当前位置:文档之家› 自由基的致病和花青素在机体内抗氧化去除自由基机理

自由基的致病和花青素在机体内抗氧化去除自由基机理

自由基的致病和花青素在机体内抗氧化去除自由基机理
自由基的致病和花青素在机体内抗氧化去除自由基机理

自由基的致病和花青素在机体内抗氧化去除自由基机理

天然色素应用技术推广实验室aingw@https://www.doczj.com/doc/0a16894859.html,

花青素是机体内抗氧化,还原自由基的重要成分。自由基的作用及危害:自由基是一些具有不配对电子的氧分子,它们在机体内漫游,损伤任何与其接触的细胞和组织,摧毁细胞膜,导致细胞膜发生变性,使细胞不能从外部吸收营养,也排泄不出细胞内的代谢废物,并走失了对细菌和病毒的抵御能力;自由基攻击正在复制中的基因,造成基因突变诱发癌症发生;自由基激活人体的免疫系统,使人体表现出过敏反应,或出现如红斑狼疮等的自体免疫疾病;自由基作用于人体内酶系统,导致胶原蛋白酶和硬弹性蛋白酶的释放,这些酶作用于皮肤中的胶原蛋白和硬弹性蛋白并使这两种蛋白产生过度交联并降解,结果使皮肤失去弹性,出现皱纹及囊泡;类似的作用使体内毛驯血管脆性增加,使血管容易破裂,这可导致静脉曲张、水肿等与血管通透性升高有关疾病的发生;自由基侵蚀机体组织,可激发人体释放各种炎症因子,导致出各种非菌性炎症;自由基侵蚀脑细胞,使人得早老性痴呆的疾病;自由基氧化血液中的脂蛋白造成胆固醇向血管壁的沉积,引起心脏病和中风;自由基引起关节膜及关节滑液的降解,从而导致关节炎;自由基侵蚀眼睛晶状体约织引起白内障;自由基侵蚀胰脏细胞引起糖尿病。自由基破坏胶原蛋白及其它结缔组织,干扰重要的生理过程,引起细胞的DNA突变,自由基与70多种疾病有关包括心脏病、动脉硬化、静脉炎、关节炎、过敏、早老性痴呆、冠心病及癌症。

自由基和体内细胞中的有机物质发生链式反应,使得体内过氧化合物大量堆积,让细胞失去正常的生理功能,从而导致疾病的产生。

花青素的发现及清除自由基的机理:1986年,法国波尔多大学的玛斯魁勒博士发现花青素(原花青素)具有强烈的自由基清除功效。花青素属于酚类化合物中的类黄酮(flavonoids)的一种,类黄酮则为水溶性色素,存在于细胞的液泡中,易受细胞内化学环境所影响,酸度、温度及其他在液泡中的新陈代谢,都会使其分子结构改变,造成颜色的变化,而能产生粉红色、红色、紫色及蓝色的颜色。花青素是迄今为止所发现的最强效的自由基清除剂,其抗自由基氧化能力是维生素C的20倍、维生素E的50倍,尤其是体内活性,更是其他抗氧化剂无法比拟的。

花青素的应用范围:花青素作为一种抗氧化功能食品由于不受作为药物需有明确适应症的限制,花青素基于清除体内自由基的功效,其应用范围越来越大。目前已发现花青素对近70多种疾病具有直接或间接的预防和治疗作用。花青素在国外的应用非常广泛。作为一种抗氧化功能食品,它具有非常强大的清除自由基的能力,花青素的防病保健功效的基础就是其清除自由基的能力。

另外花青素还有一些其它特点,如很好的生物利用度,易与胶原蛋白结合,稳定细胞膜以及抗酶活性(组胺脱羧酶),这些特点与抗氧化能力协作,使花青素成为一种基于清晰理论基础和严格实验结果之上的保健功能食品。

羟基自由基清除注意事项

一般而言,对于Fenton试剂与有机化合物氧化能力的影响因素大致上可分为: A.亚铁离子浓度。 B.过氧化氢浓度。 C.溶液于反应时的反应温度。 D.溶液中的pH值。 以下将对此四项变因做详细的探讨: A.亚铁离子浓度的影响 在Fenton试剂的反应中,亚铁离子主要是扮演着催化过氧化氢的角色。因此,若溶液中没有亚铁离子当触媒,则其溶液可能就没有氢氧自由基的生成。所以,大致上分解反应会随亚铁离子的浓度增加而加快,亚铁添加量会影响脱色效率,亚铁剂量愈高效果愈佳,此原因为增加亚铁剂量将使氧化反应更加完全并且可产生混凝机制而进行脱色(26)。但亚铁离子本身会与有机物形成竞争,亚铁离子浓度过高会增加氢氧自由基的消耗,反而造成处理效果的下降,反应式如下: Fe2+ + ·OH Fe3+ + OH- 故当浓度到达某一定值时,则其分解速率便不会在随着亚铁离子浓度的增加而持续加快,且亚铁离子浓度和生成物的比值也将可能会影响生成物的分布。一般而言,亚铁离子浓度皆维持在亚铁离子与其反应物之浓度比值为1:10-50(wt/wt)。 此外,亚铁在Fenton程序中除了扮演催化过氧化氢的角色外,亦具有混凝的功能,因此过量的铁离子加入将会造成过度的混凝,降低Fenton程序处理的效果,其可能的反应如下所示: B.过氧化氢浓度的影响 反应过程中,过氧化氢的浓度会直接影响氧化有机物的效果。一般而言,随着过氧化氢添加量的增加,有机物的氧化效果亦将随之提升,并且过氧化氢的添加浓度不同,则分解反应生成的产物将会有所差异。大致而言,在过氧化氢浓度越高的情况下,则其氧化反应产物,将会更趋近于最终产物。但是,当溶液中的过氧化氢浓度过高时,反而会使过氧化氢与有机物竞争氢氧自由基,而造成反应速率的结果可能不如预期一般增加。此外,当Fenton试剂系统中过氧化氢浓度远高于亚铁离子浓度时,Fenton法所产生的氢氧自由基会与过氧化氢反应产生perhydroxyl radical (HO2.)及一系列反应,且三价铁离子会与HO2.进行氧化还原反应生成superoxide radical anion (O2.),造成过氧化氢消耗量的增加,过量的过氧化氢加药量并不必然增加氢氧自由基的浓度,氢氧自由基达到稳定浓度所需反应时间随加药量增加而增加(27)。因此,若以连续之方式加入低浓度之过氧化氢,减少因为过氧化氢初始浓度过高所导致的抑制效应,亦可得到较好的氧化效果。 C.温度的影响 根据Arrhennius' Law:k=k0exp(-Ea/RT)可得知温度的改变会影响活化能及反应速率常数,进而影响反应速率。 对于Fenton试剂反应而言,一般若选用的反应温度条件是在小于20℃以下时,其对有机物的氧化速率将会随温度升高而加快。但是,倘若将其反应的温度升高至40-50℃时,其Fenton反应将会可能因为温度过高,进而使过氧化氢自行分解成水与氧(2H2O2 → 2H2O + O2 ),造成Fenton试剂对氧化有机物之反应速率减慢。 因此,当过氧化氢浓度超过10-20 g/L时,在其经济与安全的考量下,应谨慎选择适当的温度。在一般商业应用上,通常皆将其反应的温度设定在20-40℃之间。 D. pH值的影响 于Fenton试剂反应中,其反应溶液之pH值对Fenton法之影响,关系到铁离子错合效应、铁

