直线与平面垂直的典型例题
- 格式:doc
- 大小:510.50 KB
- 文档页数:4
教学过程在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.规律方法证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面).解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.【训练1】(2013·江西卷改编)教学效果分析教学过程如图,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=2,AA1=3,E为CD上一点,DE=1,EC=3.证明:BE⊥平面BB1C1C.考点二平面与平面垂直的判定与性质【例2】(2014·深圳一模)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC=AA1,且AC=2BC,点D是AB的中点.证明:平面ABC1⊥平面B1CD.规律方法证明两个平面垂直,首先要考虑直线与平面的垂直,也教学效果分析教学过程可简单地记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明非常类似,这种转化方法是本讲内容的显著特征,掌握化归与转化思想方法是解决这类问题的关键.【训练2】如图,在长方体ABCDA1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.证明:平面ABM⊥平面A1B1M.考点三平行、垂直关系的综合问题教学效果分析教学过程【例3】(2013·山东卷)如图,在四棱锥P-ABCD中,AB⊥AC,AB⊥P A,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.(1)求证:CE∥平面P AD;(2)求证:平面EFG⊥平面EMN.规律方法线面关系与面面关系的证明离不开判定定理和性质定理,而形成结论的“证据链”依然是通过挖掘题目已知条件来实现的,如图形固有的位置关系、中点形成的三角形的中位线等,都为论证提供了丰富的素材.【训练3】(2013·辽宁卷)如图,AB是圆O的直径,P A垂直圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面P AC;(2)设Q为P A的中点,G为△AOC的重心,求证:QG∥平面PBC.教学效果分析1.转化思想:垂直关系的转化2.在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.如有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.故熟练掌握“线线垂直”、“面面垂直”间的转化条件是解决这类问题的关键.创新突破6——求解立体几何中的探索性问题【典例】(2012·北京卷)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.[反思感悟] (1)解决探索性问题一般先假设其存在,把这个假设作已知条件,和题目的其他已知条件一起进行推理论证和计算,在推理论证和计算无误的前提下,如果得到了一个合理的结论,则说明存在,如果得到了一个不合理的结论,则说明不存在.(2)在处理空间折叠问题中,要注意平面图形与空间图形在折叠前后的相互位置关系与长度关系等,关键是点、线、面位置关系的转化与平面几何知识的应用,注意平面几何与立体几何中相关知识点的异同,盲目套用容易导致错误.【自主体验】(2014·韶关模拟)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=12AB=2,点E为AC中点,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2.(1)求证:DA⊥BC;(2)在CD上找一点F,使AD∥平面EFB.基础巩固题组(建议用时:40分钟)一、填空题1.设平面α与平面β相交于直线m,直线a在平面α内,直线b 在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的________条件.2.(2014·绍兴调研)设α,β为不重合的平面,m,n为不重合的直线,则下列正确命题的序号是________.①若α⊥β,α∩β=n,m⊥n,则m⊥α;②若m⊂α,n⊂β,m⊥n,则n⊥α;③若n⊥α,n⊥β,m⊥β,则m⊥α;④若m∥α,n∥β,m⊥n,则α⊥β.3.如图,AB是圆O的直径,P A垂直于圆O所在的平面,C是圆周上不同于A,B的任一点,则图形中有________对线面垂直.4.若M是线段AB的中点,A,B到平面α的距离分别是4 cm,6 cm,则M到平面α的距离为________.5.(2014·郑州模拟)已知平面α,β,γ和直线l,m,且l⊥m,α⊥γ,α∩γ=m,β∩γ=l,给出下列四个结论:①β⊥γ;②l⊥α;③m⊥β;④α⊥β.其中正确的是________.6.如图,在四棱锥P ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为正确的条件即可)7.设α,β是空间两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:________(用代号表示).8.如图,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的正投影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.二、解答题9.(2013·北京卷)如图,在四棱锥P ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面P AD⊥底面ABCD,P A⊥AD.E和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.10.(2013·泉州模拟)如图所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.(1)求证:B1D1∥平面A1BD;(2)求证:MD⊥AC;(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.能力提升题组(建议用时:25分钟)一、填空题1.如图,在斜三棱柱ABCA1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在直线______上.2.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为________.①AC⊥BD;②AC∥截面PQMN;③AC=BD;④异面直线PM与BD所成的角为45°.3.(2013·南通二模)如图,已知六棱锥P ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面P AE;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).二、解答题4.(2014·北京西城一模)。
专题08 空间直线与平面、平面与平面的垂直一、考情分析二、考点梳理考点一直线与平面垂直(1)直线和平面垂直的定义如果一条直线l与平面α内的任意直线都垂直,就说直线l与平面α互相垂直.(2)判定定理与性质定理考点二平面与平面垂直(1)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理与性质定理考点三知识拓展1.两个重要结论(1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法).2.使用线面垂直的定义和线面垂直的判定定理,不要误解为“如果一条直线垂直于平面内的无数条直线,就垂直于这个平面”.四、题型分析重难点题型突破1 线面垂直例1. (河北省石家庄二中2019届期中)已知m,n是空间中两条不同的直线,α,β为空间中两个互相垂直的平面,则下列命题正确的是( )A.若m⊂α,则m⊥βB.若m⊂α,n⊂β,则m⊥nC.若m⊄α,m⊥β,则m∥αD.若α∩β=m ,n ⊥m ,则n ⊥α 【答案】C【解析】对于A :若m ⊂α,则m 与平面β可能平行或相交,所以A 错误;对于B :若m ⊂α,n ⊂β,则m 与n 可能平行、相交或异面,所以B 错误;对于C :若m ⊄α,m ⊥β,则m ∥α,C 正确;对于D :α∩β=m ,n ⊥m ,则n 不一定与平面α垂直,所以D 错误.【变式训练1-1】、设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )A.若α⊥β,m ∥α,n ∥β,则m ⊥nB.若m ⊥α,m ∥n ,n ∥β,则α⊥βC.若m ⊥n ,m ⊂α,n ⊂β,则α⊥βD.若α∥β,m ⊂α,n ⊂β,则m ∥n 【答案】B【解析】若α⊥β,m ∥α,n ∥β,则m 与n 相交、平行或异面,故A 错误; ∵m ⊥α,m ∥n ,∴n ⊥α,又∵n ∥β,∴α⊥β,故B 正确; 若m ⊥n ,m ⊂α,n ⊂β,则α与β的位置关系不确定,故C 错误; 若α∥β,m ⊂α,n ⊂β,则m ∥n 或m ,n 异面,故D 错误.例2.如图所示,在四棱锥PABCD 中,AB ⊥平面PAD ,AB ∥CD ,PD =AD ,E 是PB 的中点,F 是DC 上的点,且DF =12AB ,PH 为△PAD 中AD 边上的高.求证:(1) PH ⊥平面ABCD ; (2) EF ⊥平面PAB.【证明】 (1) 因为AB ⊥平面PAD ,PH ⊂平面PAD ,所以PH ⊥AB. 因为PH 为△PAD 中边AD 上的高,所以PH ⊥AD.因为AB∩AD =A ,AB ⊂平面ABCD ,AD ⊂平面ABCD ,所以PH ⊥平面ABCD. (2) 如图,取PA 的中点M ,连结MD ,ME.因为E 是PB 的中点,所以ME =12AB ,ME ∥AB.又因为DF =12AB ,DF ∥AB ,所以ME =DF ,ME ∥DF ,所以四边形MEFD 是平行四边形,所以EF ∥MD.因为PD=AD,所以MD⊥PA.因为AB⊥平面PAD,所以MD⊥AB.因为PA∩AB=A,PA⊂平面PAB,AB⊂平面PAB,所以MD⊥平面PAB,所以EF⊥平面PAB.重难点题型突破2 面面垂直例3. (安徽省合肥三中2019届高三质检)如图,在正四面体PABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论不成立的是( )A.BC∥平面PDFB.DF⊥平面PAEC.平面PDF⊥平面PAED.平面PDE⊥平面ABC【答案】D【解析】因为BC∥DF,DF⊂平面PDF,BC⊄平面PDF,所以BC∥平面PDF,故选项A正确;在正四面体中,AE⊥BC,PE⊥BC,AE∩PE=E,且AE,PE⊂平面PAE,所以BC⊥平面PAE,因为DF∥BC,所以DF⊥平面PAE,又DF⊂平面PDF,从而平面PDF⊥平面PAE.因此选项B,C均正确.【变式训练3-1】、(江西鹰潭一中2019届高三调研)如图,边长为a的等边三角形ABC的中线AF与中位线DE交于点G,已知△A′DE是△ADE绕DE旋转过程中的一个图形,则下列命题中正确的是( )①动点A′在平面ABC上的射影在线段AF上;②BC∥平面A′DE;③三棱锥A′FED的体积有最大值.A.①B.①②C.①②③D.②③【答案】C【解析】①中由已知可得平面A′FG⊥平面ABC,所以点A′在平面ABC上的射影在线段AF上.②BC∥DE,根据线面平行的判定定理可得BC∥平面A′DE.③当平面A′DE⊥平面ABC时,三棱锥A′FED的体积达到最大,故选C.例4.(上海格致中学2019届高三模拟)如图1,矩形ABCD中,AB=12,AD=6,E,F分别为CD,AB 边上的点,且DE=3,BF=4,将△BCE沿BE折起至△PBE的位置(如图2所示),连接AP,PF,其中PF=2 5.(1)求证:PF⊥平面ABED;(2)求点A到平面PBE的距离.【解析】(1)证明:在题图2中,连接EF,由题意可知,PB=BC=AD=6,PE=CE=CD-DE=9,在△PBF中,PF2+BF2=20+16=36=PB2,所以PF⊥BF.在题图1中,连接EF,作EH⊥AB于点H,利用勾股定理,得EF=62+(12-3-4)2=61,在△PEF中,EF2+PF2=61+20=81=PE2,所以PF⊥EF,因为BF∩EF=F,BF⊂平面ABED,EF⊂平面ABED,所以PF⊥平面ABED.(2)如图,连接AE,由(1)知PF⊥平面ABED,所以PF 为三棱锥P ABE 的高. 设点A 到平面PBE 的距离为h ,因为V A PBE =V P ABE ,即13×12×6×9×h =13×12×12×6×25,所以h =853,即点A 到平面PBE 的距离为853. 【变式训练4-1】、 (2018·北京高考)如图,在四棱锥P ABCD 中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,E ,F 分别为AD ,PB 的中点.(1)求证:PE ⊥BC ;(2)求证:平面PAB ⊥平面PCD ; (3)求证:EF ∥平面PCD .证明:(1)因为PA =PD ,E 为AD 的中点, 所以PE ⊥AD .因为底面ABCD 为矩形, 所以BC ∥AD ,所以PE ⊥BC .(2)因为底面ABCD 为矩形,所以AB ⊥AD .又因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊂平面ABCD , 所以AB ⊥平面PAD ,因为PD ⊂平面PAD ,所以AB ⊥PD . 又因为PA ⊥PD ,AB ∩PA =A , 所以PD ⊥平面PAB . 因为PD ⊂平面PCD , 所以平面PAB ⊥平面PCD .(3)如图,取PC 的中点G ,连接FG ,DG . 因为F ,G 分别为PB ,PC 的中点, 所以FG ∥BC ,FG =12BC .因为四边形ABCD 为矩形,且E 为AD 的中点, 所以DE ∥BC ,DE =12BC .所以DE ∥FG ,DE =FG .所以四边形DEFG 为平行四边形. 所以EF ∥DG .又因为EF ⊄平面PCD ,DG ⊂平面PCD , 所以EF ∥平面PCD .。
