玻璃纤维
- 格式:docx
- 大小:14.41 KB
- 文档页数:5
玻璃纤维种类以及生产工艺一、玻璃纤维的种类1、无碱玻璃纤维,在国外为通用玻璃纤维,占产量的 90%以上,在国内也是应用最多的类型之一。
①无碱玻璃纤维抗拉强度比钢丝还高,与金属材料相比重量较轻,与金属铝相当;②抗疲乏强度高,对于需要经受冲击负荷的构造材料而言格外重要;③优异的电性能,介电常数低;尺寸稳定性好,在最大应力条件下,伸长率仅 3%-4%;④耐高温;⑤化学稳定性好,耐候性好,导热系数低,用作电绝缘材料时能快速散热;⑥几乎不吸水,遇火不燃烧、不冒烟。
2、中碱玻璃纤维,与无碱玻璃纤维相比强度较低,在无关性能要求的应用领域中,也是一种良好的工业材料和增加材料,在我国连续玻璃纤维纺织制品中照旧是用量最大的玻璃纤维类型。
①中碱玻璃纤维不宜用于电绝缘方面;②化学稳定良好,耐酸性优于无碱玻璃纤维;③价格比无碱玻璃纤维低。
3、高碱玻璃纤维,力学性能远低于无碱玻璃纤维和中碱玻璃纤维,而且不耐水侵蚀,在大气的水分侵蚀下,制品会很快变脆,因丧失强度而失去使用价值。
它是我国玻纤工业早期产品,现已趋于淘汰。
4、高强玻璃纤维,是力学性能比无碱玻璃纤维更好的特种用途玻璃纤维之一,生产本钱高,目前用于工、航空、体育、交通、电力等有特别要求的领域。
①抗拉强度比无碱玻璃纤维高 30%,比强度高 35%,弹性模量高 15%,比模量高 19%。
②用其制成的玻璃钢制品的抗拉强度比同类无碱玻璃钢制品高 30%,弯曲强度高 20%,剪切强度相当。
③可提升部件性能,减轻部件重量,节约燃料。
5、高模量玻璃纤维,弹性模量约为无碱玻璃纤维制品高 25%,抗拉强度高23%;比模量和比强度都很高,电绝缘性能好。
生产本钱高,目前用于工、航空、体育、交通、电力等有特别要求的领域。
6、耐磨玻璃纤维,用作各种水泥制品的型增加材料,用其制作的水泥制品具有轻质、高强、耐冲击的优点。
①比无碱玻璃纤维更优良的电性能,介电系数低,介电损耗小;②密度低,适用于制作雷达天线罩。
玻纤是什么材料玻纤是一种以玻璃纤维为主要原料制成的材料。
它是将玻璃熔化后拉丝成细纤维,再经过特殊的工艺处理而得到的纤维状材料。
玻纤的主要成分是二氧化硅(SiO2),其中还含有一定比例的氧化铝(Al2O3)、氧化钙(CaO)等氧化物。
玻纤具有许多优良的性质,使其在各个领域得到广泛应用。
首先,玻纤具有良好的强度和刚性,其强度可达到金属的一半左右,但重量却只有金属的四分之一。
这使得玻纤成为一种理想的轻质结构材料,可以在保证刚性的同时减轻材料的重量。
其次,玻纤还具有良好的耐热性和绝缘性能。
由于玻纤的主要成分是二氧化硅,因此具有较高的熔点和卓越的耐热性,在高温环境下仍能保持较好的强度和稳定性。
而玻纤还是一种优良的绝缘材料,可以有效隔离电和热的传导。
此外,玻纤还具有良好的耐腐蚀性和耐老化性能。
玻纤具有极佳的抗腐蚀性,对酸、碱、盐等腐蚀性介质具有很好的稳定性。
同时,玻纤还具有良好的耐老化性,即在长时间的紫外线和高温照射下,仍能保持较好的表面质量和性能。
由于玻纤具有以上种种优良的性质,使得它在工业、建筑、航空航天、交通运输等领域得到了广泛应用。
工业方面,玻纤可以制成各种复合材料,用于制造飞机、汽车、船舶等载体。
建筑方面,玻纤增强材料可以用于加强混凝土、塑料和金属结构,提高建筑物的抗风、抗震等能力。
航空航天方面,玻纤可以用于制造飞机的机身、翼面和尾翼等部件,提高其性能和安全性。
交通运输方面,玻纤可以用于制造汽车的车体、车身和内饰等部件,提高汽车的安全性和燃油效率。