自由基氧化理论

一、自由基氧化理论 从古至今,人类一直在探索、研究,希望可以找出什么方法使人青春长驻、长生不老。人是否可以长生不老?人的寿命到底有多长呢?现在最新的国际公认的人的平均寿命是120岁,而现在全世界人类的平均寿命还不到70岁,主要原因是疾病,许多人30多岁的时候就已经患有心血管病、糖尿病、肾病、脂肪肝等等,有的甚至是同时身患好几种疾病,绝大多数人是病死的,自然老死的人很少。 现在越来越多的科学家相信衰老是一种疾病,而不是因时间流失而产生的必然结果。衰老既然是一种疾病,那么人类就一样可以延缓衰老或逆转衰老。衰老是如何产生的呢?1956年,英国的哈曼博士率先提出自由基与机体衰老和疾病有关,接着在1957年发表了第一篇研究报告,阐述用含0.5%-1%自由基清除剂的的饲料喂养小鼠可延长寿命。当时这一理论并不被人重视,人们接受这一理论是在20多年后,由于自由基学说能比较清楚地解释机体衰老过程中出现的种种症状,如老年斑、皱纹及免疫力下降等,现在这一理论是科学界最为一致认同的老化理论。 我们可以几天不喝水,十几天不吃饭,但缺乏氧的供应几分钟就会死亡,氧气进入体内,在细胞中被利用产生能量,所以氧气对人体是至关重要的。但我们也会经常注意到一个现象:铁块生锈,我们知道是氧化了;一个已经切开的苹果,放置几分钟就会发黄,这也是因为被氧化了。如果把苹果放入水中,使苹果与氧气隔开,苹果的切面就不会变色。同样,氧气也会氧化人的身体。自由基 一、自由基氧化理论 同时,细胞在利用氧气产生能量的过程中,会产生一种副产品,即自由基,就像碳在燃烧时会产生二氧化碳,而在不充分氧化时会产生一氧化碳一样。自由基不像病毒、细菌是有生命的微生物,而是一个原子。简单的说,在我们这个由原子组成的世界中,有一个特别的法则,这就是,只要有两个以上的原子组合在一起,它的外围电子就一定要配对,如果不配对,它们就要去寻找另一个电子,使自己变成稳定的元素。科学家们把这种有着不成对的电子的原子或分子叫做自由基。 自由基非常活跃,非常不安分。为了使自己的结构稳定下来,它会攻击细胞内其他正常的原子,抢夺它们的电子,使细胞死亡或者发生变异。 这种缺少了一个电子,而又非常活跃的原子或分子的自由基,存在空间相当广泛。 科学家在二十世纪初从烟囱和汽车尾气中发现了这种十分活跃的物质。随后的研究表明,自由基的生成过程复杂多样,比如,加热、燃烧、光照,一种物质与另一种物质的接触或任何一种化学反应都会产生自由基。在日常生活中与您最亲密接触的渠道便是您烹制美味的菜肴时或您点燃一只醉心于吞云吐雾时,您精心使用化妆打扮时,自由基就悄悄地蔓延开来了。 自由基的种类非常多,,自由基的存在的空间也是无处不在。它们以不同的结构特征,在与其他元素结合时,发挥着不同的作用。 人体里也有自由基,他们既可以帮助传递维持生命活力的能量,也可以被用来杀灭细菌和寄生虫,还能参与排除毒素。受控的自由基对人体是有益的。但当人体中的自由基超过一定的量,并失去控制时,这种自由基就会给我们的生命带来伤害。

葡萄籽提取物原花青素(OPC)的功效和作用

葡萄籽提取物的基本介绍: 葡萄籽提取物是从天然葡萄籽中提取的有效活性营养成份配以维生素E等主要原料精制而成的营养食品。葡萄籽提取物是从葡萄籽中提取的一种人体内不能合成的新型高效天然抗氧化剂物质。陕西浩洋生物科技有限公司经过研究发现葡萄籽提取物是目前自然界中抗氧化、清除自由基能力最强的物质,其抗氧化活性为维生素E的50倍、维生素C的20倍,它能有效清除人体内多余的自由基,具有超强的延缓衰老和增强免疫力的作用。抗氧化、抗过敏、抗疲劳增强体质、改善亚健康状态延缓衰老、改善烦躁易怒、头昏乏力、记忆力减退等症状。葡萄籽的功效与作用。 葡萄籽提取物的功效和作用: 1.清除自由基、抗衰老、增强免疫力: 清除自由基,阻止自由基对人体细胞的破坏。保护人体器官和组织,防治心脏病、癌症、早衰、糖尿病、动脉硬化等100多种由自由基所引起的疾病。 2.保护皮肤、美容养颜: 有“皮肤维他命”和“口服化妆品”的美誉,保护胶原蛋白,改善皮肤弹性与光泽,美白、保湿、祛斑;减少皱纹、保持皮肤的柔润光滑;清除痤疮、愈合疤痕。 增强皮肤抵抗力、免疫力,防治皮肤过敏及各类皮肤病;增强皮肤抗辐射能力,阻止紫外线侵害; 3.抗过敏: 深入细胞从根本上抑制致敏因子“组胺”的释放,提高细胞对过敏源的耐受性;清除致敏自由基,抗炎、抗过敏;稳定皮肤血管组织,缓解荨麻疹、干革热、过敏性鼻炎等各种过敏症状;有效调节机体免疫力,彻底改善过敏体质。 4.保护血管: 保护心脑血管,降低胆固醇,防止动脉硬化,预防脑溢血、中风、偏瘫等; 维持毛细血管适度的渗透性,增加血管强度,减低毛细血管易脆性; 降血脂、降血压,抑制血栓的形成,减少脂肪肝的发生;预防血管壁脆弱引起的浮肿、血丝;减轻水肿及腿部肿胀,减轻淤伤、运动受伤; 改善静脉曲张、静脉机能不全、静脉炎,防治毛细血管出血。 5.抗辐射: 有效预防和减轻紫外线辐射对皮肤的损伤,抑制自由基引发的脂质过氧化;减少电脑、手机、电视等辐射对皮肤、内脏器官造成的伤害。 6.保护消化系统: 保护胃粘膜,防治胃炎、胃溃疡及十二指肠溃疡。 7.保护眼睛: 保护眼睛免受辐射损伤,防治红血丝;增强夜视力、减少视网膜症等。阻止自由基对晶状体蛋白的氧化,预防白内障、视网膜炎。

