会出界?请说明原因. (3) 若球必定能超出球网,又不出界?则h 的取值范围是多少?y2球网界限O6918x【答案】 解: (1) 当 h=2.6 时,则 y a( x 6) 2由于 A(0,2)在抛物线上,则 2a(06) 22.6 ,解得 a11( x 6)260则分析式为 y60(2) 当 x=9 时, y1(9 6) 260因此网球能超出球网;当 x=18 时, y 1(18 6)2因此网球出界了 .60(3) 把 A ( 0,2)()带入ya(x 6) 2h 得 h 19375把 A(0 , 2)( 18,0 )带入ya(x6) 2 h 得 h 831938因此 25 h326.( 2014 甘肃省天水市, 26, 12 分) 如图 (1),在平面直角坐标系中,点 A(0,-6) ,点 B(6,0).Rt△CDE 中,∠ CDE=90 °, CD =4,DE 4 3 .直角边CD在y轴上,且点 C 与点A重合 . Rt△ CDE 沿 y 轴正方向平行挪动.当点 C 运动到点 O 时停止运动 .解答以下问题:(1)如图( 2),当 Rt△ CDE 运动到点 D 与点 O 重合时,设 CE 交 AB 于点 M,求∠ BME 的度数.(2) 如图( 3)在 Rt△ CDE 运动过程中,当CE 经过点 B 时,求 BC 的长 .(3) 在 Rt△CDE 运动过程中,设AC =h,△ OAB 与△ CDE 重叠部分的面积为S,请写出 S 与h 之间的函数关系式,并求出头积S 的最大值 .y yy D EO BB EB(M )x O(D)Ox xD EMCCA(C) A A 图( 1)图( 2)图( 3)【答案】解:(1) ∵A(0,-6),B(6,0)∴OA=OB∴∠ OBA=OAB=45 °在 Rt△ CDE 中,tan DEC DC 4 3 DE 4 3 3∴∠ DEC= 30°∵∠ DEC+ ∠ BME= ∠ OBA ∴∠ BME= 15°(2)由题意可知,在Rt△OBC 中,cos OBC3 6获得:2BC∴BC 4 3OB BC(3) 当0 h 2 时,由题意可知3 3 FM = h2SSADN SACM= 1(h 4)2 1 h 3 3 h2 2 2= 1 3 h2 4h 84yO BxDE NF MCA当 2 h 6 2 3 时,S SAOBSACM= 181h 3 3 h2 2= 3 3 h2 182yD O B ExF MCA当 6 2 3 h 6 时,SSCON 1(6 h) 3(6 h) 2=3(6 h)22yD EO NBxCA。
2015年兰州市初中毕业生学业考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共60分)一、选择题:本大题共15小题,每小题4分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数解析式中,一定为二次函数的是( )A.y=3x-1B.y=ax2+bx+cC.s=2t2-2t+1D.y=x2+1x2.由五个同样大小的立方体组成如图的几何体,则关于此几何体三种视图叙述正确的是( )A.左视图与俯视图相同B.左视图与主视图相同C.主视图与俯视图相同D.三种视图都相同3.在下列二次函数中,其图象的对称轴为x=-2的是( )A.y=(x+2)2B.y=2x2-2C.y=-2x2-2D.y=2(x-2)24.如图,△ABC中,∠B=90°,BC=2AB,则cos A=( )A.√52B.12C.2√55D.√555.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B的坐标为(5,0),则点A的坐标为( )A.(2,5)B.(2.5,5)C.(3,5)D.(3,6)6.一元二次方程x2-8x-1=0配方后可变形为( )A.(x+4)2=17B.(x+4)2=15C.(x-4)2=17D.(x-4)2=157.下列命题错误..的是( )A.对角线互相垂直平分的四边形是菱形B.平行四边形的对角线互相平分C.矩形的对角线相等D.对角线相等的四边形是矩形8.在同一直角坐标系中,一次函数y=kx-k与反比例函数y=kx(k≠0)的图象大致是( )9.如图,经过原点O的☉P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=( )A.80°B.90°C.100°D.无法确定10.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连结EF,则△AEF的面积是( )A.4√3B.3√3C.2√3D.√311.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是( )A.(1+x)2=1110B.(1+x)2=109C.1+2x=1110D.1+2x=10912.若点P1(x1,y1),P2(x2,y2)在反比例函数y=kx(k>0)的图象上,且x1=-x2,则( )A.y1<y2B.y1=y2C.y1>y2D.y1=-y213.二次函数y=ax2+bx+c的图象如图,点C在y轴的正半轴上,且OA=OC,则( )A.ac+1=bB.ab+1=cC.bc+1=aD.以上都不是14.二次函数y=x2+x+c的图象与x轴有两个交点A(x1,0),B(x2,0),且x1<x2,点P(m,n)是图象上一点,那么下列判断正确的是( )A.当n<0时,m<0B.当n>0时,m>x2C.当n<0时,x1<m<x2D.当n>0时,m<x115.