综上所述,玻纤是一种具有优良性质的材料,由于其轻质、耐热、耐腐蚀和耐老化等特点,在众多工业和领域中得到了广泛应用。
玻纤是什么材料
玻纤是一种由玻璃纤维制成的材料,也称为玻璃纤维增强塑料。
它具有轻质、
高强度、耐腐蚀、绝缘等特点,因此在各个领域都有着广泛的应用。
首先,玻纤是由玻璃纤维和树脂组成的复合材料。
玻璃纤维是以玻璃为原料,
经过高温熔化后,通过特殊工艺制成的纤维状材料。
而树脂则是作为粘合剂,将玻璃纤维牢固地粘合在一起。
这种复合材料不仅具有玻璃的硬度和脆性,还具有塑料的韧性和可塑性,因此在工程领域有着广泛的应用。
其次,玻纤具有轻质高强的特点。
玻纤的密度很低,比重只有玻璃的四分之一
左右,因此重量轻,便于搬运和安装。
同时,玻纤又具有很高的强度,其拉伸强度甚至可以与钢相媲美。
这种轻质高强的特性使得玻纤在航空航天、汽车制造、船舶建造等领域有着广泛的应用。
此外,玻纤还具有良好的耐腐蚀性能。
由于玻纤不会受到化学物质的侵蚀,因
此在化工、环保等领域有着重要的应用。
例如,玻纤可以制成耐酸碱的储罐、管道等设备,用于储存和输送各种腐蚀性介质,具有很高的安全性和可靠性。
此外,玻纤还具有良好的绝缘性能。
在电力行业,玻纤可以制成绝缘子、绝缘
板等产品,用于电力输送和绝缘保护,具有很高的可靠性和安全性。
综上所述,玻纤是一种具有轻质、高强、耐腐蚀、绝缘等特点的材料,具有广
泛的应用前景。
随着科技的不断进步,相信玻纤在各个领域的应用将会越来越广泛,为人类的生产生活带来更多的便利和效益。
书山有路勤为径,学海无涯苦作舟玻璃纤维的特点、分类及应用玻璃纤维(英文原名为:glass fiber 或fiberglass )是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高,但缺点是性脆,耐磨性较差。
它是以玻璃球或废旧玻璃为原料经高温熔制、拉丝、络纱、织布等工艺制造成的,其单丝的直径为几个微米到二十几米个微米,相当于一根头发丝的1/20-1/5 ,每束纤维原丝都由数百根甚至上千根单丝组成。
玻璃纤维通常用作复合材料中的增强材料,电绝缘材料和绝热保温材料,电路基板等国民经济各个领域。
性质玻璃纤维作为强化塑料的补强材料应用时,最大的特征是抗拉强度大。
抗拉强度在标准状态下是6.3~6.9 g/d,湿润状态5.4~5.8 g/d。
密度2.54。
耐热性好,温度达300℃时对强度没影响。
有优良的电绝缘性,是高级的电绝缘材料,也用于绝热材料和防火屏蔽材料。
一般只被浓碱、氢氟酸和浓磷酸腐蚀。
主要成分其主要成分为二氧化硅、氧化铝、氧化钙、氧化硼、氧化镁、氧化钠等,根据玻璃中碱含量的多少,可分为无碱玻璃纤维(氧化钠0%~2%,属铝硼硅酸盐玻璃)、中碱玻璃纤维(氧化钠8%~12%,属含硼或不含硼的钠钙硅酸盐玻璃)和高碱玻璃纤维(氧化钠13%以上,属钠钙硅酸盐玻璃)。
特点原料及其应用:玻璃纤维比有机纤维耐温高,不燃,抗腐,隔热、隔音性好,抗拉强度高,电绝缘性好。
但性脆,耐磨性较差。
用来制造增强塑料(见彩图)或增强橡胶,作为补强材玻璃纤维具有以下之特点,这些特点使玻璃纤维之使用远较其他种类纤维来得广泛,发展速度亦遥遥领先其特性列举如下:(1)拉伸强度高,伸长小(3%)。
玻璃纤维(英文原名为:glass fiber或fiberglass )是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高。