认识过氧化物与自由基

认识过氧化物与自由基 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

认识过氧化物与自由基 1.自由基是什么?自由基是含有不成对电子并且能独立存在的化学物质。根据此定义, 自由基可以是带正电的离子,也可以是带负电的离子,甚至是电中性的分子。 2.自由基产生的方式:(1)正常分子的共价健均衡断裂,产生含有不成对电子的自由 基;(2)正常分子丢失一个电子;(3)向正常分子中加上一个电子。 第一种方式产生自由基需要非常高的能量,这种高能量可能是高温、紫外线,或者离子辐射。同前两种方式相比,第三种方式在生物体内最为普遍。最常见的自由基是活性氧类自由基,比如羟离子自由基(-OH),氧离子自由基(O2-)。 3.自由基是如何产生的呢? (1)人体代谢产物的来源人体在正常的代谢过程中,会产生大量的自由基,这些自由基包括:身体细胞内的线粒体在有氧呼吸中产生的自由基、细胞中过氧化氢酶对脂肪酸进行β氧化时也会产生大量的自由基,黄嘌呤氧化酶在转化成尿酸过程中产生自由基、中枢神经中多巴胺也是一个自由基的重要来源等等。 (2)环境污染中存在大量的自由基如汽油燃烧中可产生自由基、抽烟可产生自由基、油炸食品、腌制食品、烧烤食品都会产生自由基,以及一些化工产品的污染(如装修污染等)也会产生自由基。 (3)紫外线产生自由基,强阳光照射的紫外线是产生自由基的最重要来源,也是影响人体健康及造成肌肤伤害的主要因素。 (4)各种的辐射源也会产生自由基如核辐射、电视、电脑、手机、X光机等辐射源均会产生自由基。 (5)其它接触到的有毒有害物质以及体内代谢产生的毒素和体内有害细菌产生的毒素也会产生自由基。 4.过氧化物侵害 过氧化物的定义:含有过氧基-O-O-的。可看成的衍生物,中含有过氧(O22-)是其特征。过氧化物包括金属过氧化物、过氧化氢、过氧酸盐和。周期表中ⅠA、ⅡA、ⅢB、ⅣB族以及某些(如铜、银、汞)能形成金属过氧化物。 当人体细胞受自由基攻击时,体内代谢中的氧化还原反应立即向氧化增强方向变化,就会生成过氧化物,而过氧化物中不稳定的活性氧,自由基离子会对细胞中的各大分子物质如脂质、糖质、蛋白质、核酸等发生氧化反应,从而引起这些大分子物质的变性、交链、断裂等,导致细胞结构与功能的破坏。这就是过氧化物的侵害 5.人体细胞过氧化物侵害类型 (1)对脂类的伤害 细胞中的许多组织如细胞膜、线粒体膜、核膜、质膜等都含有脂肪,包括磷脂,不饱和脂肪酸等。这些脂肪中首先被氧化的是不饱和双链的α-亚甲基中的H被O离子取代,成为脂类自由基,然后进一步氧化成氧化自由基。而后者再与未被氧化的脂类形成氢过氧化物和脂类自由基。如此不断地连续反应,使脂类不断地被氧化。虽然刚开始所生成的氢过氧化物是不稳定的,但经过多次复杂的分裂和相互作用以后,最终可形成醛、酮、醇、碳氢