如图,☉O的半径为2,AB、CD是互相垂直的两条直径,点P是☉O上任意一点(P与A、B、C、D不重合),过点P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为( )A.π4B.π2C.π6D.π3第Ⅱ卷(非选择题,共90分)二、填空题:本大题共5小题,每小题4分,共20分.16.若一元二次方程ax 2-bx-2 015=0有一根为x=-1,则a+b= . 17.如果a b =c d =ef =k(b+d+f ≠0),且a+c+e=3(b+d+f),那么k= .18.在一个不透明的袋中装有除颜色外其余均相同的n 个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数 100 1 000 5 000 10 000 50 000 100 000 摸出黑球次数 46 487 2 506 5 008 24 996 50 007根据列表,可以估计出n 的值是 .19.如图,点P 、Q 是反比例函数y=kx 图象上的两点,PA ⊥y 轴于点A,QN ⊥x 轴于点N,作PM ⊥x 轴于点M,QB ⊥y 轴于点B,连结PB 、QM,△ABP 的面积记为S 1,△QMN 的面积记为S 2,则S 1 S 2.(填“>”或“<”或“=”)20.已知△ABC 的边BC=4 cm,☉O 是其外接圆,且半径也为4 cm,则∠A 的度数是 .三、解答题:本大题共8小题,共70分.解答时写出必要的文字说明、证明过程或演算步骤.21.(本小题满分10分,每题5分) (1)计算:2-1-√3tan 60°+(π-2 015)0+|-12|;(2)解方程:x 2-1=2(x+1).22.(本小题满分5分)如图,在图中求作☉P,使☉P 满足以线段MN 为弦且圆心P 到∠AOB 两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)23.(本小题满分6分)为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练.球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传球三次.(1)请利用树状图列举出三次传球的所有可能情况;(2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?24.(本小题满分8分)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH 的长为5米.依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.25.(本小题满分9分)如图,四边形ABCD中,AB∥CD,AB≠CD,BD=AC.(1)求证:AD=BC;(2)若E,F,G,H分别是AB,CD,AC,BD的中点.求证:线段EF与线段GH互相垂直平分.26.(本小题满分10分)如图,A(-4,12),B(-1,2)是一次函数y1=ax+b与反比例函数y2=mx图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.(1)根据图象直接回答:在第二象限内,当x取何值时,y1-y2>0?(2)求一次函数解析式及m的值;(3)P是线段AB上一点,连结PC,PD,若△PCA和△PDB面积相等,求点P的坐标.27.(本小题满分10分)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D,以AB上一点O为圆心作☉O,使☉O经过点A和点D.(1)判断直线BC与☉O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求☉O的半径;②设☉O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的面积.(结果保留根号和π)28.(本小题满分12分)已知二次函数y=ax2的图象经过点(2,1).(1)求二次函数y=ax2的解析式;(2)一次函数y=mx+4的图象与二次函数y=ax2的图象交于A(x1,y1)、B(x2,y2)两点.①当m=3时(图①),求证:△AOB为直角三角形;2时(图②),△AOB的形状,并证明;②试判断当m≠32(3)根据第(2)问,说出一条你能得到的结论.(不要求证明)答案全解全析:一、选择题1.C 根据二次函数的定义:形如y=ax 2+bx+c(a 、b 、c 为常数,且a ≠0)的函数叫做二次函数,结合各选项知,选C.2.B 左视图为,主视图为,俯视图为,故选B.评析 本题主要考查物体的三视图,属容易题.3.A 根据二次函数y=a(x-h)2+k(a ≠0)的图象的对称轴为直线x=h,知只有A 选项符合题意. 4.D 设AB=k(k>0),则BC=2k,∵∠B=90°,∴AC=√AB 2+BC 2=√5k,∴cos A=ABAC =√5k =√55,故选D.5.B 设点A 的坐标为(x,y),由位似图形的性质知,x 1=y 2=52,得x=2.5,y=5,则点A 的坐标为(2.5,5).