它是以玻璃球或废旧玻璃为原料经高温熔制、拉丝、络纱、织布等工艺制造成的,其单丝的直径为几个微米到二十几米个微米,相当于一根头发丝的 1/20-1/5 ,每束纤维原丝都由数百根甚至上千根单丝组成。
玻璃纤维通常用作复合材料中的增强材料,电绝缘材料和绝热保温材料,电路基板等国民经济各个领域。
优点:(1)玻璃纤维比有机纤维耐温高,不燃,抗腐,隔热、隔音性好,抗拉强度高,电绝缘性好。
(2)拉伸强度高(3)弹性系数高,刚性佳。
(4)弹性限度内伸长量大且拉伸强度高,故吸收冲击能量大。
(5)为无机纤维,具不燃性,耐化学性佳。
(6)尺度安定性,耐热性均佳。
(7)加工性佳,可作成股、束、毡、织布等不同形态之产品(8)价格便宜。
供应各种型号的玻璃钢拉挤工字钢拉挤型材我们是专业玻璃钢复合材料产品生产销售商。
主要玻璃钢产品:承接净化工程,废弃处理工程,地面防腐工程,中央空调工程,净化塔,玻璃钢风机,耐腐耐压工艺管道、给排水夹砂管道、通风管道、管件、玻璃钢型材,玻璃钢关,玻璃钢工字钢,圆管,方管,角钢,平板,玻璃钢贮罐、玻璃钢水箱、不锈钢水箱,塔器、玻璃钢格栅、围栏绝缘梯子、玻璃钢楼梯、平台、挡风扬尘墙,冷却塔、玻璃钢风机、风阀,电动防火阀,球阀,蝶阀。
玻璃钢电缆桥架、电缆保护管、,玻璃钢门窗,花盆、雕塑、工艺品,防腐施工、净化脱硫除尘设备,垃圾箱,玻璃钢拉挤,格栅成套生产设备,现场缠绕设备加工等玻璃纤维棒是一种拉挤成型的玻璃钢复合材料,特点:它具有质量轻,强度高、弹性好,尺寸稳定精密,同时具有绝缘、不导热、阻燃、美观易保养等优良特性,故在有腐蚀性的环境的工程中是取代钢材及其它材料的最佳产品。
用途:光缆加强芯、运动器材产品、旗杆、车篷杆、帐篷杆、窗帘杆、标志杆、排风扇柱、汽车天线,建筑、桥梁加固,机械传动轴、高尔夫球杆、庭院围拦、风筝骨架、雨伞骨架、支架毯骨架、航模骨架、箱包骨架、渔具配件等,其规格有:3.0mm----32mm(一般常用规格),特殊规格可根据客人需求开模生产我们规格齐全、质量可靠、服务周到、欢迎新老客户来电来函洽谈。
玻璃纤维报告
以下是玻璃纤维报告:
一、概述
玻璃纤维又称玻璃纤维增强塑料(FRP),是一种使用玻璃纤维与树脂相结合制成的复合材料。
它具有高强度、高刚度、耐腐蚀、耐疲劳等优良性能,广泛应用于建筑、汽车、船舶、航空航天、光电子等领域。
二、玻璃纤维的制备
制备玻璃纤维的过程主要包括拉丝、涂覆和固化三个步骤。
1. 拉丝:将玻璃原料加热至熔点后,通过拉丝机器将原料拉伸成直径为几微米的细长纤维。
2. 涂覆:将拉丝得到的玻璃纤维经过预处理后,通过涂覆设备将树脂均匀地附着在纤维表面。
3. 固化:将涂覆好的玻璃纤维送入烘箱加热,使树脂先熔化再
固化,从而形成坚硬的复合材料。
三、玻璃纤维的应用
1. 建筑:玻璃纤维制成的复合材料具有重量轻、强度高、耐候
性好的特点,常用于制造建筑外墙板、围栏、屋顶等。
2. 汽车:玻璃纤维制成的汽车部件重量轻、强度高、耐腐蚀性好,可大幅度提高汽车的安全性、舒适性和节能性。
3. 航空航天:玻璃纤维制成的复合材料可以在高温、高压、高
速等恶劣环境中保持良好的性能,因此广泛应用于航空航天领域。
四、玻璃纤维的发展趋势
随着科技的不断进步,玻璃纤维在耐腐蚀、耐高温、防电磁干
扰等方面仍有待提高。
未来,玻璃纤维的应用将更加广泛,同时
也需要不断加强研究和开发,以满足市场的不断需求。
玻璃纤维材料
玻璃纤维是一种由玻璃纤维束或玻璃纤维绳编织而成的复合材料,它具有优异的物理性能和化学性能,被广泛应用于建筑、航空航天、汽车、船舶等领域。
玻璃纤维材料具有轻质、高强度、耐腐蚀、绝缘等特点,因此备受青睐。