野生毛葡萄籽原花青素抗氧化活性的研究

野生毛葡萄籽原花青素抗氧化活性的研究 郑燕升,莫倩 (广西工学院轻化系,广西柳州545006) 摘要 [目的]为进一步开发利用野生毛葡萄籽原花青素提供依据。[方法]选择清除超氧阴离子自由基(O 2-?)和羟基自由基(?O H )2个方面,对野生毛葡萄籽原花青素的抗氧化活性进行测定。[结果]野生毛葡萄籽原花青素对O 2- ?和?O H 均具有较强的清除能力,对O 2-?、?O H 野生毛葡萄籽原花青素的I C 50分别为0.37、0.33m g/m l 。[结论]野生毛葡萄籽原花青素具有较强的抗氧化活性。关键词 野生毛葡萄;原花青素;抗氧化活性 中图分类号 S58 文献标识码 A 文章编号 0517-6611(2008)18-07512-02 A n t iox ida tio n E ffe c t o f P roa n th o c y an d in s fromS e e d s o f W ild V itis quinquangu laris ZHENG Ya n -sh e n g e t a l (D epa r t m en t o f B io lo g ica l an d C h e m ica l E n g in ee rin g ,G u an gx i U n ive rs ity o f T ech n o log y ,L iu zh ou,G u an gx i 545006)A b s tra c t [O b jective]T h e re se archa i m edto p ro v ide scien tific basis fo r deve lop in g p roan th ocy and in s fromw ild V itis quinquangu laris .[M e th od]T h e rad-ica l scaven g in g e ffe ct o f pro an th ocyan d i n s fromw ild V itis quinquangu laris w a s stu d ied a t d iffe ren t sys tem s(O -?and ?OH )[R e su lt]P ro an th ocyan d i n s from w ild V itis qu i nquangu laris h ad s tron g scav en g in g e ffect on free radica ls gen e ra ted by d ife ren t sys tem s .F o r O 2-?an d ?OH,th e I C 50o f p ro an th o cyan d in s fromw ild V itis quinquangu laris w a s 0.37an d 0.33m g/m l .[C on clu s ion]P roan th ocy and in s fromw ild V itis qu inquangularis h ad stron g an tiox idan t a ctiv ity.K e y w o rd s W ild V itis quinquangu laris ;P roan th ocyan d i n s ;A n tiox idan t activ ity 基金项目 广西教育厅资助项目(200708LX198);广西工学院基金项目 (院科自0704104)。 作者简介 郑燕升(1964-),男,广西贵港人,硕士,副教授,从事天然 有机化学方面的研究。 收稿日期 2008-04-16 在自然界中,多酚类物质广泛存在,并作为天然的抗氧化剂而广泛应用。对于葡萄籽原花青素抗氧化性的研究报道很多 [1-4] ,既包括动物体内抗氧化试验,又包括体外细胞 培养及用化学方法测定。研究表明,葡萄籽原花青素是迄今为止所发现的最有效的自由基清除剂之一,特别是低聚花青素可以清除体内的自由基和活性氧,能预防因人体血液中低密度脂蛋白氧化而引起的动脉硬化 [5] 。许多研究表明,原花 青素抗氧化、清除自由基的能力远远强于V E 和V c ,能防治80多种因自由基引起的疾病,包括心脏病、关节炎等,还具有改善人体微循环的功能[6-7]。笔者研究了自制的野生毛葡萄籽原花青素产品在2种体系中清除自由基的活性,为进一步开发利用野生毛葡萄原花青素提供一定的科学依据。1 材料与方法 1.1 主要仪器与试剂 A L 104电子分析天平(梅特勒—托利多仪器有限公司);W F ZU V -2000紫外/可见分光光度计(尤尼柯仪器有限公司);PH S-25型精密酸度计(上海伟业仪器厂);ZFD —5250全自动新型鼓风干燥箱(上海智城分析仪器制造有限公司);2003型恒温磁力加热搅拌器(上海闵行虹浦仪器厂)。三羟甲基氨基甲烷(T ris)、邻二氮菲、邻苯三酚、F e-SO 4、H 2O 2、乙醇、丙酮等为国产分析纯试剂。 1.2 试验材料 供试材料为野生毛葡萄籽原花青素,自制[8](>95.0%)。1.3 试验方法 1.3.1 野生毛葡萄原花青素清除超氧阴离子自由基(O 2-?)的活性。采用邻苯三酚自氧化法[9]。在试管中加入4.5m l T ris-H C l 缓冲液(pH 值8.2)和0.1m l 不同浓度的样品溶液,置于25℃恒温水浴中20m in ,用微量注射器注入0.4m l 经25℃预热的邻苯三酚,混合均匀后置于25℃恒温水浴中反应4m in ,立即加入2滴8m o l/L H C l 中止反应。用去离子水调零,420nm 处测定吸光度,同时以0.1m l 去离子水代替样品做空白试验,则原花青素对O 2-?自由基的清除率按如下 公式计算。 清除率(%)= A 空白-A 样品 A 空白 ×100 (1) 1.3.2 野生毛葡萄原花青素清除羟基自由基(?OH )的活性。采用邻二氮菲-F e 2+氧化法[10]。在试管中依次加入5m m o l/L 邻二氮菲溶液0.6m l 、磷酸盐缓冲液(pH 值7.4)0.4m l 和5m m o l/L F e 2+-E DT A 溶液0.6m l ;其中,加入体积分数为0.1%H 2O 20.8m l 作为损伤管,加入体积分数为0.1%H 2O 20.8m l 和1m l 不同浓度的样品溶液作为样品管,不加H 2O 2和样品的作为空白管;将各管用无水乙醇定容到4m l ,37℃下反应1h ,535nm 处测定吸光度。野生毛葡萄原花青素对羟基自由基(?OH )的清除率按如下公式计算。 清除率(%)=A 样品-A 损伤 A 空白-A 损伤 ×100 (2) 2 结果与分析 野生毛葡萄原花青素在邻苯三酚自氧化体系和F e 2+/H 2O 2氧化体系中清除超氧阴离子自由基(O 2-?)和羟基自由基(?OH )的试验结果分别见图1、 2。 图1 野生毛葡萄原花青素对O 2- ?的清除效果 F ig.1 S c a v e n g in g e ffe c t o f p ro a n th o c y a n d in s from w i ld V itis qu in -quangu laris o n O 2-? 由图1可知,邻苯三酚自氧化体系中,随着原花青素浓度的升高,清除率也随之升高。将上述数据进行回归,得到回归方程: y =11.636x 3-151.66x 2+227.4x -13.46(R 2=0.9644) (3) 根据回归方程可求得在该试验条件下野生毛葡萄籽原 安徽农业科学,J ou rn a l o f A n hu i A g r i .S c i .2008,36(18):7512-7513 责任编辑 刘月娟 责任校对 况玲玲

羟基自由基的测定方法

羟基自由基(.OH)是最活跃的一种活性分子,也是进攻性最强的化学物质之一,几乎可以与所有的生物分子、有机物或无机物发生各种不同类型的化学反应,并伴有非常高的反应速率常数和负电荷的亲电性。羟基自由基是目前所知活性氧自由基中对生物体毒性最强、危害最大的一种自由基,可以通过电子转移、加成以及脱氢等方式与生物体内的多种分子作用,造成糖类、氨基酸、蛋白质、核酸和脂类等物质的氧化损伤,使细胞坏死或突变,羟基自由基还与衰老、肿瘤、辐射损伤和细胞吞噬等有关。羟基自由基由于其寿命短,反应活性高,存在浓度低,目前尚未有专一、有效的方法可以精确测定羟基自由基的含量,其测定方法也成为一项国际性的难题。本文对近几年出现的羟基自由基检测方法进行了综述。 1电子自旋共振法 电子自旋共振法或电子顺磁共振法主要研究对象为未成对的自由基或过渡金属离子及其化合物。自旋捕捉(spin trapping)技术的出现为化学反应中自由基中间体及生命活动过程中短寿命自由基的检测开辟了新的检测途径[[1]]。此方法是利用捕捉剂与自由基结合形成相对稳定的自旋加合物(spin adducts),然后进行ESR测定。 2HPLC法 HPLC法可用于间接测定自由基。测定过程中必须先选择合适的化合物捕集被测体系中的自由基,使之生成具有一定稳定性,且能被液相色谱分离与检测的产物,然后用HPLC进行测定。1)、采用二甲基亚砜捕集羟基自由基的HPLC测 2)、采用水杨酸捕集羟基自由基的HPLC测定方法 3化学发光法 化学发光法是一种灵敏、准确的检测自由基的方法,其原理是利用发光剂被活性氧自由基氧化成激发态,当其返回到基态时放出大量光子,从而对发光起放大作用。且自由基产生越多,发光值就越大。通过函数换算间接反应系统中自由基的量。与ESR和HPLC法相比,具有操作简便、设备成本较低、测定快速等优点。4氧化褪色光度法 6极谱法 7毛细管电泳-电化学检测法 8胶束电动毛细管色谱法