故选B.6.C 变形得x 2-8x=1,x 2-8x+16=1+16,(x-4)2=17,故选C. 7.D 对角线相等的平行四边形是矩形,故D 错误,选D.8.A 分k>0和k<0两种情况讨论:当k>0时,反比例函数的图象经过第一、三象限,一次函数的图象经过第一、三、四象限,没有符合题意的选项;当k<0时,反比例函数的图象经过第二、四象限,一次函数的图象经过第一、二、四象限,故选A. 9.B 根据同弧所对的圆周角相等,得到∠ACB=∠AOB=90°,故选B.10.B 连结AC,在菱形ABCD 中,AB=BC,∵∠B=60°,∴△ABC 是等边三角形,∵AE ⊥BC,∴AE=2√3,∠EAC=30°,同理可得AF=2√3,∠CAF=30°,则△EAF 为等边三角形,∴S △AEF =√34×(2√3)2=3√3.故选B.11.B 设原价为1,则某天跌停后是0.9,根据题意可列方程为0.9(1+x)2=1,即(1+x)2=109,故选B.12.D 由题意,得xy=k,因为k 是定值,所以当x 1=-x 2时,y 1=-y 2,故选D. 13.A 由题意得点C 的坐标为(0,c), ∵OA=OC,∴点A 的坐标为(-c,0).将(-c,0)代入二次函数解析式,得ac 2-bc+c=0, ∵c ≠0,∴ac -b+1=0, 即ac+1=b.故选A.14.C 由已知得,函数图象开口向上,对称轴在y 轴左侧,画出草图(如图),当n>0时,m<x 1或m>x 2;当n<0时,x 1<m<x 2.故选C.15.A 连结OP.∵∠PMO=∠PNO=∠MON=90°,∴四边形MPNO 为矩形,∵Q 为MN 的中点,∴Q 在OP 上,且OQ=12OP=1.∵点P 沿圆周转过45°,∴点Q 也沿相应的圆周转过45°,∴点Q 走过的路径长为45×1×π180=π4. 二、填空题16.答案 2 015解析 将x=-1代入方程得a+b-2 015=0,则a+b=2 015. 17.答案 3解析 由题意得a=bk,c=dk,e=fk,则a+c+e=k(b+d+f)=3(b+d+f),故k=3. 18.答案 10解析 当试验次数越多时,频率越接近概率,由题表得,概率为0.5,故n=10. 19.答案 =解析 由反比例函数的性质得,S矩形APMO=S矩形BONQ.同时减去公共部分后,所得两个矩形的面积仍相等,即2S △ABP =2S △MNQ ,故S 1=S 2. 20.答案 30°解析 ∵OB=OC=BC=4 cm,∴△OBC 为等边三角形, ∴∠BOC=60°,故∠A=30°.三、解答题21.解析 (1)2-1-√3tan 60°+(π-2 015)0+|-1| =1-3+1+1=1-3+1 =-1.(2)x 2-1=2(x+1)可化为x 2-2x-3=0,解得x 1=-1,x 2=3.22.解析☉P 为所求作的圆. 23.解析 (1)如图:(2)P(三次传球后,球回到甲脚下)=28=14. (3)P(三次传球后,球回到甲脚下)=28, P(三次传球后,球传到乙脚下)=38, 因为38>28,所以球传到乙脚下的概率大.24.解析 (1)平行.(2)如图,连结CG,AE,过点E 作EM ⊥AB 于M,过点G 作GN ⊥CD 于N,则MB=EF=2,ND=GH=3,ME=BF=10,NG=DH=5. 所以AM=10-2=8,由平行投影可知AM ME =CNNG ,即810=CD -35, 解得CD=7,即电线杆的高度为7米.25.证明 (1)过点B 作BM ∥AC 交DC 的延长线于点M, ∵AB ∥CD,∴四边形ABMC 为平行四边形. ∴AC=BM=BD,∴∠BDC=∠M=∠ACD. 在△ACD 和△BDC 中,{AC =BD,∠ACD =∠BDC,CD =DC,∴△ACD ≌△BDC, ∴AD=BC.(2)连结EH,HF,FG,GE,∵E,F,G,H 分别是AB,CD,AC,BD 的中点,∴HE ∥AD,且HE=12AD,FG ∥AD,且FG=12AD,EH=12AD,EG=12BC, ∴HE ∥FG 且HE=FG,∴四边形HFGE 为平行四边形. 由(1)知,AD=BC, ∴HE=EG,∴▱HFGE 为菱形,∴线段EF 与线段GH 互相垂直平分.26.解析 (1)在第二象限内,当-4<x<-1时,y 1-y 2>0. (2)∵反比例函数y 2=mx 的图象过A (-4,12), ∴m=-4×12=-2,∵一次函数y 1=ax+b 的图象过A (-4,12),B(-1,2),∴{-4a +b =12,-a +b =2,解得{a =12,b =52, ∴y 1=12x+52. (3)设P (t,12t +52),过P 作PM ⊥x 轴,PN ⊥y 轴,∴PM=12t+52,PN=-t,∵S △PCA =S △PDB ,∴12AC ·CM=12BD ·DN,即12×12(t+4)=12×1×(2-12t -52),解得t=-52, ∴P (-52,54).27.解析 (1)相切.理由如下:如图,连结OD,∵AD 平分∠BAC,∴∠1=∠2,∵OA=OD,∴∠1=∠3,∴∠2=∠3,∴OD ∥AC.又∠C=90°,∴OD ⊥BC,∴BC 与☉O 相切.(2)①∵AC=3,∠B=30°,∴AB=6.设OA=OD=r,∴OB=2r.∴2r+r=6,解得r=2,即☉O 的半径是2.②由①得OD=2,OB=4,∴BD=2√3.S 阴影=12×2√3×2-60π×22360=2√3-2π3. 28.解析 (1)∵二次函数y=ax 2的图象过点(2,1),∴1=4a,∴a=1,∴二次函数的解析式为y=14x 2.(2)①证明:当m=32时,{y =32x +4,y =14x 2,解得{x 1=-2,y 1=1,{x 2=8,y 2=16,∴A(-2,1),B(8,16).分别过A,B 作AC ⊥x 轴,BD ⊥x 轴,∴AC=1,OC=2,OD=8,BD=16.∴AC OC =OD BD =12,又∵∠ACO=∠ODB,∴△ACO ∽△ODB,∴∠AOC=∠OBD.