典型例题一例1下列图形中,满足唯一性的是( ).A .过直线外一点作与该直线垂直的直线B .过直线外一点与该直线平行的平面C .过平面外一点与平面平行的直线D .过一点作已知平面的垂线分析:本题考查的是空间线线关系和线面关系,对定义的准确理解是解本题的关键.要注意空间垂直并非一定相关.解:A .过直线外一点作与这条直线垂直的直线,由于并没有强调相交,所以这样的垂线可以作无数条.事实上这无数条直线还在同一个平面内,这个平面为该直线的一个垂面.B .过直线外一点可以作一条而且仅能作一条直线与该直线平行,但可以作无数个平面和该直线平行.C .过此点作平面内任一直线的平行线,这条平行线都平行于平面.所以过平面外一点与平面平行的直线应有无数条.D .过一点作已知平面的垂线是有且仅有一条.假设空间点A 、平面α,过点A 有两条直线AB 、AC 都垂直于α,由于AB 、AC 为相交直线,不妨设AB 、AC 所确定的平面为β,α与β的交线为l ,则必有l AB ⊥,l AC ⊥,又由于AB 、AC 、l 都在平面β内,这样在β内经过A 点就有两条直线和直线l 垂直,与平面几何中经过一点有县仅有一条直线与已知直线垂直相矛盾.故选D .说明:有关“唯一性”结论的问题,常用反证法,或者借助于其它已证明过的唯一性命题来证明.在本书中,过一点作已知平面的垂线有且仅有一条,同时,过一点作已知直线的垂面也是有且仅有一个.它们都是“唯一性”命题,在空间作图题中常常用到.典型例题二例2 已知下列命题:(1)若一直线垂直于一个平面的一条斜线,则该直线必垂直于斜线在这个平面内的射影;(2)平面内与这个平面的一条斜线垂直的直线互相平行;(3)若平面外的两条直线,在这个平面上的射影互相垂直,则这两条直线互相垂直;(4)若两条直线互相垂直,且其中的一条平行一个平面,另一条是这个平面的斜线,则这两条直线在这个平面上的射影互相垂直.上述命题正确的是( ).A .(1)、(2)B .(2)、(3)C .(3)、(4)D .(2)、(4)分析:本题考查的三垂线定理及其逆定理的简单应用.应用这两个定理时要特别注意“平面内”这一条件,同时要注意各种不同位置的两定理的基本图形及其变式图形.解:(1)已知直线不一定在平面内,所以不能用三垂线逆定理来判断垂直关系;(2)平面内与这个平面的一条斜线垂直的直线必定与斜线在平面内的射影垂直,所以它们之间也平行;(3)根据三垂线定理可证明直线与另一直线的射影垂直,但不能进一步说明直线和直线垂直;(4)根据三垂线定理的逆定理和空间两直线所成角的概念,不难证明此命题的正确性. 故选D .说明:(3)中若一直线与另一直线的射影垂直,则有另一直线必与这一直线的射影垂直.如在正方体1111D C B A ABCD -中,F E 、分别为棱1AA 和1BB 上的点,G 为棱BC 上的点,且1BB EF ⊥,EG FC ⊥1,求FG D 1∠.典型例题三例3 如图,在正方体1111D C B A ABCD -中,E 是1BB 的中点,O 是底面正方形ABCD 的中心,求证:⊥OE 平面1ACD .分析:本题考查的是线面垂直的判定方法.根据线面垂直的判定方法,要证明⊥OE 平面1ACD ,只要在平面1ACD 内找两条相交直线与OE 垂直.证明:连结D B 1、D A 1、BD ,在△BD B 1中,∵O E 、分别是B B 1和DB 的中点,∴D B EO 1//.∵⊥11A B 面D D AA 11,∴1DA 为1DB 在面D D AA 11内的射影.又∵D A AD 11⊥,∴11DB AD ⊥.同理可证,C D D B 11⊥.又∵111D CD AD = ,1AD 、⊂C D 1面1ACD ,∴⊥D B 1平面1ACD .∵EO D B //1,∴⊥EO 平面1ACD .另证:连结CE AE 、,O D 1,设正方体1DB 的棱长为a ,易证CE AE =.又∵OC AO =,∴AC OE ⊥.在正方体1DB 中易求出:a a a DO DD O D 2622222211=⎪⎪⎭⎫ ⎝⎛+=+=,a a a OB BE OE 232222222=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=, ()a a a E B B D E D 232222212111=⎪⎭⎫ ⎝⎛+=+=. ∵21221E D OE O D =+, ∴OE O D ⊥1.∵O AC O D = 1,O D 1、⊂AC 平面1ACD ,∴⊥OE 平面1ACD .说明:要证线面垂直可找线线垂直,这是立体几何证明线面垂直时常用的转化方法.在证明线线垂直时既要注意三垂线定理及其逆定理的应用,也要注意有时是从数量关系方面找垂直,即勾股定理或余弦定理的应用.典型例题四例4 如图,在△ABC 中,90=∠B ,⊥SA 平面ABC ,点A 在SB 和SC 上的射影分别为N M 、,求证:SC MN ⊥.分析:本题考查的仍是线面垂直的判定和性质定理,以及线线垂直和线面垂直相互转化思想.欲证MN SC ⊥,可证⊥SC 面AMN ,为此须证AN SC ⊥,进而可转化为证明⊥AN 平面SBC ,而已知SB AN ⊥,所以只要证BC AN ⊥即可.由于图中线线垂直、线面垂直关系较多,所以本题也可以利用三垂线定理和逆定理来证线线垂直.证明:∵⊥SA 面ABC ,⊂BC 平面ABC ,∴BC SA ⊥.∵ 90=∠B ,即BC AB ⊥,A SA BA = ,∴⊥BC 平面SAB .∵⊂AN 平面SAB .∴AN BC ⊥.又∵SB AN ⊥,B BC SB = ,∴⊥AN 平面SBC .∵⊂SC 平面SBC ,∴SC AN ⊥,又∵SC AM ⊥,A AN AM = ,∴⊥SC 平面AMN .∵⊂MN 平面AMN .∴MN SC ⊥.另证:由上面可证⊥AN 平面SBC .∴MN 为AM 在平面SBC 内的射影.∵SC AM ⊥,∴SC MN ⊥.说明:在上面的证题过程中我们可以看出,证明线线垂直常转化为证明线面垂直,而证明线面垂直又转化为证明线线垂直.立体几何中的证明常常是在这种相互转化的过程中实现的.本题若改为下题,想想如何证:已知⊥SA ⊙O 所在平面,AB 为⊙O 的直径,C 为⊙O 上任意一点(C 与B A 、不重合).过点A 作SB 的垂面交SB 、SC 于点N M 、,求证:SC AN ⊥.典型例题五例5 如图,AB 为平面α的斜线,B 为斜足,AH 垂直平面α于H 点,BC 为平面α内的直线,θ=∠ABH ,α=∠HBC ,β=∠ABC ,求证:θαβcos cos cos ⋅=.分析:本题考查的是线面角的定义和计算.要证明三个角余弦值之间关系,可考虑构造直角三角形,在直角三角形中求出三个角的余弦值,再代入验证证明,其中构造直角三角形则需要用三垂线定理或逆定理.证明:过H 点作HD 垂直BC 于D 点,连AD .∵α⊥AH ,∴AD 在平面α内射影为HD .∵HD BC ⊥,α⊂BC ,∴AD BC ⊥.在Rt △ABH 中有:BA BH =θcos ①在Rt △BHD 中有:BH BD=αcos ②在Rt △ABD 中有:BA BD=βcos ③ 由①、②、③可得:αθβcos cos cos ⋅=.说明:由此题结论易知:斜线与平面所成的角,是这条斜线和这个平面内的直线所成的一切角中最小的角.若平面的斜线与平面所成角为θ,则斜线与平面内其它直线所成角β的范围为⎥⎦⎤⎢⎣⎡2πθ,.典型例题六例 6 如图,已知正方形ABCD 边长为4,⊥CG 平面ABCD ,2=CG ,F E 、分别是AD AB 、中点,求点B 到平面GEF 的距离.分析:此题是1991年高考题,考查了直线与直线、直线与平面等位置关系以及逻辑推理和空间想像能力.本题是求平面外一点到平面的距离,可用转移法将该点到平面的距离转化为求另一点到该平面的距离.为此要寻找过点B 与平面GEF平行的直线,因为与平面平行的直线上所有点到平面的距离相等.证明:连结AC BD 、,EF 和BD 分别交AC 于O H 、,连GH ,作GH OK ⊥于K .∵ABCD 为正方形,F E 、分别为AD AB 、的中点,∴BD EF //,H 为AO 中点.∵EF BD //,⊄BD 平面GFE ,∴//BD 平面GFE .∴BD 与平面GFE 的距离就是O 点到平面EFG 的距离.∵AC BD ⊥,∴AC EF ⊥.∵⊥GC 面ABCD ,∴EF GC ⊥.∵C AC GC = ,∴⊥EF 平面GCH .∵⊂OK 平面GCH ,∴OK EF ⊥.又∵GH OK ⊥,H EF GH = ,∴⊥OK 平面GEF .即OK 长就是点B 到平面GEF 的距离.∵正方形边长为4,2=CG , ∴24=AC ,2=HO ,23=HC .在Rt △HCG 中,2222=+=CG HC HG .在Rt △GCH 中,11112=⋅=HG GC HO OK .说明:求点到平面的距离常用三种方法:一是直接法.由该点向平面引垂线,直接计算垂线段的长.用此法的关键在于准确找到垂足位置.如本题可用下列证法:延长CB 交FE 的延长线于M ,连结GM ,作ME BP ⊥于P ,作CG BN //交MG 于N ,连结PN ,再作PN BH ⊥于H ,可得⊥BH 平面GFE ,BH 长即为B 点到平面EFG 的距离.二是转移法.将该点到平面的距离转化为直线到平面的距离.三是体积法.已知棱锥的体积和底面的面积.求顶点到底面的距离,可逆用体积公式.典型例题七例7 如图所示,直角ABC ∆所在平面外一点S ,且SC SB SA ==.(1)求证:点S 与斜边AC 中点D 的连线SD ⊥面ABC ;(2)若直角边BC BA =,求证:BD ⊥面SAC .分析:由等腰三角形底边上的中线得到线线垂直,从而得到线面垂直.证明:(1)在等腰SAC ∆中,D 为AC 中点,∴AC SD ⊥.取AB 中点E ,连DE 、SE .∵BC ED //,AB BC ⊥,∴AB DE ⊥.又AB SE ⊥,∴AB ⊥面SED ,∴SD AB ⊥.∴SD ⊥面ABC (AB 、AC 是面ABC 内两相交直线).(2)∵BC BA =,∴AC BD ⊥.又∵SD ⊥面ABC ,∴BD SD ⊥.∵D AC SD = ,∴BD ⊥面SAC .说明:证明线面垂直的关键在于寻找直线与平面内的两条相交直线垂直.寻找途径可由等腰三角形底边上的中线与底边垂直,可由勾股定理进行计算,可由线面垂直得线线垂直等. 典型例题八例8 如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面. 已知:b a //,α⊥a .求证:α⊥b .分析:由线面垂直的判定定理知,只需在α内找到两条相交直线与b 垂直即可.证明:如图所示,在平面α内作两条相交直线m 、n .∵α⊥a ,∴m a ⊥,n a ⊥.又∵a b //,从而有m b ⊥,n b ⊥.由作图知m 、n 为α内两条相交直线.∴α⊥b .说明:本题的结论可以作为判定线面垂直的依据,即当要证的直线与平面的垂直关系不明确或不易证出时,可以考虑证明与已知直线平行的直线与平面垂直.典型例题九例9 如图所示,已知平面α 平面β=EF ,A 为α、β外一点,α⊥AB 于B ,β⊥AC 于C ,α⊥CD 于D .