原花青素的特点

原花青素的特点 (1)原花青素(OPC)不属于中药、西药 原花青素的提取物从最初的松树皮纯度40%、葡萄牙籽80%到莲科植物98%,这些是过去中药的药典上没有记载的新品种,是利用高科技手段水提取法获得的生物制剂,是中药的升华、中药的进步的产物,属于一种独立的药物体系。 生物制剂大家并不陌生,过去天花、鼠疫、霍乱都是运用生物制剂防治。为人类创造了许多奇迹,生物制剂具有用量小作用大的特点,因为不属于中药、西药,所以服用时可以百无禁忌,可以多喝水、喝茶,可以与其它任何中药、西药联合应用不起反作用,反而增效,无毒副作用。 (2)原花青素抗氧化能力强,可以在血液内产生“臭氧”——新鲜纯净的氧气,来摧化分解动脉粥样硬化的斑块 溶脂、排脂、降脂。传统西药以扩张血管为主,中药以活血化瘀为主,溶得快,但因你每天生存在这个受污染的环境中,空气、水、食品每天都摄入,形成的栓子斑块更快,所以造成治疗过程是反反复复,总也不能根治,化学药品西药在治疗的同时会将有益菌、有害菌统统杀死,西药不分敌我,中药也是如此,只不过中药的毒副作用相对西药少一些罢了。 例如草原上老鼠横行,放老鼠药使老鼠产生了耐药性还死了老鼠的天敌,现在人们已经意识到了生态平衡的问题,什么都有天敌,事间万物一物降一物,地球上的空气净化需要绿色植物同阳光产生光和作用释放氧气,净化地球的环境,那么人体小环境因为空气、水、食品的污染问题,产生动脉粥样硬化,肉蛋类高脂肪的摄入造成血脂、血糖、血压偏高,脂类物质沉淀在血管壁上阻断了血管壁吸收氧份和营养造成血管无法新陈代谢变硬变脆,发生破裂出血,如脑出血、胃出血等。血液污染了身体内因吸烟酗酒,大

超氧自由基清除能力测定法-操作图解

超氧自由基(·O2-)的清除能力测定法(连苯三酚自氧 化法) (适用于:SOD及各种抗氧化剂) 操作图解 具体方法 1 溶液配制 1.1 Tris溶液(0.1mol/L):1.21 gTris(三羟甲基氨基甲烷,M.W. 121.1)+100 mL蒸馏水。 1.2 HCl溶液(0.1mol/L):取0.1 mL浓盐酸,加蒸馏水稀释到6 mL。 1.3 Tris-HCl缓冲液(0.05mol/L,pH7.4,含1mmol/L Na2EDTA) 40 mL0.1 mol/L Tris溶液+ x mL0.1 mol/L HCl溶液+15.2 mg Na2EDTA,混合,稀释到80 mL。用pH 计测量,pH应为7.4。用棕色瓶保存在冰箱内(最多保存三天) 。(以上为一个样品的用量)用前稍热至室温,再测pH值,符合要求即可。 1.4 60 mmol/L连苯三酚溶液(溶于1 mmol/L盐酸中) 取0.1mol/L HCl溶液(见1.2项)20μL,用蒸馏水稀释到2 mL,得1 mmol/L盐酸溶液(用pH计测量,pH=2.5-3.0)。再往里加连苯三酚14.6 mg (M。W.126.1 ),即得。(当天有效,以上为1个样品的用量)。 2 测试液 2.1连苯三酚溶液:取2950μL Tris-HCl缓冲液加入到石英比色皿中,再加约50μL连苯三酚溶液,迅速混合(颠覆式),开始计时,每隔30秒读数一次A值(325nm),至300秒(5min)时为止。(空白参比:Tris-HCl 缓冲液) ΔA=A325nm,300s - A325nm,30s。由于ΔA值反映了生成·O2的初始浓度,所以,对于同一批实验而言,此时的ΔA值必须相等。此时的ΔA为ΔA0。 3.2 样品溶液:取xμL样品溶液加入到大石英比色皿中,再加(2950-x)μL Tris-HCl缓冲液,再加50μL 连苯三酚溶液,迅速混合(颠覆式),开始计时,每隔30秒读数一次(A值,325nm),至300秒时为止。(空白参比:Tris-HCl缓冲液) ΔA=A325nm,300s - A325nm,30s。此时的ΔA为ΔA样。 3 计算公式