又∵∠OBD+∠BOD=90°,∴∠AOC+∠BOD=90°,∴∠AOB=90°,∴△AOB 为直角三角形.②△AOB 为直角三角形,证明如下:当m ≠3时,{y =mx +4,y =14x 2,解得{x 1=2m -2√m 2+4,y 1=(m -√m 2+4)2,{x 2=2m +2√m 2+4,y 2=(m +√m 2+4)2,∴A(2m -2√m 2+4,(m-√m 2+4)2),B(2m+2√m 2+4,(m+√m 2+4)2).分别过A,B 作AC ⊥x 轴,BD ⊥x 轴,∴AC=(m -√m 2+4)2,OC=-(2m-2√m 2+4),BD=(m+√m 2+4)2,OD=2m+2√m 2+4, ∴AC OC =OD BD =-m -√m 2+42, 又∵∠ACO=∠ODB,∴△ACO ∽△ODB,∴∠AOC=∠OBD.又∵∠OBD+∠BOD=90°,∴∠AOC+∠BOD=90°,∴∠AOB=90°,∴△AOB 为直角三角形.(3)如:一次函数y=mx+4的图象与二次函数y=ax2的图象的交点为A,B,则△AOB恒为直角三角形等.。
2015年河南初中学业水平暨高级中等学校招生考试试题数 学注意事项:1. 本试卷共6页,三个大题,满分120分,考试时间100分钟。
2. 本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的。
1. 下列各数中最大的数是( )A. 5B.3C. πD. -8 2. 如图所示的几何体的俯视图是( )3. 据统计,2014年我国高新技术产品出口总额达40 570亿元,将数据40 570亿用科学记数法表示为( ) A.4.0570×109 B. 0.40570×1010 C. 40.570×1011 D. 4.0570×10124. 如图,直线a ,b 被直线c ,d 所截,若∠1=∠2,∠3=125°,则∠4的度数为( ) A. 55° B. 60° C.70° D. 75°5. 不等式组⎩⎨⎧>-≥+13,05x x 的解集在数轴上表示为( )6. 小王参加某企业招聘测试,他的笔试,面试、技能操作得分分别为85分,80分,90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( )A. 255分B. 84分C. 84.5分D.86分7. 如图,在□ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E ,若BF =6,AB =5,则AE 的长为( )C DB A 正面 第2题dc ba第4题-52 0 -520 -52 0 -520 CDBAA. 4B. 6C. 8D. 108. 如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标是( )A.(2014,0)B.(2015,-1)C. (2015,1)D. (2016,0)二、填空题(每小题3分,共21分) 9.计算:(-3)0+3-1=.10. 如图,△ABC 中,点D 、E 分别在边AB ,BC 上,DE //AC ,若DB =4,DA =2,BE =3,则EC = . 11. 如图,直线y =kx 与双曲线)0(2>=x xy 交于点 A (1,a ),则k = .12. 已知点A (4,y 1),B (2,y 2),C (-2,y 3)都在二次函数y =(x -2)2-1的图象上,则y 1,y 2,y 3的大小关系是 . 13. 现有四张分别标有数字1,2,3,4的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张后放回,再 背面朝上洗匀,从中随机抽取一张,则两次抽出的卡片所标数 字不同的概率是 .14. 如图,在扇形AOB 中,∠AOB =90°,点C 为OA 的中点,CE ⊥OA 交AB 于点E ,以点O 为圆心,OC 的长为半径 作CD 交OB 于点D ,若OA =2,则阴影部分的面积为 .15. 如图,正方形ABCD 的边长是16,点E 在边AB 上,AE =3,点F 是边BC 上不与点B 、C 重合的一个动点,把△EBF 沿EF 折叠,点B 落在B ′处,若△CDB ′恰为等腰三角形,则DB ′的长为 .E FCDBGA第7图第8题E CDBA第14题EFCDBA 第15题B ′三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:)11(22222ab b a b ab a -÷-+-,其中15+=a ,15-=b .17.(9分)如图,AB 是半圆O 的直径,点P 是半圆上不与点A 、B 重合的一个动点,延长BP 到点C ,使PC =PB ,D 是AC 的中点,连接PD ,PO . (1)求证:△CDP ≌△POB ; (2)填空:① 若AB =4,则四边形AOPD 的最大面积为 ; ② 连接OD ,当∠PBA 的度数为 时,四边形BPDO18.(9分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图。