首先,玻璃纤维材料的轻质特性使其在航空航天领域得到了广泛应用。
由于玻璃纤维的密度低,因此制成的航空器和航天器具有较轻的重量,有利于提高飞行器的燃油效率和载荷能力。
此外,玻璃纤维还具有优异的抗拉强度和弯曲强度,能够满足航空航天领域对材料强度和刚度的要求。
其次,玻璃纤维材料的耐腐蚀性能使其在建筑领域得到了广泛应用。
在建筑结构中,玻璃纤维可以替代传统的钢材或混凝土材料,用于增强混凝土结构的耐久性和抗震性能。
与金属材料相比,玻璃纤维不会受到腐蚀和氧化的影响,能够保持长期稳定的性能,因此在海洋工程和化工设备等腐蚀环境下也有着广泛的应用。
此外,玻璃纤维材料还具有良好的绝缘性能,适用于电气设备和电子产品的制造。
由于玻璃纤维具有优异的绝缘性能和耐高温性能,因此被广泛应用于电缆、变压器、电机等电气设备的绝缘材料。
同时,玻璃纤维还可以制成电子产品的外壳和支架,保护电子元器件免受外部环境的影响。
总的来说,玻璃纤维材料具有轻质、高强度、耐腐蚀、绝缘等优异性能,被广泛应用于航空航天、建筑、电气等领域。
随着科学技术的不断进步,玻璃纤维材料的性能和应用领域将会不断拓展,为人类创造出更多的可能性。
玻纤是什么材料
玻纤是一种由玻璃纤维制成的材料,具有轻质、高强度、耐腐蚀等优点,在工业和民用领域有着广泛的应用。
玻纤材料是如何制备的?它有哪些特点和用途?本文将对玻纤材料进行详细介绍。
首先,玻纤是通过将玻璃原料经过高温熔融后,通过特殊的纺丝工艺制成的纤维材料。
这种材料具有优异的机械性能和化学稳定性,可以根据需要进行不同形式的加工和成型,广泛应用于航空航天、汽车制造、建筑材料、电子电器等领域。
其次,玻纤材料具有轻质高强的特点,比重小、拉伸强度高,是一种优秀的结构材料。
同时,它还具有优异的耐腐蚀性能和绝缘性能,能够在恶劣环境下长期稳定工作,因此在航空航天和化工领域有着重要的应用价值。
此外,玻纤材料还具有良好的成型性能,可以通过注塑、挤出、压延等工艺进行成型,制成各种复杂的结构和零部件。
与此同时,玻纤材料还可以与树脂、金属等材料复合,形成复合材料,进一步提高材料的性能和应用范围。
总的来说,玻纤材料是一种具有广泛应用前景的新型材料,它的轻质高强、耐腐蚀、成型性能等特点,使其在航空航天、汽车制造、建筑材料等领域有着重要的应用价值。
随着科技的不断进步,相信玻纤材料将会在更多领域展现出其独特的优势和潜力。
玻璃纤维产品介绍玻璃纤维是一种由玻璃材料制成的纤维状新材料,具有优异的性能和广泛的应用领域。
本文将对玻璃纤维的定义、制造工艺、性能特点以及主要应用进行详细介绍。
一、定义玻璃纤维是由玻璃材料制成的纤维状产品,一般采用无机玻璃纤维作为原料,通过拉伸、捻绕等工艺制成不同形态的纤维。
玻璃纤维具有高强度、高模量、耐腐蚀、耐高温等优点,因此被广泛应用于建筑、交通运输、电子电器、冶金等领域。
二、制造工艺1.原料准备:选用高质量的无机玻璃作为原料,通过熔融、调整成分等工艺制备玻璃浆料。
2.成纤:将玻璃浆料经过融化后挤出成纤维,然后通过拉拔、捻绕等工艺调整纤维的直径和长度。
3.细纤:将成纤的玻璃纤维进行破碎,得到所需长度的细纤维。
4.喷涂:将细纤涂覆在模具上,通过加热和固化形成玻璃纤维制品。
三、性能特点1.高强度:玻璃纤维具有较高的拉伸强度和弯曲强度,强度可以根据应用需求进行调整。
2.高模量:玻璃纤维的刚度较高,具有良好的抗弯性能和稳定性。
3.耐腐蚀:玻璃纤维具有优异的耐腐蚀性能,可以在酸碱介质中长期使用。
4.耐高温:玻璃纤维在高温条件下继续保持强度和刚度,不易熔融或变形。