证明:EF BD ⊥.分析:先证A 、B 、C 、D 四点共面,再证明EF ⊥平面ABCD ,从而得到EF BD ⊥. 证明:∵α⊥AB ,α⊥CD ,∴CD AB //.∴A 、B 、C 、D 四点共面.∵α⊥AB ,β⊥AC ,EF =βα ,∴EF AB ⊥,EF AC ⊥.又A AC AB = ,∴EF ⊥平面ABCD .∴BD EF ⊥.说明:与线面平行和线线平行交替使用一样,线面垂直和线线垂直也常互为条件和结论.即要证线面垂直,先找线线垂直;要证线线垂直,先找线面垂直.本题证明“A 、B 、C 、D 四点共面”非常重要,仅由EF ⊥平面ABC ,就断定BD EF ⊥,则证明是无效的. 典型例题十例10 平面α内有一半圆,直径AB ,过A 作SA ⊥平面α,在半圆上任取一点M ,连SM 、SB ,且N 、H 分别是A 在SM 、SB 上的射影.(1)求证:SB NH ⊥;(2)这个图形中有多少个线面垂直关系?(3)这个图形中有多少个直角三角形?(4)这个图形中有多少对相互垂直的直线?分析:注意利用直线与直线、直线与平面垂直的有关知识进行判断.(1)证明:连AM 、BM .如上图所示,∵AB 为已知圆的直径,∴BM AM ⊥.∵SA ⊥平面α,α⊂BM ,∴MB SA ⊥.∵A SA AM = ,∴BM ⊥平面SAM .∵AN ⊂平面SAM ,∴AN BM ⊥.∵SM AN ⊥于N ,M SM BM = ,∴AN ⊥平面SMB .∵SB AH ⊥于H ,且NH 是AH 在平面SMB 的射影,∴SB NH ⊥.解(2):由(1)知,SA ⊥平面AMB ,BM ⊥平面SAM ,AN ⊥平面SMB .∵AH SB ⊥且HN SB ⊥,∴SB ⊥平面ANH ,∴图中共有4个线面垂直关系.(3)∵SA ⊥平面AMB ,∴SAB ∆、SAM ∆均为直角三角形.∵BM ⊥平面SAM ,∴BAM ∆、BMS ∆均为直角三角形.∵AN ⊥平面SMB ,∴ANS ∆、ANM ∆、ANH ∆均为直角三角形.∵SB ⊥平面ANH ,∴SHA ∆、BHA ∆、SHN ∆、BHN ∆均为直角三角形.综上,图中共有11个直角三角形.(4)由SA ⊥平面AMB 知,AM SA ⊥,AB SA ⊥,BM SA ⊥.由BM ⊥平面SAM 知,AM BM ⊥,SM BM ⊥,AN BM ⊥.由AN ⊥平面SMB 知,SM AN ⊥,SB AN ⊥,NH AN ⊥.由SB ⊥平面ANH 知,AH SB ⊥,HN SB ⊥.综上,图中共有11对互相垂直的直线.说明:为了保证(2)(3)(4)答案不出错,首先应找准(2)的答案,由“线⊥面”可得到“线⊥面内线”,当“线⊥面内线”且相交时,可得到直角三角形;当“线⊥面内线”且不相交时,可得到异面且垂直的一对直线.典型例题十一例11 如图所示,︒=∠90BAC .在平面α内,PA 是α的斜线,︒=∠=∠60PAC PAB .求PA 与平面α所成的角.分析:求PA 与平面α所成角,关键是确定PA 在平面α上射影AO 的位置.由PAC PAB ∠=∠,可考虑通过构造直角三角形,通过全等三角形来确定AO 位置,构造直角三角形则需用三垂线定理.解:如图所示,过P 作α⊥PO 于O .连结AO ,则AO 为AP 在面α上的射影,PAO ∠为PA 与平面α所成的角.作AC OM ⊥,由三重线定理可得AC PM ⊥.作AB ON ⊥,同理可得AB PN ⊥.由PAC PAB ∠=∠,︒=∠=∠90PNA PMA ,PA PA =,可得PMA ∆≌PNA ∆,∴PN PM =.∵OM 、ON 分别为PM 、PN 在α内射影,∴ON OM =.所以点O 在BAC ∠的平分线上.设a PA =,又︒=∠60PAM ,∴a AM 21=,︒=∠45OAM , ∴a AM AO 222==.在POA ∆中,22cos ==∠PA AO PAO , ∴︒=∠45PAO ,即PA 与α所成角为︒45.说明:(1)本题在得出PA 在面α上的射影为BAC ∠的平分线后,可由公式βαθcos cos cos ⋅=来计算PA 与平面α所成的角,此时︒==∠60θPAC ,α=∠PAO ,︒==∠45βCAO .(2)由PA 与平面α上射影为BAC ∠平分线还可推出下面结论:四面体ABC P -中,若PAC PAB ∠=∠,PBC PBA ∠=∠,则点A 在面ABC 上的射影为ABC ∆的内心. 典型例题十二例12 如图所示,在平面β内有ABC ∆,在平面β外有点S ,斜线AC SA ⊥,BC SB ⊥,且斜线SA 、SB 分别与平面β所成的角相等,设点S 与平面β的距离为cm 4,BC AC ⊥,且cm AB 6=.求点S 与直线AB 的距离.分析:由点S 向平面β引垂线,考查垂足D 的位置,连DB 、DA ,推得AC DA ⊥,BC DB ⊥,又︒=∠90ACB ,故A 、B 、C 、D 为矩形的四个顶点.解:作SD ⊥平面β,垂足为D ,连DA 、DB .∵AC SA ⊥,BC DB ⊥,∴由三垂线定理的逆定理,有:AC DA ⊥,BC DB ⊥,又BC AC ⊥,∴ACBD 为矩形.又∵SB SA =,∴DB DA =,∴ACBD 为正方形,∴AB 、CD 互相垂直平分.设O 为AB 、CD 的交点,连结SO ,根据三垂线定理,有AB SO ⊥,则SO 为S 到AB 的距离.在SOD Rt ∆中,cm SD 4=,cm AB DO 321==,∴cm SO 5=. 因此,点S 到AB 的距离为cm 5.说明:由本例可得到点到直线距离的作法:(1)若点、直线在确定平面内,可直接由点向直线引垂线,这点和垂足的距离即为所求.(2)若点在直线所在平面外,可由三垂线定理确定:由这点向平面引垂线得垂足,由垂足引直线的垂线得斜足,则这点与斜足的距离为点到直线的距离.(3)处理距离问题的基本步骤是:作、证、算,即作出符合要求的辅助线,然后证明所作距离符合定义,再通过解直角三角形进行计算.典型例题十三例13 如图,ABCD 是正方形,SA 垂直于平面ABCD ,过A 且垂直于SC 的平面交SB 、SC 、SD 分别于点E 、F 、G ,求证:SB AE ⊥,SD AG ⊥.分析:本题考查线面垂直的判定与性质定理,以及线线垂直和线面垂直相互转化的思想.由于图形的对称性,所以两个结论只需证一个即可.欲证SB AE ⊥,可证⊥AE 平面SBC ,为此须证BC AE ⊥、SC AE ⊥,进而转化证明⊥BC 平面SAB 、⊥SC 平面AEFG . 证明:∵SA ⊥平面ABCD ,⊂BC 平面ABCD ,∴BC SA ⊥.又∵ABCD 为正方形,∴AB BC ⊥.∴⊥BC 平面ASB .∵⊂AE 平面ASB ,∴AE BC ⊥.又∵⊥SC 平面AEFG ,∴AE SC ⊥.∴⊥AE 平面SBC .又∵⊂SB 平面SBC ,∴SB AE ⊥,同理可证SD AG ⊥.说明:(1)证明线线垂直,常用的方法有:同一平面内线线垂直、线面垂直的性质定理,三垂线定理与它的逆定理,以及与两条平行线中一条垂直就与另一条垂直.(2)本题的证明过程中反复交替使用“线线垂直”与“线面垂直”的相互联系,充分体现了数学化思想的优越性. 典型例题十四例14 如图,求证:如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面内的射影在这个角的平分线上.已知:BAC ∠在平面α内,点α∉P ,AB PE ⊥,AC PF ⊥,α⊥PO ,垂足分别是E 、F 、O ,PF PE =.求证:CAO BAO ∠=∠.证明:∵α⊥PO ,∴OE 为PE 在α内的射影.∵PE AB ⊥,α平面⊂AB ,∴OE AB ⊥.同理可证:OF AC ⊥.又∵α⊥PO ,PF PE =,OF OE =,∴CAO BAO ∠=∠.说明:本题是一个较为典型的题目,与此题类似的有下面命题:从一个角的顶点引这个角所在平面的斜射线,使斜射线和这个角两边的夹角相等,则斜射线在平面内的射影,是这个角的平分线所在的直线.由此结论和上一个例题很容易求解下面这道题:已知︒=∠90ACB ,S 为平面ACB 外一点,︒=∠=∠60SCB SCA ,求SC 与平面ACB 所成角.典型例题十五例15 判断题:正确的在括号内打“√”号,不正确的打“×”号.(1)一条直线和一个平面平行,它就和这个平面内的任何直线平行.( )(2)如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直.( )(3)垂直于三角形两边的直线必垂直于第三边.( )(4)过点A 垂直于直线a 的所有直线都在过点A 垂直于α的平面内.( )(5)如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.( ) 解:(1)直线与平面平行,则直线与平面内的直线的位置关系不外乎有两种①平行 ②异面,因此应打“×”号(2)该命题的关键是这无数条直线具有怎样的位置关系.①若为平行,则该命题应打“×”号;若为相交,则该命题应打“√”,正是因为这两种情况可能同时具备,因此,不说明面内无这数条线的位置关系,则该命题应打“×”号.(3)垂直于三角形两边的直线必垂直于三角形所在的平面,由线面垂直定义的逆用,则该直线必垂直于三角形的第三边,∴该命题应打“√”.(4)前面介绍了两个命题,①过一点有且只有一个平面与已知直线垂直,②过一点有且只有一条直线与已知平面垂直,根据第一个命题知:过点A 垂直于直线a 的平面惟一,因此,过点A 且与直线a 垂直的直线都在过点A 且与直线a 垂直的平面内,∴该命题应打“√”号.(5)三条共点直线两两垂直,设为a ,b ,c 且a ,b ,c 共点于O ,∵b a ⊥,c a ⊥,0=c b ,且b ,c 确定一平面,设为α,则α⊥a ,同理可知b 垂直于由a ,c 确定的平面,c 垂直于由了确定的平面,∴该命题应打“√”号.说明:本题是利用直线和平面垂直的定义及判定定理等知识来解答的问题.解答此类问题必须作到:概念清楚、问题理解透彻、相关知识能灵活运用.典型例题十六例16 如图,已知空间四边形ABCD 的边AC BC =,BD AD =,引CD BE ⊥,E 为垂足,作BE AH ⊥于H ,求证:BCD AH 平面⊥.分析:若证BCD AH 平面⊥,只须利用直线和平面垂直的判定定理,证AH 垂直平面BCD 中两条相交直线即可.证明:取AB 中点F ,连CF 、DF ,∵BC AC =,∴AB CF ⊥.又∵BD AD =,∴AB DF ⊥,∴CDF AB 平面⊥,又CDF CD 平面⊂,∴AB CD ⊥又BE CD ⊥,∴ABE CD 平面⊥,AH CD ⊥,又BE AH ⊥,∴BCD AH 平面⊥.典型例题十七例17 如果平面α与α外一条直线a 都垂直b ,那么α//a .已知:直线α⊄a ,b a 直线⊥,α⊥b .求证:α//a .分析:若证线面平行,只须设法在平面α内找到一条直线'a ,使得'//a a ,由线面平行判定定理得证.证明:(1)如图,若a 与b 相交,则由a 、b 确定平面β,设'a =αβ .αααβαα////,,'''''a a a a a a b a a b ab a b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎭⎪⎬⎫⊂⊥⊥⇒⎭⎬⎫⊂⊥又∵. (2)如图,若a 与b 不相交,则在a 上任取一点A ,过A 作b b //',a 、'b 确定平面β,设'a =αβ .αααβααα////,,////'''''''''''a a a a a a a b a b a b b b a b a b b b b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎪⎭⎪⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥⊥⇒⎪⎭⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥又又∵又∵.典型例题十八例18 如图,已知在ABC ∆中,︒=∠60BAC ,线段ABC AD 平面⊥,DBC AH 平面⊥,H 为垂足.求证:H 不可能是DBC ∆的垂心.分析:根据本题所证结论,可采用反证法予以证明.证明:如图所示,假设H 是DBC ∆的垂心,则DC BH ⊥.∵DBC AH 平面⊥,∴AH DC ⊥,∴ABH DC 平面⊥,∴DC AB ⊥.又∵ABC DA 平面⊥,∴DA AB ⊥,∴DAC AB 平面⊥,∴AC AB ⊥,这与已知︒=∠60BAC 矛盾,∴假设不成立,故H 不可能是DBC ∆的垂心.说明:本题只要满足︒≠∠90BAC ,此题的结论总成立.不妨给予证明.典型例题十九例19 在空间,下列哪些命题是正确的( ).①平行于同一条直线的两条直线互相平行②垂直于同一条直线的两条直线互相平行③平行于同一个平面的两条直线互相平行④垂直于不一个平面的两条直线互相平行A .