自由基及检测方法

ESR 电子顺磁共振(EPR)或称电子自旋共振(ESR)现象最早发现于1944年。它利用具有未成对电子的物质在磁场作用下吸收电磁波的能量使电子发生能级间的跃迁的特征,对顺磁性物质进行检测与分析。 自旋捕集方法是将不饱和的抗磁性化合物(自旋捕集剂)加入反应体系,与反应体系中产生的各种活性高、寿命短的自由基结合形成相对稳定的自旋加合物,以适于ESR检测其原理是利用适当的自旋捕捉剂与活泼的短寿命自由基结合,生成相对稳定的自旋加合物,可以用电子自旋共振波谱法检测自旋加合物的数量,利用自旋加合物的数量来计算原来自由基的多少。 H: V: ESR测自由基是怎么被检测的(细胞,组织,溶液?体内,体外?) (MGD)2 - Fe2 +,是含有10mmol·L- 1MGD 和2mmol·L- 1FeSO4的溶液。 体外捕集:处死后取组织(血液、细胞),加入捕集剂,ESR测定 体内捕集:腹腔注射捕集剂,处死取组织(血液、细胞),ESR测定 腹腔注射几乎没有检测到自由基信号,或者信号很弱,而处死后样品加捕获剂则可以检测到自由基信号。 通用捕获剂 典型的自旋捕捉剂是亚硝基化合物或氮氧化合物,把足够量的自旋捕捉剂加入到产生自由基的体系中,自旋捕获剂就会快速地和任何出现的自由基反应,最后给出稳定的可检测的氮样氧自由基加合物。所形成的自由基加合物的ESR 谱上有被捕自由基基因给出的超精细分裂,可鉴别被捕自由基通用自旋捕获剂所形成的自由基加合物对自由基结构变化相当敏感, ESR 技术检测O-2 O-2可以与1,2-二羟基苯-3,5-二磺酸钠(Tiron)(钛铁试剂)快速反应生成一种称之为“Tiron 半醌自由基”的自旋加合物,比较稳定,可在室温下应用电子顺磁共振波谱仪(EPR)进行检测,从而解决了生理条件下水溶液中寿命极其短暂的O-2·的定性和定量问题 ESR 技术检测·OH DMPO作自由基捕获剂对自由基结构变化相当敏感,可以提供自由基结构的详细信息。它与·OH产生的自旋加合物的ESR谱表现出特别容易识别的特征谱线。在溶液中容易形成的自我捕集产物二聚体自由基不会干扰实验结果。 ESR 技术检测血红蛋白结合的一氧化氮 在组织或血液中,一氧化氮大多与氧或过渡金属反应生成了硝酸盐或亚硝酸盐以及一氧化氮与金属的配合物。一氧化氮与血红蛋白的结合速率常数非常高,而且能够得到有特征的ESR 波谱。利用这一性质,我们可以用血红蛋白作为一氧化氮的捕集剂检测一氧化氮自由基。但是,HbNO 极易氧化,这就限制了这种方法在富氧条件下的应用。 ESR 技术检测生物体系产生的一氧化氮 一氧化氮与含金属蛋白反应产生的亚硝酰的金属配合物,往往会抑制细胞中许多重要的酶,对细胞产生毒害作用。目前应用较多的捕集剂的有Fe2+- (DETC)2,它可与一氧化氮形成稳定的单亚硝酰-铁配合物MNIC,给出特征的ESR 波谱。但由于Fe2+-( DETC)2不溶

自由基的形成

自由基的形成 自由基又称游离基,是具有非偶电子的基团或原子,它有两个主要特性:一是化学反应活性高;二是具有磁矩。 在一个化学反应中,或在外界(光、热等)影响下,分子中共价键分裂的结果,使共用电子对变为一方所独占,则形成离子;若分裂的结果使共用电子对分属于两个原子(或基团),则形成自由基。 有机化合物(Organic compounds)发生化学反应时,总是伴随着一部分共价键(covalent bond)的断裂和新的共价键的生成。例如酪氨酸自由基(tyrosine radical),共价键的断裂可以有两种方式:均裂(homolytic bond cleavage)和异裂(heterolyticcleavage)。键的断裂方式是两个成键电子在两个参与原子或碎片间平均分配的过程称为键的均裂(homolyticbondcleavage)。两个成键电子的分离可以表示为从键出发的两个单箭头。所形成的碎片有一个未成对电子,如H·,CH·,Cl·等。若是由一个以上的原子组成时,称为自由基(radical)。因为它有未成对电子,自由基和自由原子非常的活泼,通常无法分离得到。不过在许多反应中,自由基和自由原子以中间体的形式存在,尽管浓度很低,存留时间很短。这样的反应称为自由基反应(radical reactions)。自由基,化学上也称为“游离基”,是含有一个不成对电子的原子团。由于原子形成分子时,化学键中电子必须成对出现,因此自由基就到处夺取其它物质的一个电子,使自己形成稳定的物质。在化学中,这种现象称为“氧化”。我们生物体系主要遇到的是氧自由基,例如超氧阴离子自由基、羟自由基、脂氧自由基、二氧化氮和一氧化氮自由基。加上过氧化氢、单线态氧和臭氧,通称活性氧。体内活性氧自由基具有一定的功能,如免疫和信号传导过程。但过多的活性氧自由基就会有破坏作用,导致人体正常细胞和组织的损坏,从而引起多种疾病。如心脏病、老年痴呆症、帕金森病和肿瘤。此外,外界环境中的阳光辐射、空气污染、吸烟、农药等都会使人体产生更多活性氧自由基,使核酸突变,这是人类衰老和患病的根源。 产生自由基的方法 ①引发剂引发,通过引发剂分解产生自由基 ②热引发,通过直接对单体进行加热,打开乙烯基单体的双键生成自由基 ③光引发,在光的激发下,使许多烯类单体形成自由基而聚合 ④辐射引发,通过高能辐射线,使单体吸收辐射能而分解成自由基 ⑤等离子体引发,等离子体可以引发单体形成自由基进行聚合,也可以使杂环开环聚合 ⑥微波引发,微波可以直接引发有些烯类单体进行自由基聚合。