5.绝缘性能:玻璃纤维是一种优良的绝缘材料,具有良好的电绝缘性能和导热性能。
6.轻质:玻璃纤维比重较轻,可以有效减轻结构的自重,提高整体性能。
四、主要应用1.建筑领域:玻璃纤维可以制成玻璃纤维增强塑料(FRP)板材、管材等,用于建筑物的隔热、防水、装饰等。
2.交通运输:玻璃纤维可以制成汽车外壳、船舶船体、飞机机身等,具有优异的强度和轻质化特点。
3.电子电器:玻璃纤维可以制成电子电器的绝缘材料、电路板基材等,具有良好的绝缘性能和导热性能。
4.冶金领域:玻璃纤维可以制成耐火材料、炉衬等,用于熔炼金属和高温工艺的隔热和保护。
5.医疗领域:玻璃纤维可以制成医疗器械、医用纱布等,用于外科手术、创伤包扎等医疗应用。
总结:玻璃纤维作为一种重要的纤维状新材料,具有高强度、高模量、耐腐蚀、耐高温等优异性能,广泛应用于建筑、交通运输、电子电器、冶金等领域。
认识玻璃纤维教案引言。
玻璃纤维是一种常见的材料,广泛应用于建筑、航空航天、汽车、船舶、电子、电信、医疗和环保等领域。
在教学中,了解玻璃纤维的特性和应用是非常重要的。
本文将介绍玻璃纤维的基本知识和教学应用,帮助教师更好地教授相关知识。
一、玻璃纤维的基本知识。
1. 玻璃纤维的定义。
玻璃纤维是由玻璃熔体通过拉拔成纤维状的材料,具有优异的绝缘性能、耐腐蚀性能和机械强度,是一种重要的复合材料基体。
2. 玻璃纤维的特性。
玻璃纤维具有轻质、高强度、耐腐蚀、绝缘等特点,因此在各个领域都有广泛的应用。
3. 玻璃纤维的分类。
根据玻璃纤维的成分和用途不同,可以将其分为碱性玻璃纤维、中碱性玻璃纤维和中性玻璃纤维等几种类型。
二、玻璃纤维的教学应用。
1. 建筑领域。
玻璃纤维在建筑领域主要用于加固混凝土结构、制作玻璃钢构件和隔热保温材料等。
教师可以通过案例分析和实验演示,让学生了解玻璃纤维在建筑中的应用和作用。
2. 航空航天领域。
玻璃纤维在航空航天领域主要用于制造飞机和航天器的结构材料、隔热材料和导热材料等。
教师可以引导学生学习相关理论知识,并组织实地参观和讨论,加深学生对玻璃纤维在航空航天中的应用理解。
3. 汽车领域。
玻璃纤维在汽车领域主要用于制造汽车外壳、座椅、内饰件和隔音隔热材料等。
教师可以设计相关课程项目,让学生了解玻璃纤维在汽车制造中的应用,培养学生的实践能力和创新意识。
4. 电子领域。
玻璃纤维在电子领域主要用于制造光纤通信设备、光纤传感器和光纤激光器等。
教师可以组织学生参与相关科研项目,培养学生的动手能力和团队合作精神,提高学生对玻璃纤维在电子领域的认识。
5. 医疗领域。
玻璃纤维在医疗领域主要用于制造医疗器械、医用敷料和医用隔离材料等。
教师可以邀请专业人士进行讲座,让学生了解玻璃纤维在医疗领域的应用和发展趋势,激发学生对医疗材料研究的兴趣。
6. 玻璃纤维的环保应用。
玻璃纤维在环保领域主要用于制造污水处理设备、废气处理设备和垃圾焚烧设备等。
玻璃纤维介绍一、引言玻璃纤维是一种深受欢迎的材料,具有轻质、高强度、耐腐蚀等特点,在建筑、汽车、航空航天等领域得到了广泛应用。
本文将从玻璃纤维的定义、制备方法、物理性质和化学性质等方面进行详细介绍。
二、定义玻璃纤维是由玻璃制成的长丝状或细丝状的纤维材料,通常由硅酸盐和氧化金属组成。
它具有优异的机械性能和耐腐蚀性能,被广泛应用于建筑、汽车、航空航天等领域。
三、制备方法1. 熔融法:将玻璃加热至高温状态,然后通过旋转或拉伸等方式制成纤维。
2. 拉伸法:将预先制备好的小块玻璃加热至软化状态,然后通过拉伸机械设备将其拉成长丝状。
3. 湿法:将预先制备好的小块玻璃放入浸液中,在高温下进行拉伸和干燥,使其成为纤维。