仅②不正确B .仅①、④正确C .仅①正确D .四个命题都正确分析:①该命题就是平行公理,即课本中的公理4,因此该命题是正确的;②如图,直线a ⊥平面α,α⊂b ,α⊂c ,且A c b = ,则b a ⊥,c a ⊥,即平面α内两条直交直线b ,c 都垂直于同一条直线a ,但b ,c 的位置关系并不是平行.另外,b ,c 的位置关系也可以是异面,如果把直线b 平移到平面α外,此时与a 的位置关系仍是垂直,但此时,b ,c 的位置关系是异面.③如图,在正方体1111D C B A ABCD -中,易知ABCD B A 平面//11,ABCD D A 平面//11,但11111A D A B A = ,因此该命题是错误的.④该命题是线面垂直的性质定理,因此是正确的.综上可知①、④正确.∴应选B .典型例题二十例20 设a ,b 为异面直线,AB 为它们的公垂线(1)若a ,b 都平行于平面α,则α⊥AB ;(2)若a ,b 分别垂直于平面α、β,且c =βα ,则c AB //.分析:依据直线和平面垂直的判定定理证明α⊥AB ;证明线与线的平行,由于此时垂直的关系较多,因此可以考虑利用线面垂直的性质证明c AB //.图1 图2 证明:(1)如图1,在α内任取一点P ,设直线a 与点P 确定的平面与平面α的交线为'a , 设直线b 与点P 确定的平面与平面α的交线为'b ∵α//a ,α//b ,∴'//a a ,'//b b又∵a AB ⊥,b AB ⊥,∴'a AB ⊥,'b AB ⊥,∴.(2)如图2,过B 作α⊥'BB ,则a BB //',则'BB AB ⊥又∵b AB ⊥,∴AB 垂直于由b 和'BB 确定的平面. ∵β⊥b ,∴c b ⊥,α⊥'BB ,∴c BB ⊥'. ∴c 也垂直于由'BB 和b 确定的平面. 故AB c //.说明:由第(2)问的证明可以看出:利用线面垂直的性质证明线与线的平行,其关键是构造出平面,使所证线皆与该平面垂直.如题中,通过作出辅助线'BB ,构造出平面,即由相交直线b 与'BB 确定的平面.然后借助于题目中的其他垂直关系证得. 典型例题二十一例21 如图,在正方体1111D C B A ABCD -中,EF 为异面直线D A 1与AC 的公垂线,求证:1//BD EF .分析:证明1//BD EF ,构造与EF 、1BD 都垂直的平面是关键.由于EF 是AC 和D A 1的公垂线,这一条件对构造线面垂直十分有用.证明:连结11C A ,由于11//C A AC ,AC EF ⊥,∴11C A EF ⊥.又D A EF 1⊥,1111A C A D A = ,∴D C A EF 11平面⊥. ①∵11111D C B A BB 平面⊥,111111D C B A C A 平面⊂,∴111.∵四边形1111D C B A 为正方形,∴1111D B C A ⊥,1111B BB D B = ,∴D D BB C A 1111平面⊥,而D D BB BD 111平面⊂,∴111BD C A ⊥.同理11BD DC ⊥,1111C C A DC = ,∴D C A BD 111平面⊥. ②由①、②可知:1//BD EF .典型例题二十二例22 如图,已知P 为ABC ∆外一点,PA 、PB 、PC 两两垂直,a PC PB PA ===,求P 点到平面ABC 的距离.分析:欲求点到平面的距离,可先过点作平面的垂线,进一步求出垂线段的长.解:过P 作ABC PO 平面⊥于O 点,连AO 、BO 、CO ,∴AO PO ⊥,BO PO ⊥,CO PO ⊥∵a PC PB PA ===,∴PAO ∆≌PBO ∆≌PCO ∆,∴OC OB OA ==,∴O 为ABC ∆的外心.∵PA 、PB 、PC 两两垂直, ∴a CA BC AB 2===,ABC ∆为正三角形,∴a AB AO 3633==,∴a AO PA PO 3322=-=.因此点P 到平面ABC 的距离a 33.说明:(1)求点到平面距离的基本程序是:首先找到或作出要求的距离;然后使所求距离在某一个三角形中;最后在三角形中根据三角形的边角关系求出距离.(2)求距离问题转化到解三角形有关问题后,在三角形中求距离常常用到勾股定理、正弦定理、余弦定理及有关三角函数知识.(3)点到平面距离是立体几何中一个重要内容,高考命题中出现较多,应充分注意,除了上面提到方法之外,还有其他一些方法,比如以后学习的等积法,希望同学们在学习过程不断总结.典型例题二十三例23 如图,已知在长方体1111D C B A ABCD -中,棱51=AA ,12=AB ,求直线11C B 和平面11BCD A 的距离.分析:求线面距离,其基本方法是在线上选一点,作出点面距,距离然后根据求点面距的有关方法求解.解:如图,∵BC C B //11,且1111BCD A C B 平面⊄,11BCD A BC 平面⊂,∴1111//BCD A C B 平面.从而点1B 到平面11BCD A 的距离即为所求.过点1B 作B A E B 11⊥于E ,∵11ABB A BC 平面⊥,且B B AA E B 111平面⊂,∴E B BC 1⊥.又B B A BC =1 ,∴111BCD A E B 平面⊥.即线段E B 1的长即为所求,在B B A Rt 11∆中,13601251252211111=+⨯=⋅=B A BB B A E B ,∴直线11C B 到平面11BCD A 的距离为1360.说明:本题考查长方体的性质,线面距离的概念等基础知识以及计算能力和转化的数学思想,解答本题的关键是把线面距离转化为点面距离,进而转化为点线距离,再通过解三角形求解,这种转化的思想非常重要,数学解题的过程就是将复杂转化为简单,将未知转化为已知,从而求解.典型例题二十四例24 AD 、BC 分别为两条异面直线上的两条线段,已知这两条异面直线所成的角为︒30,cm AD 8=,BC AB ⊥,BC DC ⊥.求线段BC 的长.分析:首先依据题意,画出图形,利用平移,将异面直线AD 、BC 所成的角、垂直关系转化到某一个或某几个平面内,应用平面几何有关知识计算出BC 之长.解:如图,在平面α内,过A 作BC AE //,过C 作AB CE //,两线交于E .∵BC AE //,∴DAE ∠就是AD 、BC 所成的角,︒=∠30DAE .∵BC AB ⊥,∴四边形ABCE 是矩形.连DE ,∵CD BC ⊥,CE BC ⊥,且C CE CD = ,∴CDE BC 平面⊥.∵BC AE //,∴CDE AE 平面⊥.∵CDE DE 平面⊂,∴DE AE ⊥.在AED Rt ∆中,得34=AE ,∴)(34cm AE BC ==.说明:解决空间问题,常常将空间关系转化一个或几个平面上来,只有将空间问题归化到平面上来,才能应用平面几何知识解题,而平移变换是转化的重要手段.。
线面垂直经典练习1.P 点在则ABC ∆所在的平面外,O 点是P 点在平面ABC 内的射影 ,PA 、PB 、PC 两两垂直,则D 点是则ABC ∆ ( ) (A)重心 (B) 垂心 (C)内心 (D)外心2.与两个相交平面的交线平行的直线和这两个平面的位置关系是 ( ) (A)都平行 (B) 都相交 (C) 在两个平面内 (D)至少与其中一个平行 3.若两个平面内分别有一条直线,这两条直线互相平行,那么这两平面的位置关系是( ) (A)平行 (B) 相交 (C)平行或相交 (D)垂直 4.在空间,下述命题正确的是 ( ) (A)若直线//a 平面M ,直线b a ⊥,则直线⊥b 平面M (B)若平面M //平面N ,则平面M 内任意直线a //平面N(C)若平面M 与N 的交线为a ,平面M 内的直线a b ⊥,则N b ⊥ (D)若平面N 的两条直线都平行平面M ,则平面N //平面M5.a 、b 表示两条直线,α、β、γ表示三个平面,下列命题中错误的是 ( ) (A),,αα⊂⊂b a 且ββ//,//b a ,则βα//(B)a 、b 是异面直线,则存在唯一的平面与a 、b 等距 (C) ,,,b a b a ⊥⊂⊥βα则βα// (D),,,//,βαβγγα⊥⊥⊥b a 则b a ⊥6.直线l //平面α,αβ⊥,则l 与平面β的位置关系是 ( ) (A) l β⊂ (B) //l β (C) l β与相交 (D ) 以上三种情况均有可能 7.已知直线l ⊥平面α,直线m ⊂平面β,有以下四个命题:①//l m αβ⇒⊥②//l m αβ⊥⇒③//l m αβ⇒⊥④//l m αβ⊥⇒,其中正确的是( )(A) ①② (B) ②④ (C) ③④ (D) ①③8.αβγδ,,,是四个不同的平面,且αγβγαδβδ⊥⊥⊥⊥,,,,则( ) (A) ////αβγδ或 (B) ////αβγδ且(C) 四个平面中可能任意两个都不平行 (D) 四个平面中至多有一对平面平行 9.已知平面α和平面β相交,a 是α内的一条直线,则( )(A) 在β内一定存在与a 平行的直线 (B) 在β内一定存在与a 垂直的直线 (C) 在β内一定不存在与a 平行的直线 (D) 在β内一定不存在与a 垂直的直线10.已知PA ⊥正方形ABCD 所在平面,垂足为A ,连PB PC PD AC BD ,,、,,则互相垂直的平面有( )(A) 5对 (B) 6对 (C) 7对 (D) 8对12. 如图9-29,P A ⊥平面ABCD ,ABCD 是矩形,M 、N 分别是AB 、PC 的中点. 求证:MN ⊥AB .13. 已知:如图,AS ⊥平面SBC ,SO ⊥平面ABC 于O , 求证:AO ⊥BC .15. 已知如图,P ∉平面ABC ,PA=PB=PC ,∠APB=∠APC=60°,∠BPC=90 °,D 为BC 中点,连接AD 、PD 。
线面垂直●知识点1.直线和平面垂直定义如果一条直线和一个平面内的任何一条直线都垂直,就说这条直线和这个平面垂直.2.线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.判定定理:如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.判定定理:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.3.三垂线定理和它的逆定理.三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直.逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线在该平面上的射影垂直.●题型示例【例1】如图所示,已知点S是平面ABC外一点,∠ABC=90°,SA⊥平面ABC,点A在直线SB和SC上的射影分别为点E、F,求证:EF⊥SC.【解前点津】用分析法寻找解决问题的途径,假设EF⊥SC成立,结合AF⊥SC可推证SC⊥平面AEF,这样SC⊥AE,结合AE⊥SB,可推证AE⊥平面SBC,因此证明AE⊥平面SBC是解决本题的关键环节.由题设SA⊥平面ABC,∠ABC=90°,可以推证BC⊥AE,结合AE⊥SB完成AE⊥平例1题图面SBC的证明.【规范解答】【解后归纳】题设中条件多,图形复杂,结合题设理清图形中基本元素之间的位置关系是解决问题的关键.【例2】已知:M∩N=AB,PQ⊥M于Q,PO⊥N于O,OR⊥M于R,求证:QR⊥AB.【解前点津】由求证想判定,欲证线线垂直,方法有(1)a∥b,a⊥c⇒b⊥c;(2)a⊥α,b⊂α⇒a⊥b;(3)三垂线定理及其逆定理.由已知想性质,知线面垂直,可推出线线垂直或线线平行.【解后归纳】处于非常规位置图形上的三垂线定理或逆定理的应用问题,要抓住“一个面”、“四条线”.所谓“一个面”:就是要确定一个垂面,三条垂线共处于垂面之上.所谓“四条线”:就是垂线、斜线、射影以及平面内的第四条线,这四条线中垂线是关键的一条线,牵一发而动全身,应用时一般可按下面程序进行操作:确定垂面、抓准斜线、作出垂线、连结射影,寻第四条线.【例3】已知如图(1)所示,矩形纸片AA′A′1A1,B、C、B1、C1分别为AA′,A1A′的三等分点,将矩形纸片沿BB1,CC1折成如图(2)形状(正三棱柱),若面对角线AB1⊥BC1,求证:A1C⊥AB1.例3题图解(1)【解前点津】 题设主要条件是AB 1⊥BC ,而结论是A B1⊥A 1C,题设,题断有对答性,可在ABB 1A1上作文章,只要取A 1B1中点D 1,就把异面直线AB 1与BC 1垂直关系转换到ABB 1A1同一平面内AB 1与BD 1垂直关系,这里要感谢三垂线逆定理.自然想到题断A B1与A 1C 垂直用同法(对称原理)转换到同一平面,取AB 中点D 即可,只要证得A1D 垂直于A B1,事实上D BD1A 1,为平行四边形,解题路子清楚了.【解后归纳】 证线线垂直主要途径是:(1)三垂线正逆定理,(2)线面,线线垂直互相转化.