天水市初中毕业与升学学业考试(中考)试卷数 学A 卷题号 一 二 三 合计 B卷 题号合计 总分 总分人 复核人 得分得分2223 24 25 26亲爱的同学,三年的初中生活你已经学到了不少数学知识,眼前的试卷将给你一个展示的机会,相信自己!(本试卷满分为150分,考试时间为120分钟)A 卷(满分100分)一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.) 1.(11·天水)图中几何体的主视图是2.(11·天水)下列运算中,计算结果正确的是A .x 2·x 3=x 6B .x 2n ÷x n -2=x n +2 C .(2x 3)2=4x 9D .x 3+x 3=x 63.(11·天水)如果两圆的半径分别为2和1,圆心距为3,那么能反映这两圆位置关系的图是4.(11·天水)多项式2a 2-4ab +2b 2分解因式的结果正确的是 A .2(a 2-2ab +b 2) B .2a (a -2b )+2b 2 C .2(a -b ) 2D .(2a -2b ) 25.(11·天水)如图,将三角板的直角顶点放在两条平行线a 、b 中的直线b 上,如果∠1=40°,则∠2的度数是 A .30° B .45° C .40° D .50°6.(11·天水)在a 2□4a □4的空格中,任意填上“+”或“-”,在所得到的代数式中,可以构成完全平方式的概率是A .12B .13C .14D .1 7.(11·天水)将二次函数y =x 2-2x +3化为y =(x -h )2+k 的形式,结果为 A .y =(x +1)2+4 B .y =(x -1)2+4 C .y =(x +1)2+2 D .y =(x -1)2+2C . B .A .正面a b 18.(11·天水)样本数据3、6、a 、4、2的平均数是5,则这个样本的方差是 A .8B .5C .2 2D .39.(11·天水)一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是A .13B .12C .34D .110.(11·天水)如图,有一块矩形纸片ABCD ,AB =8,AD =6.将纸片折叠,使得AD 边落在AB 边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,则CF 的长为A .6B .4C .2D .1二、填空题(本大题共8小题,每小题4分,共32分.只要求填写最后结果.) 11.(11·天水)计算8-12=_ ▲ .12.(11·天水)若x +y =3,xy =1,则x 2+y 2=_ ▲ . 13.(11·天水)为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:根据光的反射定律,利用一面镜子和皮尺,设计如图所示的测量方案:把镜子放在离树(AB )8.7m 的点E 处,然后观测考沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =2.7m ,观测者目高CD =1.6m ,则树高AB 约是_ ▲ .(精确到0.1m )14.(11·天水)如图(1),在宽为20m ,长为32m 的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田国,假设试验田面积为570m 2,求道路宽为多少?设宽为x m ,从图(2)的思考方式出发列出的方程是_ ▲ .15.(11·天水)如图,点A 、B 在数轴上,它们所对应的数分别是-4与2x +23x -5,且点A 、B 到原点的距离相等.则x =_ ▲.DCC ECEA-4BEB D(1) (2)16.(11·天水)计算:sin 230°+tan44°tan46°+sin 260°=_ ▲ . 17.(11·天水)抛物线y =-x 2+bx +c 的部分图象如图所示,若函数y >0值时,则x 的取值范围是_ ▲ .18.(11·天水)如图,在梯形ABCD 中,AB ∥CD ,∠BAD =90°,AB =6,对角线AC 平分∠BAD ,点E 在AB 上,且AE =2(AE <AD ),点P 是AC 上的动点,则PE +PB 的最小值是_ ▲ .三、解答题(本大题共3小题,其中19题9分,20题6分,21题13分,共28分.)解答时写出必要的文字说明及演算过程. 19.(11·天水)本题共9分(其中第Ⅰ小题4分,第Ⅱ小题5分) Ⅰ.先化简(,再从-2、-1、0、1、2中选一个你认为适合的数作为x 的值代入求值. Ⅱ.已知l 1:直线y =-x +3和l 2:直线y =2x ,l 1与x 轴交点为A .求: (1)l 1与l 2的交点坐标.(2)经过点A 且平行于l 2的直线的解析式20.(11·天水)已知,如图E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE ,DF =BE ,DF∥BE ,四边形ABCD 是平行四边形吗?请说明理由.CBAED Fxy1 -1 O CB x y1Oy 2 3 4 5 -1 -2 -3-412 3 4 5 -1 -2 -3 -4 -521.(11·天水)本题共13分(其中第Ⅰ小题6分,第Ⅱ小题7分)Ⅰ.爱养花的李先生为选择一个合适的时间去参观2011年西安世界园艺博览会,他查阅了5月10日至16日是(星期一至星期日)每天的参观人数,得到图(1)、图(2)所示的统计图.其中图(1)是每天参观人数的统计图,图(2)是5月15日是(星期六)这一天上午、中午、下午和晚上四个时段参观人数的扇形统计图,请你根据统计图解答下面的问题:(1)5月10日至16日这一周中,参观人数最多的是日是_ ▲ ,有_ ▲ 万人,参观人数最少的是日是_ ▲ ,有_ ▲ 万人,中位数是_ ▲ .(2)5月15日是(星期六)这一天,上午的参观人数比下午的参观人数多多少人?