四、物理性质1. 密度:玻璃纤维的密度通常为2.5-2.8g/cm³,比钢铁轻得多。
2. 强度:玻璃纤维具有优异的强度和刚度,通常比钢铁还要强。
3. 熔点:玻璃纤维的熔点通常在1000℃以上。
4. 热膨胀系数:玻璃纤维的热膨胀系数很小,可以抵抗高温变形。
五、化学性质1. 耐酸碱性:玻璃纤维具有良好的耐酸碱性能,可以在强酸和强碱环境下长期使用。
2. 耐腐蚀性:玻璃纤维不易受到大气污染和化学物质侵蚀,可以长期保持其外观和性能。
3. 透明性:玻璃纤维具有良好的透明性,在光学领域也有广泛应用。
六、应用领域1. 建筑领域:玻璃纤维可用于制作墙面板、屋顶板、隔热材料等。
2. 汽车领域:玻璃纤维可用于制作汽车外壳、车身结构和底盘等。
3. 航空航天领域:玻璃纤维可用于制作飞机机身、发动机罩等。
4. 其他领域:玻璃纤维还可以用于制作船舶、电器、化工设备等。
七、总结玻璃纤维是一种优异的材料,具有轻质、高强度、耐腐蚀等特点,在建筑、汽车、航空航天等领域得到了广泛应用。
本文从定义、制备方法、物理性质和化学性质等方面进行了详细介绍,相信读者已经对玻璃纤维有了更深入的了解。
玻璃纤维化学方程式-概述说明以及解释1.引言1.1 概述玻璃纤维是一种重要的纤维增强材料,具有优异的力学性能和热稳定性,被广泛应用于航空航天、汽车制造、建筑等领域。
玻璃纤维是通过将玻璃熔融并拉丝形成的一种纤维状材料,其主要成分是硅酸盐类化合物。
玻璃纤维具有良好的耐候性、绝缘性和抗腐蚀性,可以在恶劣环境下长期使用。
玻璃纤维的制备方法主要包括熔融法和化学气相沉积法。
熔融法是将玻璃原料加热至熔化状态,然后通过旋转或拉伸的方式形成纤维。
化学气相沉积法则是将气体中的玻璃原子沉积在基材上,形成纤维。
这两种方法各有优势,可以根据不同需求选择适合的制备方法。
玻璃纤维的化学组成主要是二氧化硅(SiO2)和其他氧化物,如氧化铝(Al2O3)、氧化钠(Na2O)等。
其中,二氧化硅是主要成分,它赋予了玻璃纤维良好的力学性能和化学稳定性。
不同的组成比例和添加剂会影响玻璃纤维的性能和用途。
玻璃纤维具有一系列优异的物理性质,包括高强度、高模量、低密度和良好的耐磨性。
它还具有很好的导热性和导电性,可以根据需要进行功能性改性。
此外,玻璃纤维还具有较好的抗火性能和吸音性能,能够提供安全、舒适的使用环境。
综上所述,玻璃纤维是一种重要的纤维增强材料,具有优异的化学组成和物理性质。
它在各个领域有广泛的应用前景,可以满足不同行业对材料性能和功能的需求。
未来,随着科学技术的不断发展,玻璃纤维的应用领域将进一步拓展,为人们的生活和工作带来更多便利和创新。
1.2 文章结构文章结构部分的内容可以根据以下内容展开:文章结构部分旨在介绍整篇文章的组织和框架,帮助读者更好地理解文章内容的组织和逻辑。
本文以玻璃纤维为主题,按照以下顺序进行组织:1. 引言:在引言部分,将首先对玻璃纤维进行概述,介绍其基本定义和特点,包括其制备方法、化学组成和物理性质等。
通过引言部分可以为读者提供一个对玻璃纤维有初步了解的背景知识。
2. 正文:正文部分将重点介绍玻璃纤维的制备方法、化学组成和物理性质等方面的内容。
玻璃纤维的分类
玻璃纤维可以分为以下几类:
1. 长玻璃纤维(Continuous Glass Fiber):长玻璃纤维是指长度在几十毫米到几千米范围内的玻璃纤维,通常以纤维束或纤维带的形式存在。
这种纤维具有高的强度和刚度,并且能够提供优异的抗拉、抗压和抗弯能力。
长玻璃纤维常用于增强复合材料和耐火材料中。