利用三垂线正逆定理完成线线归面工作,在平面内完成作解任务.证线线垂直,线面垂直,常常利用线面垂直,线线垂直作为桥梁过渡过来,这种转化思想有普遍意义,利用割补法把几何图形规范化便于应用定义定理和公式,也是不容忽视的常用方法.【例4】 空间三条线段A B,BC ,CD ,AB ⊥BC ,BC ⊥C D,已知AB =3,BC =4,CD =6,则AD 的取值范围是 .【解前点津】 如图,在直角梯形ABCD 1中,C D1=6,AD 1的长是AD 的最小值,其中AH ⊥C D1,AH =B C=4,HD 1=3,∴AD1=5;在直角△AH D2中,CD 2=6,AD 2是A D的最大值为974)36(22222=++=+AH HD【解后归纳】 本题出题形式新颖、灵活性大,很多学生对此类题感到无从入手,其实冷静分析,找出隐藏的条件很容易得出结论.例4题图●对应训练 分阶提升一、基础夯实1.设M 表示平面,a、b 表示直线,给出下列四个命题:①M b M a b a ⊥⇒⎭⎬⎫⊥// ②b a M b M a //⇒⎭⎬⎫⊥⊥ ③⇒⎭⎬⎫⊥⊥b a M a b ∥M ④⇒⎭⎬⎫⊥b a M a //b ⊥M . 其中正确的命题是 ( )A.①② B.①②③ C.②③④ D.①②④2.下列命题中正确的是 ( )A.若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面B.若一条直线垂直于一个平面内的无数条直线,则这条直线垂直于这个平面C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线D.若一条直线垂直于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面3.如图所示,在正方形ABCD 中,E 、F 分别是AB 、B C的中点.现在沿D E、DF 及EF 把△A DE 、△CDF 和△BEF 折起,使A 、B、C 三点重合,重合后的点记为P.那么,在四面体P —DEF 中,必有 ( )A.D P⊥平面PE F B .DM ⊥平面PEF C.PM ⊥平面DE F D.PF ⊥平面DEF4.设a 、b 是异面直线,下列命题正确的是 ( )A.过不在a、b 上的一点P一定可以作一条直线和a、b 都相交B .过不在a 、b 上的一点P一定可以作一个平面和a 、b 都垂直C.过a一定可以作一个平面与b垂直D.过a一定可以作一个平面与b 平行5.如果直线l ,m 与平面α,β,γ满足:l=β∩γ,l ∥α,m⊂α和m ⊥γ,那么必有 ( ) A.α⊥γ且l ⊥m B.α⊥γ且m ∥β C.m∥β且l ⊥m D.α∥β且α⊥γ6.AB是圆的直径,C 是圆周上一点,PC 垂直于圆所在平面,若B C=1,AC =2,P C=1,则P 到AB的距离为 ( )A.1B.2 C.552 D.553 7.有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直,那么过a的任一个平面与b 都不垂直其中正确命题的个数为 ( )A.0B.1 C.2 D.38.d 是异面直线a 、b的公垂线,平面α、β满足a ⊥α,b⊥β,则下面正确的结论是 ( )第3题图A.α与β必相交且交线m ∥d或m 与d重合B.α与β必相交且交线m∥d 但m 与d 不重合C.α与β必相交且交线m 与d 一定不平行D.α与β不一定相交9.设l、m 为直线,α为平面,且l ⊥α,给出下列命题① 若m ⊥α,则m ∥l;②若m ⊥l ,则m∥α;③若m∥α,则m ⊥l ;④若m∥l ,则m ⊥α, 其中真命题...的序号是 ( ) A.①②③ B.①②④ C .②③④ D.①③④10.已知直线l ⊥平面α,直线m 平面β,给出下列四个命题:①若α∥β,则l ⊥m;②若α⊥β,则l ∥m ;③若l∥m,则α⊥β;④若l ⊥m ,则α∥β. 其中正确的命题是 ( )A.③与④B.①与③ C.②与④ D.①与②二、思维激活11.如图所示,△ABC 是直角三角形,AB 是斜边,三个顶点在平面α的同侧,它们在α内的射影分别为A′,B′,C ′,如果△A ′B ′C ′是正三角形,且AA ′=3cm ,B B′=5cm ,CC ′=4cm ,则△A ′B ′C′的面积是 .12.如图所示,在直四棱柱A 1B 1C 1D 1—ABCD 中,当底面四边形ABCD 满足条件 时,有A 1C⊥B 1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)13.如图所示,在三棱锥V —AB C中,当三条侧棱VA 、VB 、VC 之间满足条件 时,有VC ⊥AB .(注:填上你认为正确的一种条件即可)三、能力提高14.如图所示,三棱锥V -AB C中,AH ⊥侧面VBC ,且H 是△VB C的垂心,BE 是VC 边上的高.(1)求证:VC ⊥AB ;(2)若二面角E —AB—C 的大小为30°,求VC 与平面AB C所成角的大小.第11题图 第12题图第13题图 第14题图15.如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面P AD.(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.第15题图16.如图所示,在四棱锥P—ABCD中,底面ABCD是平行四边形,∠BAD=60°,AB=4,AD=2,侧棱PB=15,PD =3.(1)求证:BD ⊥平面P AD.(2)若PD与底面ABCD成60°的角,试求二面角P—BC—A的大小.第16题图17.已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=6,M是CC1的中点,求证:AB1⊥A1M.18.如图所示,正方体ABCD—A′B′C′D′的棱长为a,M是AD的中点,N是BD′上一点,且D′N∶NB=1∶2,MC与BD交于P.(1)求证:NP⊥平面ABCD.(2)求平面PNC与平面CC′D′D所成的角.(3)求点C到平面D′MB的距离.第18题图第4课 线面垂直习题解答1.A 两平行中有一条与平面垂直,则另一条也与该平面垂直,垂直于同一平面的两直线平行.2.C 由线面垂直的性质定理可知.3.A 折后DP ⊥PE ,D P⊥PF ,P E⊥PF .4.D 过a 上任一点作直线b ′∥b ,则a,b ′确定的平面与直线b平行.5.A 依题意,m⊥γ且m ⊂α,则必有α⊥γ,又因为l =β∩γ则有l ⊂γ,而m ⊥γ则l⊥m ,故选A.6.D 过P 作PD ⊥A B于D ,连CD ,则CD ⊥AB ,AB =522=+BC AC ,52=⋅=AB BC AC CD , ∴PD =55354122=+=+CD PC . 7.D 由定理及性质知三个命题均正确.8.A 显然α与β不平行.9.D 垂直于同一平面的两直线平行,两条平行线中一条与平面垂直,则另一条也与该平面垂直.10.B ∵α∥β,l⊥α,∴l ⊥m 11.23c m2 设正三角A ′B′C′的边长为a . ∴A C2=a 2+1,BC 2=a 2+1,A B2=a2+4,又AC 2+BC 2=AB 2,∴a 2=2. S△A′B′C ′=23432=⋅a cm 2. 12.在直四棱柱A 1B 1C 1D1—A BCD 中当底面四边形AB CD 满足条件AC ⊥B D(或任何能推导出这个条件的其它条件,例如A BCD 是正方形,菱形等)时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形). 点评:本题为探索性题目,由此题开辟了填空题有探索性题的新题型,此题实质考查了三垂线定理但答案不惟一,要求思维应灵活.13.VC ⊥VA ,VC ⊥AB . 由VC ⊥VA ,VC ⊥AB 知VC ⊥平面V AB .14.(1)证明:∵H 为△V BC 的垂心,∴VC ⊥B E,又AH ⊥平面VBC ,∴BE 为斜线A B在平面VBC 上的射影,∴AB ⊥VC .(2)解:由(1)知VC ⊥A B,VC ⊥BE ,∴VC ⊥平面ABE ,在平面A BE上,作ED⊥AB ,又A B⊥VC ,∴AB ⊥面D EC .∴AB ⊥CD ,∴∠EDC 为二面角E —A B—C 的平面角,∴∠ED C=30°,∵AB ⊥平面VCD ,∴VC 在底面AB C上的射影为CD .∴∠VCD 为VC 与底面ABC 所成角,又VC ⊥A B,VC ⊥BE ,∴VC ⊥面AB E,∴VC ⊥DE ,∴∠CE D=90°,故∠ECD=60°,∴VC 与面A BC 所成角为60°.15.证明:(1)如图所示,取PD 的中点E ,连结AE ,EN ,则有EN∥CD ∥AB ∥AM,E N=21C D=21AB =AM,故AMNE 为平行四边形. ∴MN ∥AE. ∵AE 平面P AD ,MN 平面P AD ,∴MN ∥平面PAD .(2)∵PA ⊥平面ABCD ,∴P A⊥AB .又A D⊥AB ,∴A B⊥平面P A D.∴A B⊥AE ,即AB ⊥MN .又C D∥AB ,∴MN ⊥CD.(3)∵P A ⊥平面ABCD ,∴P A ⊥AD .又∠PDA =45°,E 为PD 的中点.∴AE ⊥P D,即MN ⊥PD .又MN ⊥CD ,∴MN ⊥平面P CD .16.如图(1)证:由已知A B=4,AD =2,∠BAD =60°,故BD 2=AD 2+A B2-2AD ·A Bc os60°=4+16-2×2×4×21=12.又AB 2=AD 2+B D2,∴△A BD是直角三角形,∠AD B=90°,即AD ⊥BD.在△PDB 中,PD =3,PB =15,BD =12,∴PB 2=PD 2+BD 2,故得PD ⊥B D.又P D∩AD =D ,∴BD ⊥平面P AD.(2)由BD ⊥平面P AD ,BD平面A BCD .∴平面P AD ⊥平面A BCD .作PE ⊥AD 于E,又P E平面P AD ,∴PE ⊥平面ABCD ,∴∠PD E是PD 与底面AB CD所成的角.∴∠PD E=60°,∴P E=PD si n60°=23233=⨯.作EF ⊥BC 于F,连PF ,则PF ⊥BF,∴∠PF E是二面角P —BC —A的平面角.又E F=BD =12,在Rt △P EF 中,tan ∠PFE =433223==EF PE .故二面角P —BC—A 的大小为ar ctan 43. 第15题图解第16题图解17.连结AC 1,∵11112263A C CC MC AC ===. ∴Rt △ACC 1∽Rt △MC 1A 1,∴∠AC 1C =∠MA 1C1,∴∠A1MC 1+∠AC 1C =∠A 1M C1+∠MA1C1=90°.∴A1M ⊥AC 1,又ABC -A 1B1C 1为直三棱柱,∴C C1⊥B 1C 1,又B 1C1⊥A1C 1,∴B 1C 1⊥平面AC 1M .由三垂线定理知AB 1⊥A 1M .点评:要证AB 1⊥A 1M,因B 1C 1⊥平面A C1,由三垂线定理可转化成证AC 1⊥A 1M ,而AC 1⊥A 1M 一定会成立.18.(1)证明:在正方形ABCD 中,∵△MPD ∽△C PB ,且MD =21B C, ∴D P∶PB =MD ∶BC =1∶2.又已知D ′N ∶NB =1∶2,由平行截割定理的逆定理得NP∥DD′,又DD ′⊥平面ABCD ,∴NP ⊥平面ABCD .(2)∵N P∥DD ′∥CC ′,∴N P、C C′在同一平面内,CC ′为平面NPC 与平面C C′D ′D 所成二面角的棱. 又由CC ′⊥平面AB CD ,得CC ′⊥CD ,CC ′⊥CM ,∴∠MCD 为该二面角的平面角.在Rt △M CD 中可知∠MCD =arc tan 21,即为所求二面角的大小. (3)由已知棱长为a可得,等腰△MBC 面积S 1=22a ,等腰△MBD ′面积S 2=246a ,设所求距离为h ,即为三棱锥C —D′MB的高.∵三棱锥D ′—BCM 体积为h S D D S 213131='⋅, ∴.3621a S a S h =⋅=。