原花青素

原花青素 又称“葡多酚”,是存在于葡萄籽中的一种天然植物多酚类物质。OPC是当今医学界发现的最安全高效的抗氧化剂、自由基清除剂和紫外线吸收剂,广泛应用于健康食品、药品和化妆品。其抗氧化能力是维生素E的50倍、维生素C的20倍,它能有效清除体内多余的自由基,保护人体细胞组织免受自由基的氧化损伤,防治过敏、癌症、衰老等100多种与自由基有关的疾病,还具有加强和保护人体活性组织、稳定细胞膜以及抗酶活性(组胺脱羧酶)等生物特性。此外,OPC很好的生物利用度,易于被人体吸收;其它的抗氧化剂如硒、锗、胡萝卜素、过氧化物岐化酶(SOD)不是效力太弱就是没有体内活性。虽然原花青素(OPC)有如此神奇的功效,但人体却无法自行产生,OPC多集中在植物的皮、壳、籽、叶、杆上等部位,如葡萄籽、松树皮、蓝莓等,其中最易被人体吸收的是葡萄籽中提取出的OPC。在国际上,法国马斯魁勒(Masquelier)博士于1951年最先成功提取出OPC,并率先应用于心脑血管病疾病的治疗,此后经世界各国50多年的临床实践,证实OPC对100余种疾病有明显的治疗和预防作用,而且OPC无毒副作用,对几代人均无任何影响,1995年以后风靡欧美、日本等发达国家,几乎成为家庭必备的抗氧化保健食品,并且享有“皮肤维生素”、“口服化妆品”的美誉,颇受各年龄段女士青睐。 葡萄籽中的原花青素在欧美被称为青春营养品,又称为皮肤维生素,可以口服的化妆品,目前已经风靡全世界。它对皮肤有很好的保护作用,主要是因为原花青素具有抗氧化、改善皮肤过敏、美容养颜、祛斑的作用。 原花青素的主要作用: 1.抗力抗氧化,清除自由基 原花青素(OPC)是从葡萄籽中提取的一种人体内不能合成的新型高效天然抗氧化剂物质。它是目前自然界植物来源中发现的抗氧化、清除自由基能力最强的物质,其抗氧化活性为维素E的50倍、维生素C的20倍,它能有效清除人体内多余的自由基,具有超强的延缓衰老和增强免疫力的作用。 2.美化肌肤 原花青素能保护皮肤中的胶原蛋白免遭胶原酶和弹性蛋白酶降解作用,因而有利于保持皮肤的弹性,从内部和外部同时防止由于过度日晒所导致的皮肤损伤,发挥抗皮肤衰老的功效。原花青素是最强植物抗氧化剂之一,它可以减少自由基等物质对皮肤的损害。

DPPH自由基清除法

DPPH自由基清除法 李熙灿/Xican Li (广州中医药大学) [文献] Xican Li, Jing Lin, Yaoxiang Gao, Weijuang Han, Dongfeng Chen. Antioxidant activity and mechanism of Rhizoma Cimicifugae. Chemistry Central Journal. 2012; 6(1):140. [原理] DPPH(1,1-Diphenyl-2-picrylhydrazyl radical)即1,1-二苯基-2-苦基肼基自由基。分子中,由于存在多个吸电子的-NO2和苯环的大π键,所以,氮自由基能稳定存在。 N 2 2 当DPPH自由基被清除,其最大吸收波长519nm处的吸光度A值随之减小。DPPH这种稳定的自由基为清除自由基活性的检测提供了一个理想而又简单的药理模型。 [实验步骤] 1.1 DPPH测试液的配制 取DPPH 1mg溶于约20mL溶剂(乙醇、95乙醇或甲醇)中,超声5min,充分振摇,务使上下各部分均匀。取1mL 该DPPH溶液,在519nm处测A值,使A=1.2-1.3之间最佳。该DPPH溶液最好避光保存,3.5小时内用完。 1.2 样品液的配制 样品用合适的溶剂溶解,为便于计算,可配成1mg/mL浓度。溶剂根据样品的极性进行选择,首选95乙醇或无水乙醇,如不溶可用DMSO。 1.3 预试 取DPPH溶液2mL,往其中加少量样品液,加样时,先少后多渐加,边加边混合,并观察溶液的褪色情况,当溶液颜色基本褪去时,记下样品的加样量。 此加样量即为样品的最大用量,在此最大用量的基础上,往前设置5个用量,使之成等差数列。 【如】在预试过程中,发现加样到200μL时,DPPH溶液颜色基本褪去,则100μL为该样品液的最大用量。其用量梯度宜设为40、80、120 、160、200μL。 1.4测量 A0值的测量:取DPPH溶液2 mL加入到小试管(或玻璃瓶)中,加95乙醇(或无水乙醇)1mL,充分混合,测A值(519nm),此A值为A0(A0多在0.7-0.9之间)。 A值的测量:取DPPH溶液2mL加入到小试管(或玻璃瓶)中,加样品液xμL (x是根据1.3 预试结果确定样品液的用量),再加(1000 -x)μL 95乙醇(或无水乙醇),混合,静置30分钟后,测A值(519nm)。如:某样品的用量梯度为40、80、120 、160、200μL,则加样表如下: 表1 加样表 1.5 正式测量

葡萄籽原花青素的提取和检测方法

葡萄籽原花青素的提取和检测方法 摘要:对原花青素的概念、测定方法及其存在的问题进行了分析,综述了原花青素的性质,安全性和提取、检测方法,并对统一的原花青素检测方法进行了展望。 关键词:葡萄籽原花青素提取检测 EXTRACTION AND DETERMINATION METHODS OF PROANTHOCYANIDIN FROM GRAPE SEED Abstract:The definition, determination methods of proanthocyanidin from grape seed and their problems were analyzed. The character, safety, extraction methods of proanthocyanidin were also introduced in this paper. Besides, the development foreground of uniform determination method of proanthocyanidin was illustrated. Key words:grape seed ; proanthocyanidins ; extraction; determination 20世纪70年代,法国科学家J.Masqulier发现了比松树皮更好的原花青素资源——葡萄籽。“地中海地区膳食”健康效果揭示了酚类化合物和不饱和脂肪酸的神奇功效Ⅲ;“法国悖论”现象更是揭示了葡萄籽的多酚神奇功能。葡萄籽中含有丰富的亚油酸、蛋白质、原花青素等成分,但研究最多的还是原花青素成分,现已被证明具有显著的抗氧化和清除自由基的活性,具有极大的开发前景。同时由于葡萄籽原花青素成分的复杂性,原花青素概念认识的不一致,还没有统一的检测方法。因此,迫切需要建立葡萄籽原花青素含量的统一分析方法,以便对葡萄籽原料及其产品中的原花青素准确定量。 1 葡萄籽原花青素的概念、性质和安全性 1.1 原花青素的概念 研究表明,葡萄籽中原花色素物质只有原花青素一种[21。关于原花青素的定义还不统一。原花青素因在酸性介质中加热产生红色的花青素而得名【3】,而儿茶素类单体在热酸条件下反应没有花色素现象,所以儿茶素单体应不属于原花青素。这个概念也得到了美国葡萄籽方法评定委员会和国内主要生产葡萄籽提取物的企业认可。葡萄籽原花青素是由儿茶素、表儿茶素及其没食子酸酯通过C4-C 或C4-C。键共价相连组成的多聚体,结构通式见图l【5J。通常把二~四聚体称为低聚体(OPCs),五聚体及五聚体以上的称为高聚体。