2. 短玻璃纤维(Short Glass Fiber):短玻璃纤维是指长度在几毫米到几厘米范围内的玻璃纤维。
由于纤维长度较短,所以短玻璃纤维的强度和刚度相对较低,但是具有良好的耐磨性和抗冲击性。
短玻璃纤维广泛应用于增强塑料、橡胶和混凝土等材料中。
3. 玻璃纤维布(Glass Fiber Cloth):玻璃纤维布是以玻璃纤维为原料织造成的织物,常用于增强材料和过滤材料中。
玻璃纤维布具有耐高温、耐腐蚀和良好的绝缘性能,广泛应用于建筑、航空航天、电子、化工等领域。
4. 玻璃纤维纱(Glass Fiber Yarn):玻璃纤维纱是将玻璃纤维束或切段纤维加工成的纱线。
玻璃纤维纱具有优异的耐高温性能和电绝缘性能,常用于绝缘材料、电缆线材和复合材料中。
5. 玻璃纤维制品(Glass Fiber Products):玻璃纤维可以制成各种形状的制品,
如管道、板材、容器等。
这些制品具有优异的耐腐蚀性、耐高温性和机械性能,在化工、建筑、航空航天等领域得到广泛应用。
玻璃纤维参数
玻璃纤维是一种广泛应用于建筑、航空航天、汽车、船舶等领域的材料。
它具有优异的机械性能、电气性能、耐腐蚀性等特点。
在使用玻璃纤维时,需要了解其参数,包括:
1. 玻璃纤维直径:玻璃纤维直径一般在5-30μm之间,直径越细,其柔韧性越好,但强度越低。
2. 玻璃纤维长度:玻璃纤维的长度与其用途有关。
短纤维适用于增强塑料等材料的强度,长纤维适用于制作具有高强度和刚度的复合材料。
3. 玻璃纤维比重:玻璃纤维的比重一般在2.5-2.8之间,比重越小,其轻量化效果越好。
4. 玻璃纤维强度:玻璃纤维的强度一般在1000-5000MPa之间,强度越高,其使用范围越广。
5. 玻璃纤维模量:玻璃纤维的模量一般在40-80GPa之间,模量越高,其刚度越好。
6. 玻璃纤维热膨胀系数:玻璃纤维的热膨胀系数一般在5-10×10^-6/K之间,热膨胀系数越小,其稳定性越好。
以上是玻璃纤维的一些重要参数,使用时需要根据具体情况进行选择。
- 1 -。
玻璃纤维
玻璃纤维应用知识
作者: 赵工来源: 聚和成日期: 2009-4-18 点击数: 74
第一部分:玻纤知识:
1、玻纤分类
从长度分类分可以分连续玻纤、短玻纤(定长玻纤)和长玻纤(LET),连续玻纤是国内目前应用最广的玻纤,就是通常说的“长纤”,代表厂家有巨石,泰山、兴旺等。
定长玻纤就是通常说的“短纤”,一般是外资改性厂与国内部分企业在用,代表厂家有PPG,OCF及国内的CPIC,巨石泰山也有少部分,但质量不如人意。
LET是最近在国内兴起的,代表厂家有PPG,CPIC及巨石,目前国内金发,浙江俊尔,南京聚隆产量较大。
从碱金属含量分可分为无碱,低中高,通常改性增强用无碱,也就是E玻纤,国内改性一般使用E玻纤。
2、玻纤的应用
玻纤增强塑料的原理主要是由于玻纤/树脂界面上连接必然是使作用到模塑件上的力传导到玻纤上,因此玻纤的长度被充分利用,起到树
脂增强的目的,但玻纤在树脂基体中长度必须满足一定的要求,这就是临界玻纤长度,玻璃纤维的临界纤维长度(即可将力从基材传递给纤维的最小长度)在0.3~0.6mm之间,临界长度只与剪切力与玻纤单丝直径有关,上面的临界长度是指玻纤在最终产品里的长度,如是果是塑料粒子里话,此长就就在0.6~0.8mm之间,从理论上讲,临界长度与玻纤的原始长度没有关系,如果增强产品把玻纤的长度都控制在这个范围的话,此时产品的力学性能与表面外观都是最好的,最平衡的,如果长度过长,力学性能上升,但制品表面会变粗糙与翘曲,如果长度过短,就会导致力学性能不足。