直线与平面垂直的性质课时作业(附答案)课时提升作业(十) 直线与平面垂直的性质一、选择题(每小题3分,共18分) 1.已知直线l1,l2与平面α,有下列说法:①若l1∥α,l1∥l2,则l2∥α;②l1 α,l2∩α=A,则l1与l2为异面直线;③若l1⊥α,l2⊥α,则l1∥l2;④若l1⊥l2,l1∥α,则l2∥α. 其中正确的个数有( ) A.0个 B.1个 C.2个 D.3个【解析】选B.①错,因为l2还可能在α内.②错,当A∈l1时,l1∩l2=A.③对,是线面垂直的性质定理.④错,l2与α的位置关系不确定. 2.(2014•松原高一检测)BC是Rt△ABC的斜边,AP⊥平面ABC,PD⊥BC于点D,连接AD,则图中共有直角三角形的个数是( ) A.8 B.7 C.6 D.5 【解析】选A.因为AP⊥平面ABC,BC 平面ABC,所以PA⊥BC,又PD⊥BC于D,PD∩PA=P,所以BC⊥平面PAD,AD 平面PAD,所以BC⊥AD. 又BC是Rt△ABC的斜边,所以∠BAC为直角. 所以图中的直角三角形有:△ABC,△PAC,△PAB,△PAD,△PDC,△PDB,△ADC,△ADB.3.在空间中,下列说法正确的有( ) ①平行于同一条直线的两条直线互相平行;②垂直于同一条直线的两条直线互相平行;③平行于同一平面的两条直线互相平行;④两条异面直线不可能垂直于同一平面. A. 1个 B.2个 C.3个 D.4个【解析】选B.由公理4知①正确,由线面垂直的性质定理知④正确.对于②,空间中垂直于同一条直线的两条直线相交、平行、异面都有可能.对③中的两条平行于同一个平面的直线,其位置关系不确定. 4.(2013•广东高考)设l为直线,α,β是两个不同的平面,下列说法中正确的是( ) A.若l∥α,l∥β,则α∥β B.若l⊥α,l⊥β,则α∥β C.若l⊥α,l∥β,则α∥β D.若α⊥β,l∥α,则l⊥β【解析】选B.对于选项A,两个平面α,β平行于同一条直线,不能确定两平面平行还是相交(若两平面相交能确定与交线平行);对于选项B,垂直于同一条直线的两个平面平行(直线是公垂线);对于选项C,能推出两个平面相交且两个平面垂直;对于选项D,l∥β,l⊥β,l β都可能. 5.如图,已知△ABC为直角三角形,其中∠ACB=90°,M为AB的中点,PM垂直于△ABC所在平面,那么( ) A.PA=PB>PC B.PA=PB<PC C.PA=PB=PC D.PA≠PB≠PC 【解析】选C. 因为△ABC为直角三角形,M为斜边AB的中点,所以MA=MB=MC,因为PM垂直于△ABC所在平面,所以Rt△PMA≌Rt△PMB≌Rt△PMC,所以PA=PB=PC . 【变式训练】已知直线PG⊥平面α于G,直线EF α,且PF⊥EF于F,那么线段PE,PF,PG的关系是( ) A.PE>PG>PF B.PG>PF>PEC.PE>PF>PGD.PF>PE>PG 【解析】选C.在Rt△PFE中,PE>PF;在Rt△PFG中,PF>PG,所以PE>PF>PG. 6.(2014•吉安高二检测)如图,设平面α∩β=EF,AB⊥α,CD⊥α.垂足分别为B,D,如果增加一个条件,就能推出BD⊥EF,这个条件不可能是下面四个选项中的( ) A.AC⊥β B.AC⊥EF C.AC与BD在β内的射影在同一条直线上 D.AC 与α,β所成的角相等【解析】选D.对于A.若AC⊥β,EF β,则AC⊥EF. 又AB⊥α,EF α,则AB⊥EF,AB⊥α,CD⊥α,所以AB∥CD,故ABDC确定一个平面,又AC∩AB=A,所以EF⊥平面ABDC,BD 平面ABDC,所以EF⊥BD.同理B也能推出BD⊥EF.对于选项C.由于AC与BD在β内的射影在同一条直线上,所以平面ABDC与平面β垂直,又因为EF⊥AB,所以EF⊥平面ABDC,所以EF⊥BD.对于D,若AC∥EF,则AC与α,β所成的角也相等,但不能推出BD⊥EF. 二、填空题(每小题4分,共12分) 7.(2014•无锡高二检测)已知直线m 平面α,直线n 平面α,m∩n=M,直线a⊥m,a⊥n,直线b⊥m,b⊥n,则直线a,b的位置关系是________. 【解析】因为直线a⊥m,a⊥n,直线m 平面α,直线n 平面α,m∩n=M,所以a⊥α.同理可证直线b⊥α,所以a∥b. 答案:a∥b 8.若三个平面两两垂直,它们交于一点A,空间一点C1到三个平面的距离分别为5,6,7,则AC1的长为________. 【解析】如图构造长方体,可知长方体的长、宽、高分别为7,6,5,AC1为体对角线,所以AC1= = . 答案: 9.AB是�O的直径,点C是�O上的动点(点C不与A,B重合),过动点C的直线VC垂直于�O所在的平面,D,E分别是VA,VC的中点,则下列结论中正确的是________(填写正确结论的序号). (1)直线DE∥平面ABC. (2)直线DE⊥平面VBC. (3)DE⊥VB. (4)DE⊥AB. 【解析】因为AB是�O的直径,点C是�O上的动点(点C不与A,B重合),所以AC⊥BC,因为VC垂直于�O所在的平面,所以AC⊥VC,又BC∩VC=C,所以AC⊥平面VBC. 因为D,E分别是VA,VC的中点,所以DE∥AC,又DE⊈平面ABC,AC 平面ABC,所以DE∥平面ABC,DE⊥平面VBC,DE⊥VB, DE与AB所成的角为∠BAC是锐角,故DE⊥AB不成立. 由以上分析可知(1)(2)(3)正确. 答案:(1)(2)(3)三、解答题(每小题10分,共20分) 10.(2014•开封高一检测)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°. (1)求证:AB⊥A1C. (2)若AB=CB=2,A1C= ,求三棱柱ABC-A1B1C1的体积. 【解析】(1)如图,取AB的中点O,连接OC,OA1,A1B. 因为CA=CB,所以OC⊥AB. 由于AB=AA1,∠BAA1=60°,故△AA1B为等边三角形,所以OA1⊥AB. 因为OC∩OA1=O,所以AB⊥平面OA1C. 又A1C 平面OA1C,故AB⊥A1C. (2)由题设知△ABC与△AA1B都是边长为2的等边三角形,所以OC=OA1= . 又A1C= ,则A1C2=OC2+O ,故OA1⊥OC. 因为OC∩AB=O,所以OA1⊥平面ABC,所以OA1为三棱柱ABC-A1B1C1的高. 又△ABC的面积S△ABC= ,故三棱柱ABC-A1B1C1的体积V=S△ABC×OA1= × =3. 11.如图,直三棱柱ABC-A1B1C1中,AC=BC=1,∠ACB=90°,AA1= ,D是A1B1的中点. (1)求证:C1D⊥平面A1B. (2)当点F在BB1上什么位置时,会使得AB1⊥平面C1DF?并证明你的结论. 【解析】(1)因为ABC-A1B1C1是直三棱柱,所以A1C1=B1C1=1,且∠A1C1B1=90°. 又D是A1B1的中点,所以C1D⊥A1B1. 因为AA1⊥平面A1B1C1,C1D 平面A1B1C1,所以AA1⊥C1D,又AA1∩A1B1=A1,所以C1D⊥平面A1B. (2)作DE⊥AB1交AB1于E,延长DE交BB1于F,连接C1F,则AB1⊥平面C1DF,点F即为所求. 证明:因为C1D⊥平面AA1B1B,AB1 平面AA1B1B,所以C1D⊥AB1. 又AB1⊥DF,DF∩C1D=D,所以AB1⊥平面C1DF. 【变式训练】如图所示,ABCD为正方形,SA⊥平面ABCD,过A且垂直于SC的平面分别交SB,SC,SD于点E,F,G.求证:AE⊥SB. 【证明】因为SA⊥平面ABCD,BC 平面ABCD,所以SA⊥BC,又因为BC⊥AB,SA∩AB=A,所以BC⊥平面SAB,又AE 平面SAB,所以BC⊥AE. 因为SC⊥平面AEFG,所以SC⊥AE. 又BC∩SC=C,所以AE⊥平面SBC,所以AE⊥SB. 一、选择题(每小题4分,共16分) 1.已知直线l⊥平面α,直线m 平面β.有下面四个说法:①α∥β l⊥m;②α⊥β l∥m;③l∥m α⊥β;④l⊥m α∥β. 其中正确的说法是( ) A.①② B.①③C.②④D.③④ 【解析】选B.l⊥α,α∥β,所以l⊥β.又因为m β,所以l⊥m.①正确.l∥m,l⊥α,所以m⊥α,又因为m β,所以α⊥β,③正确. 2.如图,在Rt△ACB中,∠ACB=90°,直线l过点A且垂直于平面ABC,动点P∈l,当点P逐渐远离点A时,∠PCB 的大小( ) A.变大 B.变小 C.不变 D.有时变大有时变小【解析】选C.由于BC⊥CA,l⊥平面ABC,所以BC⊥l,即BC⊥AP,又因为AP∩AC=A,故BC⊥平面ACP,所以BC⊥CP,即∠PCB=90°. 3.(2014•蚌埠高一检测)线段AB在平面α的同侧,A,B到α的距离分别为5,7,则AB的中点到α的距离为( ) A.4 B.5 C.6 D.7 【解题指南】利用线面垂直的性质求解. 【解析】选C.设AB的中点为M,分别过A,M,B向α作垂线,垂足分别为A1,M1,B1,则由线面垂直的性质知AA1∥MM1∥BB1,四边形AA1B1B为直角梯形,AA1=5,BB1=7,MM1为其中位线,所以MM1= =6. 4.(2014•洛阳高一检测)PO垂直于△ABC所在平面α,垂足为O,若点P到△ABC的三边的距离相等,且点O在△ABC内部,则点O是△ABC的( ) A.重心 B.垂心 C.外心 D.内心【解析】选D.如图所示,因为PO⊥平面ABC,所以PO⊥AB.又因为PD⊥AB,PO∩PD=P,所以AB⊥平面POD,所以AB⊥OD.同理,OE⊥BC,OF⊥AC. 又因为PD=PE=PF,所以OD=OE=OF. 所以O为△ABC 的内心. 二、填空题(每小题5分,共10分) 5.(2014•合肥高一检测)如图,在正方体ABCD-A1B1C1D1中,M,N分别是棱AA1,AB上的点,若∠B1MN=90°,则∠C1MN=________. 【解析】因为B1C1⊥平面ABB1A1,所以B1C1⊥MN.又∠B1MN是直角,所以MN⊥B1M.又B1C1∩B1M=B1,所以MN⊥平面B1C1M. 所以MN⊥C1M,所以∠C1MN=90°. 答案:90° 6.如图,在正方体ABCD-A1B1C1D1中,点P在侧面BCC1B1及其边界上运动,并且总是保持AP与BD1垂直,则动点P的轨迹为________. 【解析】如图,先找到一个平面总是保持与BD1垂直,连接AC,AB1,B1C,在正方体ABCD-A1B1C1D1中,有BD1⊥面ACB1,又点P在侧面BCC1B1及其边界上运动,根据平面的基本性质得:点P的轨迹为面ACB1与面BCC1B1的交线段CB1. 答案:线段CB1 【变式训练】在正方体ABCD-A1B1C1D1中,E,F,G,H分别是棱AD,DD1,D1A1,A1A的中点,M是AB的中点,点N在四边形EFGH的四边及其内部运动,则N满足什么条件时,有MN⊥A1C1. 【解析】连接EG,EM,GM,BD,因为正方形AA1D1D中,E,G分别为AD,A1D1的中点,所以EG∥AA1. 因为AA1⊥平面A1B1C1D1,所以EG⊥平面A1B1C1D1. 因为A1C1 平面A1B1C1D1,所以A1C1⊥EG. 因为在△ABD中,EM是中位线,所以EM∥BD. 因为BB1∥DD1且BB1=DD1,所以四边形BB1D1D是平行四边形,B1D1∥BD. 所以EM∥B1D1. 因为正方形A1B1C1D1中,A1C1⊥B1D1,所以A1C1⊥EM. 因为EM∩EG=E,EM,EG 平面EGM,所以A1C1⊥平面EGM. 因此,当点N在EG上时,直线MN 平面EGM,有MN⊥A1C1成立. 三、解答题(每小题12分,共24分) 7.(2014•宿迁高二检测)如图,在三棱锥P-ABC 中,点E,F分别是棱PC,AC的中点. (1)求证:PA∥平面BEF. (2)若平面PAB⊥平面ABC,PB⊥BC,求证:BC⊥PA. 【解题指南】(1)根据三角形中位线的性质,可得EF∥PA,再利用线面平行的判定定理,可证PA∥平面BEF. (2)作PO⊥AB,垂足为O,根据平面PAB⊥平面ABC,可得PO⊥平面ABC,所以PO⊥BC,利用PB⊥BC,可得BC⊥平面PAB,从而可得结论. 【证明】(1)因为点E,F分别是棱PC,AC 的中点,所以EF∥PA,因为PA⊈平面BEF,EF 平面BEF,所以PA∥平面BEF. (2)作PO⊥AB,垂足为O,因为平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,所以PO⊥平面ABC,所以PO⊥BC,因为PB⊥BC,PO∩PB=P,所以BC⊥平面PAB,因为PA 平面PAB,所以BC⊥PA. 【变式训练】如图,已知点P为平面ABC外一点,PA⊥BC,PC⊥AB,求证:PB⊥AC. 【证明】过P作PO⊥平面ABC于O,连接OA,OB,OC.因为BC 平面ABC,所以PO⊥BC. 又因为PA⊥BC,PA∩PO=P,所以BC⊥平面PAO. 又因为OA 平面PAO,所以BC⊥OA. 同理,可证AB⊥OC. 所以O是△ABC的垂心.所以OB⊥AC. 又因为PO⊥AC,OB∩PO=O,所以AC⊥平面PBO. 又PB 平面PBO,所以PB⊥AC. 8.(2014•山东高考)如图,四棱锥P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC= AD,E,F 分别为线段AD,PC的中点. (1)求证:AP∥平面BEF. (2)求证:BE⊥平面PAC. 【解题指南】(1)本题考查线面平行的证法,可利用线线平行来证明线面平行. (2)本题考查了线面垂直的判定,在平面PAC中找两条相交直线与BE垂直即可. 【证明】(1)连接AC交BE于点O,连接OF,不妨设AB=BC=1,则AD=2,又因为E为AD的中点,所以AE=1,所以AE=BC,因为AB=BC,AD∥BC,所以四边形ABCE为菱形,因为O,F分别为AC,PC的中点,所以OF∥AP,又因为OF 平面BEF,AP⊈平面BEF,所以AP∥平面BEF. (2)因为AP⊥平面PCD,CD 平面PCD,所以AP⊥CD,因为BC∥ED,BC=ED,所以四边形BCDE为平行四边形,所以BE∥CD,所以BE⊥PA,又因为四边形ABCE为菱形,所以BE⊥AC,又因为PA∩AC=A,PA,AC 平面PAC,所以BE⊥平面PAC. 【变式训练】在△ABC中,∠BAC=60°,P是△ABC所在平面外一点,PA=PB=PC,∠APB=∠APC=90°. (1)求证:PB⊥面PAC. (2)若H是△ABC的重心,求证:PH⊥面ABC. 【证明】(1)如图,由题设易得AB=AC,因为∠BAC=60°,所以△ABC为等边三角形,所以AB=BC. 因为PA=PB=PC,所以△PAB≌△PBC,所以∠BPC=∠APB=90°,即PB⊥PC. 又PB⊥PA,PA∩PC=P,所以PB⊥面PAC. (2)取BC中点D,因为PB=PC,所以PD⊥BC. 同理可得AD⊥BC,所以BC⊥面PAD. 因为AD是△ABC的边BC上的中线,所以△ABC的重心H在AD上,所以BC⊥PH,同理可得AB⊥PH. 又AB∩BC=B,所以PH⊥面ABC.。