(精确到1万人)(3)如果李先生想尽可能选择参观人数较少的时间参观世园会,你认为选择什么时间较合适?Ⅱ.如图在等腰Rt △OBA 和Rt △BCD 中,∠OBA =∠BCD =90°,点A 和点C 都在双曲线y =4x (k>0)上,求点D 的坐标.B 卷(满分50分)四、解答题(本大题共50分,解答时写出必要的演算步骤过程及推理过程.) 22.(11·天水)(8分)如图,在平面直角坐标系中,O 为坐标原点,每个小方格的边长为1个单位长度.正方形ABCD 顶点都在格点上,其中,点A 的坐标为 (1,1).(1)若将正方形ABCD 绕点A 顺时针方向旋转,点B 到达点B 1,点C 到达点C 1,点D 到达点D 1,求点B 1、C 1、D 1的坐标.(2)若线段AC 1的长度..与点D 1的横坐标...的差.恰好是一元二次方程x 2+ax +1=0的一个根,求a 的值.x23.(11·天水)(10分)某校开展的一次动漫设计大赛,杨帆同学运用了数学知识进行了富有创意的图案设计,如图(1),他在边长为1的正方形ABCD 内作等边△BCE ,并与正方形的对角线交于点F 、G ,制作如图(2)的图标,请我计算一下图案中阴影图形的面积.24.(11·天水)(10分)某电脑公司各种品牌、型号的电脑价格如下表,育才中学要从甲、乙两种品牌电脑中各选择一种型号的电脑.(1)写出所有选购方案(利用树状图或列表方法表示).如果各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少?(2)该中学预计购买甲、乙两种品牌电脑共36台,其中甲品牌电脑只选了A 型号,学校规定购买费用不能高于10万元,又不低于9.2万元,问购买A 型号电脑可以是多少台?甲 乙型号 A B C D E 单价(元/台)6000400025005000200025.(11·天水)(10分)在△ABC 中,AB =AC ,点O 是△ABC 的外心,连接AO 并延长交BC 于D ,交△ABC 的外接圆于E ,过点B 作⊙O 的切线交AO 的延长线于Q ,设OQ =92,BQ =32. (1)求⊙O 的半径;(2)若DE =35,求四边形ACEB 的周长.26.(11·天水)(10分)在梯形OABC 中,CB ∥OA ,∠AOC =60°,∠OAB =90°,OC =2,BC =4,以点O 为原点,OA 所在的直线为x 轴,建立平面直角坐标系,另有一边长为2的等边△DEF ,DE 在x 轴上(如图(1)),如果让△DEF 以每秒1个单位的速度向左作匀速直线运动,开始时第220题A BC D Ox yAA B(1)AD E GF (2)点D 与点A 重合,当点D 到达坐标原点时运动停止.(1)设△DEF 运动时间为t ,△DEF 与梯形OABC 重叠部分的面积为S ,求S 关于t 的函数关系式. (2)探究:在△DEF 运动过程中,如果射线DF 交经过O 、C 、B 三点的抛物线于点G ,是否存在这样的时刻t ,使得△OAG 的面积与梯形OABC 的面积相等?若存在,求出t 的值;若不存在,请说明理由.F参考答案:A 卷(满分100分)一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.) 1.【答案】D 2.【答案】B 3.【答案】B 4.【答案】C 5.【答案】D 6.【答案】A 7.【答案】D 8.【答案】A 9.【答案】B 10.【答案】C二、填空题(本大题共8小题,每小题4分,共32分.只要求填写最后结果.) 11.【答案】32 212.【答案】7 13.【答案】5.2 14.【答案】(32-2x )(20-x )=570 15.【答案】115或2.2 16.【答案】2 17.【答案】-3<x <1 18.【答案】210A (D )BCDE F OxyA B CEF Ox y三、解答题(本大题共3小题,其中19题9分,20题6分,21题13分,共28分.)解答时写出必要的文字说明及演算过程. 19.(11·天水)本题共9分(其中第Ⅰ小题4分,第Ⅱ小题5分) Ⅰ.【答案】原式=x 2-(x -1)(x +1)x +1·x 2-1x=1x +1·(x -1)(x +1)x ………………1分 =x -1x ………………2分 当x =2时,原式=32 ………………4分 (或当x =2时,原式=2-22)Ⅱ.【答案】解:(1)设l 1与l 2的交点为M ,则由⎩⎨⎧y =-x +3y =2x 解得⎩⎨⎧x =1y =2………………2分 ∴M (1,2) ………………3分(2)设经过点A 且且平行于l 2的直线的解析式为y =2x +b∵l 1与x 轴交点为A (3,0) ………………4分 6+b =0,∴b =-6则:所求直线的解析式为y =2x -6 ………………5分其它解法参照上面的评分标准评分20.【答案】解:结论:四边形ABCD 是平行四边形 ………………2分证明:∵DF ∥BE∴∠AFD =∠CEB ………………3分 又∵AF =CE DF =BE ,∴△AFD ≌△CEB (SAS ) ………………4分 ∴AD =CB ∠DAF =∠BCE ∴AD ∥CB∴四边形ABCD 是平行四边形 ………………6分。