清除自由基研究方法汇总

电子自旋共振法(ESR)、高效液相色谱法、化学发光法、比色法、分光光度法 自由基清除剂也称为抗氧化剂,可清除体内多余的自由基,减轻它们对机体的损伤。目前常用超氧阴离子自由基体系(O2-·)、羟基自由基体系(·OH)、二苯代苦味酰基自由基体系(DPPH·)对某抗氧化剂的体外清除自由基能力进行了研究。 其中ESR法和气相色谱法、HPLC 法对自由基的检测灵敏度高,但对设备要求较高,操作复杂,无法在一般实验室普及。而其中的分光光度法、化学发光法、荧光分析法等不需要昂贵的仪器,易于被一般实验室所采用,但测定过程中的干扰因素较多,容易对测定的准确性和灵敏度造成影响。分光光度法最常用。 原理部分: 1.DPPH·法测试机理 DPPH·(二苯代苦味脐基自由基)的甲醇溶液呈深紫色,可见光区最大吸收峰为492nm。当自由基清除剂加入到DPPH·溶液中时,DPPH·的单电子被配对而使其颜色变浅,在最大吸收波长处的吸光度减少,而且颜色变浅的程度与配电子数成化学计量关系,因此,可通过吸光度减弱的程度来评价自由基被消除的情况。 2. 羟基自由基(·OH) 1)邻二氮菲法[70]

实验原理:邻二氮菲可与Fe2+形成络合物,此络合物在510nm 处有最大吸收峰,是一常用的氧化还原指示剂,其颜色变化可敏锐地反映溶液氧化还原状态的改变。H2O2/ Fe2+体系可通过Fenton 反应产生羟自由基,邻二氮菲-Fe2+水溶液被羟自由基氧化为邻二氮菲-Fe3+后,其510nm 最大吸收峰消失。如果反应体系中同时存在羟自由基清除剂,则Fenton 反应产生的羟自由基将被此清除剂全部或部分清除,邻二氮菲-Fe2+络合物受到的破坏将会随之减少。根据这一原理,可建立以A510变化反映自由基清除剂对羟自由基清除作用的比色测定法。 2)水杨酸法[71] 实验原理:羟自由基易攻击芳环化合物产生羟基化合物,因此可用水杨酸捕集Fenton 反应体系中的·OH,生成的2,3-二羟基苯甲酸用乙醚萃取,用钨酸钠和亚硝酸钠显色,然后用分光光度计测定其在510nm 处的吸光值,此吸光值可反映体系中的羟自由基浓度。 3)甲基紫-Fe2+-H2O2反应体系 测定原理:在Fenton反应的基础上加入甲基紫作显色剂,反应式如下: Fe2++H2O2→Fe3++OH-+·OH 甲基紫在酸性溶液中呈现紫色[9],在578nm 处有强吸收。反应产生的·OH 具有高的反应活性,容易进攻高电子云密度点,会与甲基紫中具有高电子云密度的-C=C-基团发生亲电加成反应,使甲基紫褪色。通过测定甲基紫在578nm 处吸光度值的变化可间接测定出·OH 的生成量。当有清除自由基的物质存在时,会阻断甲基紫与·OH 的反应,从而使得甲基紫的颜色有所加重,因此可利用抗氧化剂加入前后溶液吸光度值的变化来评价物质的抗氧化性强弱。

原花青素:我不是花青素

原花青素是葡萄籽中的主要成分之一,是一种强效抗氧化剂,不过对于原花青素的认识,不少人会将其与花青素混淆,事实上,花青素与原花青素并不是同一种 物质,二者存在多方面的差异。 原花青素也叫前花青素,英文名是Oligomeric Proantho Cyanidins 简称OPC,是一种在热酸处理下能产生花色素的多酚化合物,是目前国际上公认的清除人体 内自由基有效的天然抗氧化剂。一般为红棕色粉末,气微、味涩,溶于水和大多 有机溶剂。原花青素属于植物多酚类物质,分子由儿茶素,表儿茶素(没食子酸) 分子相互缩合而成,根据缩合数量及连接的位置而构成不同类型的聚合物,如二聚体、三聚体、四聚体十聚体等,其中二到四聚体称为低聚体原花青素(Oligomeric Proanthocyanidins ,缩写为OPC) ,五以上聚体称为高聚体。在各聚合体原花青素中功能活性最强的部分是低聚体原花青素(OPC) 。部分二聚体、三聚体、四聚体的结构式。通常把聚合度小于 6 的组分称为低聚原花青素,如儿茶素、表儿茶素、原花青素B1 和B2 等,而把聚合度大于 6 的组分称为多聚体。一般认为,药用植物提取物中存在的低聚原花青素是有效成分,它们具有抗氧化、捕捉自由基等多种生物活性。

花青素(Anthocyanidin) ,又称花色素,是自然界一类广泛存在于植物中的水溶性 天然色素,属黄酮类化合物。也是植物花瓣中的主要呈色物质,水果、蔬菜、花 卉等颜色大部分与之有关。在植物细胞液泡不同的pH 值条件下,使花瓣呈现五彩缤纷的颜色。在酸性条件下呈红色,其颜色的深浅与花青素的含量呈正相关性, 可用分光光度计快速测定,在碱性条件下呈蓝色。花青素的基本结构单元是 2 一苯基苯并吡喃型阳离子,即花色基元。现已知的花青素有20 多种,主要存在于植物中的有:天竺葵色素(Pelargonidin) 、矢车菊色素或芙蓉花色素(Cyanidin) 、翠雀素或飞燕草色(Delphindin) 、芍药色素(Peonidin) 、牵牛花色素(Petunidin) 及锦葵色素(Malvidin) 。自然条件下游离状态的花青素极少见,主要以糖苷形式 存在,花青素常与一个或多个葡萄糖、鼠李糖、半乳糖、阿拉伯糖等通过糖苷键 形成花色苷。已知天然存在的花色苷有250 多种。 花青素与原花青素的区别,首先从化学结构来看,花青素与原花青素是两种完全 不同的物质,原花青素属多酚类物质,花青素属类黄酮类物质。原花青素也叫前花青素,在酸性介质中加热均可产生花青素,故将这类多酚类物质命名为原花青素。

相关主题
文本预览
相关文档 最新文档