2 第五讲 线面、面面垂直的判定与性质常见题型与方法归纳考点一 直线与平面垂直的判定与性质一.直线与平面垂直定义1.(1)定义:如果直线l 与平面α内的任意一条直线都垂直,则直线l 与平面α垂直;(2)判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;2.直线、平面垂直的判定方法:(1)利用判定定理;(2)如果两条平行直线的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面.(3)如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.(4)利用面面垂直的性质。
二.直线与平面垂直判定题型讲解题型一 概念巩固【例1-1】设,是两条不同的直线,是一个平面,则下列命题正确的是( )(A )若,,则 (B )若,,则(C )若,,则 (D )若,,则题型二 线面垂直的判定【例1-2】如图,P 为△ABC 所在平面外一点,P A ⊥平面ABC ,∠ABC =90°,AE ⊥PB 于E ,AF ⊥PC 于F .求证: (1)BC ⊥平面P AB ;(2)AE ⊥平面PBC ;(3)PC ⊥平面AEF .图1-2 图1-3 图1-3【例1-3】如图,在△ABC 中,∠ABC =90°,D 是AC 的中点,S 是△ABC 所在平面外一点,且SA =SB =SC .(1)求证:SD ⊥平面ABC ;(2)若AB =BC ,求证:BD ⊥平面SAC .【例1-4】如图,在棱长均为1的直三棱柱ABC -A 1B 1C 1中,D 是BC 的中点.(1) 求证:AD ⊥平面BCC 1B 1;(2)求直线AC 1与平面BCC 1B 1所成角的正弦值.三 直线与平面垂直的性质 性质:垂直于同一个平面的两条直线互相平行。
题型一 利用线面垂直的性质证明平行问题【总结】当题中垂直条件很多,但又需证两直线平行关系时,考虑线面垂直的性质定理【例1-5】如图,正方体A 1B 1C 1D 1-ABCD 中,EF 与异面直线AC 、A 1D 都垂直相交.求证:EF ∥BD 1.图1-5 练习1【练习1】如图,已知平面α∩平面β=l ,EA ⊥α,垂足为A ,EB ⊥β,B 为垂足,直线a ⊂β,a ⊥AB .求证:a ∥l .题型二 利用线面垂直的性质证明垂直问题 方法: 线面垂直性质判定线线垂直.【例1-6】已知α∩β=AB ,PQ ⊥α于Q ,PO ⊥β于O ,OR ⊥α于R .求证:QR ⊥AB .l m αl m ⊥m α⊂l α⊥l α⊥l m //m α⊥l α//m α⊂l m //l α//m α//l m //2题型三 等体积法在垂直中的应用【例1-7】如图,三棱柱ABC -A 1B 1C 1中,已知AB ⊥侧面BB 1C 1C ,AB =BC =1,BB 1=2,∠BCC 1=60°.(1)求证:BC 1⊥平面ABC ;(2)E 是棱CC 1上的一点,若三棱锥E -ABC 的体积为312,求线段CE 的长. 1-7图考点二.直线和平面所成的角一.直线和平面所成的角概念(1)斜线在平面上的射影 (2)直线与平面所成角范围 02πθ≤≤方法:关键是求斜线在平面内的射影,最终转化为找面的垂线二 典型例题题型(一)概念理解【例2-1】(1)两条平行直线在平面内的射影可能是①两条平行线;②两条相交直线;③一条直线;④两个点. 上述四个结论中,可能成立的个数是( )(A )1个 (B )2个 (C )3个 (D )4个(2)从平面外一点P 引与平面相交的直线,使P 点与交点的距离等于1,则满足条件的直线条数不可能是( )(A )0条或 (B )0条或无数条(C )1条或2条 (D )0条或1条或无数条(3)若P 为⊿ABC 所在平面外一点,且PA =PB =PC ,求证P 在⊿ABC 所在平面内的射影是⊿ABC 的 心题型(二) 求直线和平面所成的角 方法一:利用定义。
8.6空间直线、平面的垂直(1)(精讲)思维导图常见考法考法一线面垂直【例1】(2021·江西景德镇市·景德镇一中)在四棱锥P ABCD -中,90ABC ACD ∠=∠= ,60BAC CAD ∠=∠= ,PA ⊥平面ABCD ,E 为PD 的中点,M 为AD 的中点,24PA AB ==.(1)取PC 中点F ,证明:PC ⊥平面AEF ;(2)求点D 到平面ACE 的距离.【答案】(1)证明见解析;(2)【解析】(1)证明:因为PC 中点F ,在Rt ABC 中,2,60AB BAC =∠= ,则4BC AC ==.而4PA =,则在等腰三角形APC 中,PC AF ⊥①.又在PCD 中,,PE ED PF FC ==,则//EF CD ,因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,则PA CD ⊥,又90ACD ∠= ,即AC CD ⊥,AC PA A ⋂=,则CD ⊥平面PAC ,因为PC ⊂平面PAC ,所以PC CD ⊥,因此EF PC ⊥②.又EF AF F = ,由①②知PC ⊥平面AEF ;(2)在Rt ACD △中,4CD AC ==,ACD S ∴= ,又//EM PA ,PA ⊥平面ABCD ,EM ∴⊥平面ABCD ,即EM 为三棱锥E ACD -的高,111632333E ACD ACD V S EM -∴=⋅=⋅= ,在ACE △中,4AE CE AC ===,8ACE S ∴= ,设点D 到平面ACE 的距离为h ,则133D ACE E ACD ACE V V S h --==⋅⋅= ,h ∴=,即点D 到平面ACE 的距离为【一隅三反】1.(2021·陕西省黄陵县中学高一期末)如图所示,AB 为O 的直径,C 为O 上一点,AD ⊥平面ABC ,AE BD ⊥于E ,AF CD ⊥于F .求证:BD ⊥平面AEF .【答案】证明见解析【解析】证明:AB 为⊙O 的直径,C 为⊙O 上点,所以BC AC⊥因为DA ⊥平面ABC ,BC ⊂平面ABC ,所以DA BC⊥又DA AC A = ,所以BC ⊥面DAC又AF ⊂平面DAC ,则BC AF⊥又AF DC ⊥,DC BC C =I ,所以AF ⊥平面BCD又BD ⊂平面BCD ,所以AF BD⊥又因为AE BD ⊥,AE AF A⋂=所以BD ⊥平面AEF2.(2021·宁夏银川市·银川一中高一期末)如图,在三棱锥P ABC -中,PA ⊥平面ABC ,底面ABC 是直角三角形,4PA AB BC ===,O 是棱AC 的中点,G 是AOB ∆的重心,D 是PA 的中点.(1)求证:BC ⊥平面PAB ;(2)求证:DG//平面PBC ;【答案】(1)证明见解析;(2)证明见解析.【解析】(1)证明:PA ⊥ 平面ABC ,且BC ⊂平面ABC ,∴PA BC ⊥,底面ABC 是直角三角形且AB BC =,AB BC ∴⊥,又PA ⊂平面PAB ,AB Ì平面PAB ,PA AB A = ,∴BC ⊥平面PAB .(2)证明:连结OG 并延长交AB 于点E ,连结DO ,DE ,G 是AOB ∆的重心,∴OE 为AB 边上的中线,∴E 为AB 边上的中点,又有D 为PA 边上的中点,∴//DE PB ,PB ⊂平面PBC ,//DE ∴平面PBC ,同理可得//DO 平面PBC ,又DE ⊂ 平面DOE ,DO ⊂平面DOE ,DE DO D ⋂=,∴平面DOE //平面PBC ,又有DG ⊂平面DOE ,DG //∴平面PBC3.(2021·陕西咸阳市·高一期末)将棱长为2的正方体1111ABCD A B C D -沿平面11A BCD 截去一半(如图1所示)得到如图2所示的几何体,点E ,F 分别是BC ,DC 的中点.(Ⅰ)证明:EF ⊥平面1A AC ;(Ⅱ)求三棱锥1A D EF -的体积.【答案】(Ⅰ)证明见解析;(Ⅱ)1.【解析】(Ⅰ)如图所示:连接BD ,易知BD AC ⊥,因为1A A ⊥平面ABCD ,BD ⊂平面ABCD ,所以1A A BD ⊥,又1A A AC A =I ,所以BD ⊥平面1A AC .在CBD 中,点E ,F 分别是BC ,DC 的中点,所以//BD EF .所以EF ⊥平面1A AC .(Ⅱ)∵1D D ⊥平面ABCD ,∴1D D 是三棱锥1D AEF -在平面AEF 上的高,且12D D =.∵点E ,F 分别是BC ,DC 的中点,∴1DF CF CE BE ====.∴2111322222AEF S AD DF CF CE AB BE =-⋅⋅-⋅⋅-⋅⋅=△.∴11111321332A D EF D AEF AEF V V S D D --==⋅⋅=⨯⨯=△.考法二线线垂直【例2】(2020·全国专题练习)如图,在三棱柱111ABC A B C -中,侧面11ABB A 为矩形,11,2AB AA ==,D 是1AA 的中点,BD 与1AB 交于点O ,且CO ⊥平面11ABB A (1)证明:1BC AB ⊥;(2)若2OC OA =,求三棱柱111ABC A B C -的高.【答案】(1)证明见解析;(2)62.【解析】(1)证明:由题意2216, 3.2BD AB AD AB =+==且1AOD B OB ∆∆ ,111.2AO DO AD OB OB BB ∴===163,363OD BD AO ===222AO OD AD +=,所以1AB BD ⊥,又CO ⊥侧面11ABB A ,1AB CO ∴⊥,又BD 与CO 交于点O ,所以,1AB ⊥平面CBD又因为BC ⊂平面CBD ,所以1BC AB ⊥.(2)在矩形11ABB A 中,由平面几何知识可知36,33OA OB ==∵2OC OA =,∴63OC =,∴2321,,33ABC AC BC S ∆===设三棱柱111ABC A B C 的高为h ,即三棱锥1A ABC -的高为h 又122ABA S ∆=,由11C ABA A ABC V V --=得1··ABC ABA S h S OC ∆∆=,∴62h =【一隅三反】1.(2021·西安市航天城第一中学高一期末)如图,在三棱柱ABC A B C '''-中,侧棱CC '⊥底面ABC ,AB AC =,,,D E F 分别为棱,,AA BB BC ''的中点.(1)求证:BC AF '⊥;(2)若2,22,AB BC CC ==='求三棱锥D AEF -的体积.【答案】(1)见解析;(2)23.【解析】(1)因为侧棱CC '⊥底面ABC ,AF ⊂平面ABC ,所以CC AF '⊥,因为F 为中点,AB AC =,故BC AF ⊥,而CC BC C '⋂=,故AF ⊥平面BCC ',而BC '⊂平面BCC ',故BC AF '⊥.(2)取AB 的中点为G ,连接FG .因为2,AB AC BC ===,故222BC AC AB =+,故AC AB ⊥,因为,CF FB AG GB ==,故//FG AC ,且1FG =,故FG AB ⊥,因为三棱柱ABC A B C '''-中,侧棱CC '⊥底面ABC ,故三棱柱ABC A B C '''-为直棱柱,故BB '⊥底面ABC ,因为FG ⊂底面ABC ,故BB FG '⊥,而BB AB B '⋂=,故FG ⊥平面ADE ,而111244ADE S AD AB AA AB CC AB ='⨯⨯=⨯⨯=⨯'⨯= ,故12133A DEF F ADE V V --===.2.