2015年甘肃省天水市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来)2.(4分)(2015•天水)如图是某几何体的三视图,该几何体是())2)6.(4分)(2015•天水)一个圆柱的侧面展开图是两邻边长分别为6和8的矩形,则该圆柱的底面圆半或或7.(4分)(2015•天水)如图,将矩形纸带ABCD,沿EF折叠后,C、D两点分别落在C′、D′的位置,经测量得∠EFB=65°,则∠AED′的度数是()8.(4分)(2015•天水)如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=2,CD=,点P在四边形ABCD 的边上.若点P 到BD 的距离为,则点P 的个数为( )9.(4分)(2015•天水)如图,AB 为半圆所在⊙O 的直径,弦CD 为定长且小于⊙O 的半径(C 点与A 点不重合),CF ⊥CD 交AB 于点F ,DE ⊥CD 交AB 于点E ,G 为半圆弧上的中点.当点C 在上运动时,设的长为x ,CF+DE=y .则下列图象中,能表示y 与x 的函数关系的图象大致是( )10.(4分)(2015•天水)定义运算:a ⊗b=a (1﹣b ).下面给出了关于这种运算的几种结论:①2⊗(﹣2)=6,②a ⊗b=b ⊗a ,③若a+b=0,则(a ⊗a )+(b ⊗b )=2ab ,④若a ⊗b=0,则a=0或b=1,其中结二、填空题(本大题共8小题,每小题4分,共32分。
只要求填写最简结果) 11.(4分)(2015•天水)相切两圆的半径分别是5和3,则该两圆的圆心距是 .12.(4分)(2015•天水)不等式组的所有整数解是 .13.(4分)(2015•天水)如图,边长为1的小正方形构成的网格中,半径为1的⊙O 在格点上,则∠AED 的正切值为 .14.(4分)(2015•天水)一元二次方程x 2+3﹣2x=0的解是 . 15.(4分)(2015•天水)如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P 处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是米.16.(4分)(2015•天水)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.17.(4分)(2015•天水)下列函数(其中n为常数,且n>1)①y=(x>0);②y=(n﹣1)x;③y=(x>0);④y=(1﹣n)x+1;⑤y=﹣x2+2nx(x<0)中,y的值随x的值增大而增大的函数有个.18.(4分)(2015•天水)正方形OA1B1C1、A1A2B2C2、A2A3B3C3,按如图放置,其中点A1、A2、A3在x轴的正半轴上,点B1、B2、B3在直线y=﹣x+2上,则点A3的坐标为.三、解答题(本大题共3小题,共28分。
解答时写出必要的文字说明及演算过程。
)19.(9分)(2015•天水)计算:(1)(π﹣3)0+﹣2cos45°﹣(2)若x+=3,求的值.20.(9分)(2015•天水)2015年4月25日14时11分,尼泊尔发生8.1级地震,震源深度20千米.中国救援队火速赶往灾区救援,探测出某建筑物废墟下方点C处有生命迹象.在废墟一侧某面上选两探测点A、B,AB相距2米,探测线与该面的夹角分别是30°和45°(如图).试确定生命所在点C与探测面的距离.(参考数据≈1.41,≈1.73)21.(10分)(2015•天水)如图,在平面直角坐标系内,O为原点,点A的坐标为(﹣3,0),经过A、O 两点作半径为的⊙C,交y轴的负半轴于点B.(1)求B点的坐标;(2)过B点作⊙C的切线交x轴于点D,求直线BD的解析式.四、解答题(本大题共50分,解答时写出必要的演算步骤及推理证明过程。
)22.(8分)(2015•天水)钓鱼岛是我国固有领土.某校七年级(15)班举行“爱国教育”为主题班会时,就有关钓鱼岛新闻的获取途径,对本班50名学生进行调查(要求每位同学,只选自己最认可的一项),并绘制如图所示的扇形统计图.(1)该班学生选择“报刊”的有人.在扇形统计图中,“其它”所在扇形区域的圆心角是度.(直接填结果)(2)如果该校七年级有1500名学生,利用样本估计选择“网站”的七年级学生约有人.(直接填结果)(3)如果七年级(15)班班委会就这5种获取途径中任选两种对全校学生进行调查,求恰好选用“网站”和“课堂”的概率.(用树状图或列表法分析解答)23.(8分)(2015•天水)天水“伏羲文化节”商品交易会上,某商人将每件进价为8元的纪念品,按每件9元出售,每天可售出20件.他想采用提高售价的办法来增加利润,经实验,发现这种纪念品每件提价1元,每天的销售量会减少4件.(1)写出每天所得的利润y(元)与售价x(元/件)之间的函数关系式.(2)每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?24.(10分)(2015•天水)如图,点A(m,6)、B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x 轴于点C,DC=5.(1)求m、n的值并写出该反比例函数的解析式.(2)点E在线段CD上,S△ABE=10,求点E的坐标.25.(12分)(2015•天水)如图,AB是⊙O的直径,BC切⊙O于点B,OC平行于弦AD,过点D作DE⊥AB 于点E,连结AC,与DE交于点P.求证:(1)AC•PD=AP•BC;(2)PE=PD.26.(12分)(2015•天水)在平面直角坐标系中,已知y=﹣x2+bx+c(b、c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),点C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若抛物线经过A、B两点,求抛物线的解析式.