要控制玻纤的长度应该从调整螺杆结构及转速入手,如果玻纤长径控制在400效果最佳。
3、评价玻纤好坏的主要指标
第一个指标:玻纤在拉丝过程中所使用的表面活性处理剂。
表面活性处理剂也就是通常所说的浸润剂,浸润剂主要是偶联剂与成膜剂,另外还有一些润滑剂、抗氧剂、乳化剂、抗静电剂等,成膜剂的成分与其它助剂的种类对玻纤有决定性的影响,所以在选择玻纤时就根据基料与成品要求选择合适的玻纤。
像PPG、CPIC等公司短纤牌号较多,就是因为表面浸润剂不一样,这样就针对性比较强。
第二个指标:单丝直径。
以前介绍过临界玻纤长度只与剪切力和单丝直径有关,从理论上讲,如果单丝直径越小,产品的力学性能与表面外观越佳。
目前国内玻纤直径一般都在10μm,13μm,像CPIC就有开发7μm的玻纤。
4、浮纤原因分析
浮纤是增强改性里的一个通病,尤其是PA黑色的产品,前面介绍过如果能在塑料粒子把玻纤长度控制在0.6~0.8mm之前的话,基本不会有浮纤的出现,但由于玻纤质量
,树脂的黏度、改性的所用机器及工艺,下游客户的模具及工艺等影响不可避免会出现浮纤。
浮纤是由于玻纤与树脂的流动性不一致及树脂与玻纤结合能力不强所导致的,如果要解决浮纤要从这一原理入手。
5、连续玻纤好还是短玻纤好
有很多人会觉得,连续玻纤经过螺杆剪切不就是短玻纤了吗?效果不是一样的吗?其实从综合性能上讲,短玻纤优于连续玻纤,只是国内改性市场迫于成本压力使用连续玻纤的过多。
总得来说,短玻纤优势有以下几个方面:
①短纤针对性较强,一般短纤生产的厂家会根据不同用途使用不同的浸润剂,而且短纤在单位体积内浸润剂含量比长纤要多,这样就会保证树脂与玻纤的结合能力。
短纤的单丝直径较细,比较好控制玻纤在塑料粒子的长度和分布,从而直接影响产品力学性能与表面外观。
②短纤计量更加准确,短纤一般是通过侧喂料系统与电子秤添加。
③对螺纹块磨损较小,由于短纤已经被原厂剪切好,改性再加工时,就螺杆剪切力大大减弱。
④如果是回料增强的话,可以考虑加短纤,用比较差一点的回料,可以降低成本,如隔热条专用料完全可用此方法。
第二部分:浮纤解决方法(以PA为例)
在此总结一些行业里常用的一些方法,如有不足请大家指正。
前面也说过要从产生浮纤的原理入手解决浮纤问题,一般从三个方面来考虑。
第一方面:从原料入手,PA黏度在力学性能许可的范围内尽量选低黏,玻纤尽量用短纤,如果是PA66的话,可以考虑加入一些PA6和回料以增加流动性,个人认为,选择玻纤最重要。
第二方面:从工艺入手,适当提高螺杆剪切力;2、注射速度调高,螺杆速度可以调到70%-90%;3、增大注射压力;4、整个螺杆回缩1-2MM,防止浇口浮纤;5、对于复杂制件采取分级注塑。
第三方面:从助剂入手,如果前两种方法都不能解决的话只能考虑从助剂入手。
目前助剂解决浮纤,主要是加强玻纤的流动性,增强玻纤与树脂的结合能力,还一些传为偏门的方法如使用特殊染料把玻纤染黑(只适用于PA黑色),表面而且非常光亮
助剂的种类:硅氧烷(硅酮母料与硅酮粉),改性的酰胺类及聚合物(如TAF,超分散剂等),玻料微珠,相容剂,特殊黑色母(可以把玻纤染黑)。
个人认为只要使用得当,上面的这些助剂都会有比较的效果。
个人经验,仅供大家参考:
①、硅酮0.5~0.8%+分散剂0.8%,效果很不错,还可以增加产品的光度和降低螺杆扭矩。
②、玻璃微珠,一般PA+30%GF体系里添加5%的GB,GB一定要使用进口,这样对力学性能影响较小。
③、PA黑色,添加1%~1.5%特
殊黑色母,效果很棒,只是成本较高
如果你有更好的经验欢迎交流!
注:另可参阅本站《玻璃纤维基础知识》一文。