(2021·广西河池市·高一期末)如图,在三棱柱111ABC A B C -中,11ACC BCC ∠=∠,AC BC =.(1)若三棱柱111ABC A B C -的体积为1,求三棱锥1C ABC -的体积;(2)证明:1AB CC ⊥.【答案】(1)13;(2)证明见解析.【解析】(1)设三棱柱111ABC A B C -的高为h ,ABC 的面积为S ,由三棱柱111ABC A B C -的体积为1,可得1111ABC A B C V Sh -==,可得三棱锥1C ABC -的体积为1133Sh =.(2)如图所示:取AB 的中点D ,连CD ,1C D ,∵1111AC BC CC CC ACC BCC =⎧⎪=⎨⎪∠=∠⎩,∴11ACC BCC ≌,∴11AC BC =,∵AD DB =,11AC BC =,∴1AB C D⊥∵AD DB =,AC BC =,∴AB CD ⊥,∵1AB C D ⊥,AB CD ⊥,1,CD C D ⊂平面1CDC ,1CD C D D ⋂=,∴AB ⊥平面1CDC ∵AB ⊥平面1CDC ,1CC ⊂平面1CC D ,∴1AB CC ⊥.3.(2021·扶风县法门高中高一期末)如图,三棱锥V—ABC 中,VA=VB =AC=BC=2,AB =VC=1.(1)证明:AB ⊥VC ;(2)求三棱锥V—ABC 的体积.【答案】(1)证明见解析;(2)12.【解析】(1)证明:取AB 的中点为D ,连接VD ,CD,∵VA=VB ,ABV ∴ 是等腰三角形,∴AB ⊥VD ,AC BC = ,ABC ∴ 是等腰三角形,AB ⊥CD ,VD CD D = ,所以AB ⊥平面VDC .又VC ⊂平面VDC ,故AB ⊥VC .(2)由(1)知AB ⊥平面VDC ,12AD AB ==,2VA =,所以1VD ==,2AC =,1CD ==,又VC=1,所以VDC 是等边三角形,所以11sin 601122VDC S DC =⨯⨯=⨯⨯= ,故三棱锥V—ABC 的体积等于11313342VDC S AB =⨯⨯= .考法三面面垂直【例3】(2021·江西景德镇市·景德镇一中高一期末)如图,四棱锥P ABCD -中,底面ABCD 是正方形,PD ⊥平面ABCD ,2AB PD ==,,O 为AC 与BD 的交点,E 为棱PB 上一点.(1)证明:平面EAC ⊥平面PBD ;(2)若//PD 平面EAC ,求三棱锥B AEC -的体积.【答案】(1)证明见解析;(2)3.【解析】(1)因为四边形ABCD 为正方形,则AC BD ⊥,PD ⊥ 底面ABCD ,AC ⊂平面ABCD ,AC PD ∴⊥,PD BD D ⋂= ,AC ∴⊥平面PBD ,AC ⊂ 平面EAC ,∴平面EAC ⊥平面PBD ;(2)如下图所示,连接OE ,四边形ABCD 为正方形,且AC BD O = ,则O 为BD 的中点,因为//PD 平面AEC ,PD ⊂平面PBD ,平面PBD 平面AEC OE =,//OE PD ∴,O 为BD 的中点,E ∴为PB 的中点,PD ⊥ 平面ABCD ,OE ∴⊥平面ABCD ,且162OE PD ==,ABC 的面积为21222ABC S =⨯=△,所以,112626333B AEC E ABC ABC V V S OE --==⋅=⨯=△.【一隅三反】1.(2021·陕西宝鸡市·高一期末)如图,在三棱锥P ABC -中,⊥PA AB ,PA BC ⊥,AB BC ⊥,2PA AB BC ===,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:平面BDE ⊥平面PAC ;(2)当//PA 面BDE 时,求三棱锥E BCD -的体积.【答案】(1)证明见解析;(2)13.【解析】(1)证明:由AB BC =,D 为线段AC 的中点,可得BD AC ⊥,由PA AB ⊥,PA BC ⊥,AB BC B ⋂=,可得PA ⊥平面ABC ,又BD ⊂平面ABC ,可得 PA BD ⊥,又PA AC A= 所以BD ⊥平面PAC ,BD ⊂平面BDE ,所以平面BDE ⊥平面PAC ;(2)解://PA 平面BDE ,PA ⊂平面PAC ,且平面PAC 平面BDE DE =,可得//PA DE ,又D 为AC 的中点,可得E 为PC 的中点,且112DE PA ==,由PA ⊥平面ABC ,可得DE ⊥平面ABC ,可得111221222BDC ABC S S ==⨯⨯⨯= ,则三棱锥E BCD -的体积V=11111333BDC DE S ⋅=⨯⨯= .2.(2021·全国高一课时练习)在四棱锥P ABCD -中,底面ABCD 为矩形,AP ⊥平面PCD ,E ,F 分别为PC ,AB 的中点求证:(1)平面PAD ⊥平面ABCD ;(2)//EF 平面PAD【答案】(1)证明见解析;(2)证明见解析.【解析】证明:(1)∵AP ⊥平面PCD ,CD ⊂平面PCD∴AP CD⊥∵ABCD 为矩形,∴AD CD⊥又:AP AD A ⋂=,AP ⊂平面PAD ,AD ⊂平面PAD∴CD ⊥平面PAD∵CD ⊂平面ABCD∴平面PAD ⊥平面ABCD(2)连接AC ,BD 交于点O ,连接OE ,OF ,∵ABCD 为矩形,∴O 点为AC 中点∵E 为PC 中点∴//OE PA∵OE ⊄平面PAD ,PA ⊂平面PAD∴//OE 平面PAD同理可得://OF 平面PAD∵OE OF O⋂=∴平面//OEF 平面PAD∵EF ⊂平面OEF∴//EF 平面PAD3.(2021·全国高一课时练习)如图所示,已知在三棱锥A BPC -中,,AP PC AC BC ⊥⊥,M 为AB 的中点,D 为PB 的中点,且PMB △为正三角形.(Ⅰ)求证://DM 平面APC ;(Ⅱ)求证:平面ABC ⊥平面APC ;(Ⅲ)若4,20BC AB ==,求三棱锥D BCM -的体积.【答案】(1)见详解;(2)见详解;(3)107【解析】证明:因为M 为AB 的中点,D 为PB 的中点,所以MD 是ABP △的中位线,MD AP P .又MD Ë平面APC ,AP ⊂平面APC ,所以MD P 平面APC .(2)证明:因为PMB △为正三角形,D 为PB 的中点,所以MD PB ⊥.又MD AP P ,所以AP PB ⊥.又因为AP PC ⊥,PB PC P =,所以AP ⊥平面PBC .因为BC ⊂平面PBC ,所以⊥AP BC .又因为BC AC ⊥,AC AP A ⋂=,所以BC ⊥平面APC .(3)因为AP ⊥平面PBC ,MD AP P ,所以MD ⊥平面PBC ,即MD 是三棱锥M DBC -的高.因为20AB =,M 为AB 的中点,PMB △为正三角形,所以310,2PB MB MD MB ====由BC ⊥平面APC ,可得BC PC ⊥,在直角三角形PCB 中,由104PB BC =,=,可得PC =.于是1114222BCD BCP S S ⨯⨯⨯=△△==.1133D BCM M DBC BCD V V S MD --⨯=g △===考法四空间距离【例4】(2020·全国专题练习)在棱长为a 的正方体1111ABCD A B C D -中求出下列距离:(1)点A 到面11BB C C 的距离;(2)线段11B D 到面ABCD 的距离;(3)点A 到面11BB D D 的距离;(4)C 到平面1BDC 的距离.【答案】(1)a ;(2)a ;(3)2a ;(4)3a .【解析】(1)因为正方体1111ABCD A B C D -,则AB ⊥平面11BB C C ,所以点A 到面11BB C C 的距离为边长AB a =;(2)因为11B D ∥平面ABCD ,且1B B ⊥平面ABCD ,所以线段11B D 到面ABCD 的距离为1B B a =;(3)因为AC ⊥平面11BB D D ,所以点A 到面11BB D D 的距离为面对角线的AC 的12,即2a ;(4)设C 到平面1BDC 的距离为h ,三棱锥1C BDC -的体积为V ,在1BDC ∆中,11BD DC BC ===,则1BDC ∆的面积为22)42a =,利用等体积法可得:211133232V a a a a h =⨯⨯⨯⨯=⨯⨯,所以33h a =【一隅三反】1.(2020·北京二十中高一期末)如图,正四棱锥P ABCD -的高为2,且底面边长也为2,则点A 到平面PBC 的距离为()A.5B.5C.4D.2【答案】A【解析】由正四棱锥的性质可知,其底面ABCD 为正方形,连接AC 、BD ,设交点为点O ,连接PO ,则PO ⊥平面ABCD ,且2PO =,底面对角线的长度为BD =22222+=,侧棱长度为PB =()22226+=22(6)15PM =-=,1114·2223323P ABC ABC V S PO -==⨯⨯⨯⨯= ,1125522PBC S BC PM =⋅=⨯= ,设点A 到平面PBC 的距离为h ,由A PBC P ABC V V --=,即14533h =,解得55h =.故选:A.2.(2020·全国)已知正四棱柱ABCD-A 1B 1C 1D 1中,AB=2,CC 1=22E 为CC 1的中点,则直线AC 1与平面BED 的距离为A.2B.32D.1【答案】D【解析】因为线面平行,所求求线面距可以转化为求点到面的距离,选用等体积法.1//AC 平面BDE ,1AC ∴到平面BDE 的距离等于A 到平面BDE 的距离,由题计算得111112222232323E ABD ABD V S CC -=⨯=⨯⨯⨯=,在BDE 中,()22226,2BE DE BD ==+=,BD 边上的高()()22622=-=,所以12222BDE S =⨯= 112233A BDE BDE V S h h -==⨯ ,利用等体积法A BDE E ABD V V --=,得:1222233h ⨯=,解得:1h =3.(2020·全国高一课时练习)已知1111ABCD A B C D -是长方体,且4AB =,3AD =,12AA =.(1)写出点A 到平面11BCC B 的距离;(2)写出直线AB 到平面1111D C B A 的距离;(3)写出平面11ADD A 与平面11BCC B 之间的距离.【答案】(1)4(2)2(3)4【解析】如图.(1)点A 到平面11BCC B 的距离14h AB ==;(2)∵AB ‖平面1111D C B A ,∴AB 到平面1111D C B A 的距离212h AA ==;(3)∵平面11ADD A ∥平面11BCC B ,∴平面11ADD A 与平面11BCC B 之间的距离34h AB ==.。
直线与平面垂直的典型例题
例1 判断题:正确的在括号内打“√”号,不正确的打“×”号.
(1)一条直线和一个平面平行,它就和这个平面内的任何直线平行.( )
(2)如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直.( )
(3)垂直于三角形两边的直线必垂直于第三边.( )
(4)过点A垂直于直线a的所有直线都在过点A垂直于的平面内.( )
(5)如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平
面.( )
例2 在正方体1111DCBAABCD中,E是1BB的中点,O是底面正方形ABCD的中
心,求证:OE平面1ACD
例3 如图,在△ABC中,90B,SA平面ABC,点A在SB和SC上的射影
分别为NM、,求证:SCMN
例4如图,AB为平面的斜线,B为斜足,AH垂直平面于H点,BC为平面
内的直线,ABH,HBC,ABC,求证:coscoscos
例5如图,已知正方形ABCD边长为4,CG平面ABCD,2CG,FE、分别
是ADAB、中点,求点B到平面GEF的距离
例6 如图所示,直角ABC所在平面外一点S,且SCSBSA.
(1)求证:点S与斜边AC中点D的连线SD面ABC;
(2)若直角边BCBA,求证:BD面SAC.
例7如图所示,90BAC.在平面内,PA是的斜线,
60PACPAB
.求PA与平面所成的角.
例8如图,ABCD是正方形,SA垂直于平面ABCD,过A且垂直于SC的平面交SB、
SC、SD分别于点E、F、G,求证:SBAE,SDAG
.
例9 如图,求证:如果一个角所在平面外一点到角的两边距离相等,那么这一点在平
面内的射影在这个角的平分线上.
例10 如图,已知空间四边形ABCD的边ACBC,BDAD,引CDBE,
E
为垂足,作BEAH于H,求证:BCDAH平面.
例11 如图,已知在ABC中,60BAC,线段ABCAD平面,
DBCAH平面
,H为垂足.
求证:H不可能是DBC的垂心.
例12 如图,在正方体1111DCBAABCD中,EF为异面直线DA1与AC的公垂线,
求证:1//BDEF.
精心搜集整理,只为你的需要