(2)平移(1)中的抛物线,使顶点P在直线AC上并沿AC方向滑动距离为时,试证明:平移后的抛物线与直线AC交于x轴上的同一点.(3)在(2)的情况下,若沿AC方向任意滑动时,设抛物线与直线AC的另一交点为Q,取BC的中点N,试探究NP+BQ是否存在最小值?若存在,求出该最小值;若不存在,请说明理由.2015年甘肃省天水市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来)2.(4分)(2015•天水)如图是某几何体的三视图,该几何体是())=85;2)6.(4分)(2015•天水)一个圆柱的侧面展开图是两邻边长分别为6和8的矩形,则该圆柱的底面圆半或或题:分析:分8为底面周长与6为底面周长两种情况,求出底面半径即可.解答:解:若6为圆柱的高,8为底面周长,此时底面半径为=;若8为圆柱的高,6为底面周长,此时底面半径为=,故选C.点评:此题考查了几何体的展开图,利用了分类讨论的思想,分类讨论时注意不重不漏,考虑问题要全面.7.(4分)(2015•天水)如图,将矩形纸带ABCD,沿EF折叠后,C、D两点分别落在C′、D′的位置,经测量得∠EFB=65°,则∠AED′的度数是()A .65°B.55°C.50°D.25°考点:平行线的性质;翻折变换(折叠问题).分析:先根据平行线的性质求出∠DEF的度数,再由图形翻折变换的性质求出∠DED′的度数,根据补角的定义即可得出结论.解答:解:∵AD∥BC,∠EFB=65°,∴∠DEF=65°,∴∠DED′=2∠DEF=130°,∴∠AED′=180°﹣130°=50°.故选C.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.8.(4分)(2015•天水)如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=2,CD=,点P在四边形ABCD的边上.若点P到BD的距离为,则点P的个数为()A .2 B.3 C.4 D.5考点:等腰直角三角形;点到直线的距离.分析:首先作出AB、AD边上的点P(点A)到BD的垂线段AE,即点P到BD的最长距离,作出BC、CD的点P(点C)到BD的垂线段CF,即点P到BD的最长距离,由已知计算出AE、CF的长与比较得出答案.AB=AD=2CD=,ABD=2••>的距离为9.(4分)(2015•天水)如图,AB 为半圆所在⊙O 的直径,弦CD 为定长且小于⊙O 的半径(C 点与A 点不重合),CF ⊥CD 交AB 于点F ,DE ⊥CD 交AB 于点E ,G 为半圆弧上的中点.当点C 在上运动时,设的长为x ,CF+DE=y .则下列图象中,能表示y 与x 的函数关系的图象大致是( )10.(4分)(2015•天水)定义运算:a⊗b=a(1﹣b).下面给出了关于这种运算的几种结论:①2⊗(﹣2)=6,②a⊗b=b⊗a,③若a+b=0,则(a⊗a)+(b⊗b)=2ab,④若a⊗b=0,则a=0或b=1,其中结二、填空题(本大题共8小题,每小题4分,共32分。
只要求填写最简结果)11.(4分)(2015•天水)相切两圆的半径分别是5和3,则该两圆的圆心距是2或8 .12.(4分)(2015•天水)不等式组的所有整数解是0 .析:,解不等式①得,x>﹣,解不等式②得,x<1,所以不等式组的解集为﹣x<1,所以原不等式组的整数解是0.故答案为:0.点评:本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).13.(4分)(2015•天水)如图,边长为1的小正方形构成的网格中,半径为1的⊙O在格点上,则∠AED的正切值为.考点:圆周角定理;锐角三角函数的定义.专题:网格型.分析:根据圆周角定理可得∠AED=∠ABC,然后求出tan∠ABC的值即可.解答:解:由图可得,∠AED=∠ABC,∵⊙O在边长为1的网格格点上,∴AB=2,AC=1,则tan∠ABC==,∴tan∠AED=.故答案为:.点评:本题考查了圆周角定理和锐角三角形的定义,解答本题的关键是掌握同弧所对的圆周角相等.14.(4分)(2015•天水)一元二次方程x2+3﹣2x=0的解是x1=x2=.考点:解一元二次方程-配方法.分析:先分解因式,即可得出完全平方式,求出方程的解即可.解答:解:x2+3﹣2x=0 (x﹣)2=0∴x1=x2=.故答案为:x1=x2=.点评:此题考查了解一元二次方程,熟练掌握求根的方法是解本题的关键.15.(4分)(2015•天水)如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是8 米.,可得=∴=,=,16.(4分)(2015•天水)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是4π.的长是=的长是:=,的长是:=2的长是:++217.(4分)(2015•天水)下列函数(其中n为常数,且n>1)①y=(x>0);②y=(n﹣1)x;③y=(x>0);④y=(1﹣n)x+1;⑤y=﹣x2+2nx(x<0)中,y的值随x的值增大而增大的函数有 3 个.y=(<﹣时,18.(4分)(2015•天水)正方形OA1B1C1、A1A2B2C2、A2A3B3C3,按如图放置,其中点A1、A2、A3在x轴的正半轴上,点B1、B2、B3在直线y=﹣x+2上,则点A3的坐标为(,0).(,)(,(a=B2(,);(+b b=(,,故答案为(,0).三、解答题(本大题共3小题,共28分。