发电机励磁之灭磁系统简介
- 格式:ppt
- 大小:1000.50 KB
- 文档页数:28
灭磁工作原理当发电机组的内部或发电机出口端发生故障以及正常停机时都要快速切断励磁电源,由于发电机转子绕组是个储能的大电感,因此励磁电流突变势必在转子绕组两端引起相当大的暂态过电压,造成转子绝缘击穿,所以必须尽快将转子电感中的磁能快速消耗,这就是通常所说的灭磁。
通常使用的灭磁方法有:线性电阻灭磁、灭磁开关灭磁、逆变灭磁和非线性电阻灭磁。
本公司采用氧化锌非线性电阻灭磁方式利用其特殊的伏安特性,达到近似恒压灭磁的效果。
灭磁的原理如图1所示,其中i转子中的电流、FR1为氧化锌非线性电阻、FMK为灭磁开关、Uo为励磁电压、LP为整流电源、Uk为灭磁开关弧压、U R为氧化锌非线性电阻残压。
若要使转子电流衰减至零,必须在转子两端加一个与其励磁电源电势相反的电势U,灭磁方程式为Ldi/dt+U=O。
可见电感中电流衰减率正比于反向电势U,反向电势越大,灭磁时间越短。
但反向电势受转子绝缘水平限,限不能超过转子绝缘允许值因此最理想的灭磁方式是灭磁电压保持恒定,电流保持一个固定的变化率(di/dt=-U/L)按直线规律衰减至零。
由于氧化锌非线性电阻残压U R变化很小,灭磁时近似于恒压,即U R=U。
发电机正常运行时转子电压低,氧化锌非线性电阻呈高阻态,漏电流仅为微安级。
灭磁时,灭磁开关FMK跳开,切开励磁电源,在满足Uk≥Uo+U R时,电流被迫入灭磁过电压保护器中,转子绕组中所储能量被氧化锌非线性电阻消耗,且氧化锌良好的伏安特性保证了这部分能量几乎以恒压的形式消耗,确保了发电机组的安全。
图1发电机转子灭磁及过电压保护装置采用多组氧化锌非线性电阻并联跨接于转子绕组两端,由于氧化锌非线性电阻FR1、线性电阻R1、快速熔断器RD、二极管D1组成(见图2)。
其核心部件FR1具有限制反向过电压和吸收磁能的作用;各支路中都有特制熔断器RD,熔断器的熔断时间小于2ms并且熔丝电压足够高,当部分支路必生故障,其相应熔断器快速熔断,产生的电压将故障支路的短路电流迅速迫入其他支路,故障支路被切除。
发电机的励磁系统介绍8页发电部培训专题(发电机的励磁系统)(因为目前我公司的励磁系统的资料还没有到,该培训资料还是不全面的,其间还有许多不足之处希望大家批评指正)我厂励磁系统采用的是机端自并励静止励磁系统,全套引入ABB公司型号为UNITROL5000励磁系统。
发电机励磁系统能够满足不超过额定励磁电压和额定励磁电流1.1倍情况下的连续运行。
励磁系统具有短时间过负荷能力,励磁强励倍数为2倍,允许强励时间为20秒,励磁系统强励动作值为0.8倍的机端电压值。
我厂励磁系统可控硅整流器设置有备用容量,功率整流装置并联支路为5路。
当一路退出运行后还可以满足强励及额定励磁电压和额定励磁电流1.1倍情况下的连续运行工况;当两路退出运行时还可以满足额定励磁电压和额定励磁电流1.1倍情况下的连续运行工况,但闭锁强励功能。
5路整流装置均设有均流装置,均流系数不低于95%。
整流柜冷却风机有100%的额定容量,其通风装置有两路电源供电并可以自动进行切换。
任意一台整流柜或风机有故障时,都会发生报警。
每一路整流装置都设有快速熔断器保护。
我厂励磁系统主要包括:励磁变、励磁调节器、可控硅整流器、起励和灭磁单元几个部分。
如图所示:我厂励磁变采用三相油浸式变压器,其容量为7500KVA,变比为,接线形式为△/Y5形式,高压侧每相有3组CT ,其中两组分别提供给发变组保护A、C柜,另一组为测量用。
低压侧设有三组CT其中两组分别提供给发变组保护A、C柜,另一组为备用。
高压侧绝缘等级是按照35KV设计的,它设有静态屏蔽装置。
我厂励磁调节器采用的是数字微机型,具有微调节和提高暂态稳定的特性。
励磁调节器设有过励限制、过励保护、低励限制、电力系统稳定器、过激磁限制、过激磁保护、转子过电压和PT断线保护单元。
自动调节器有两个完全相同而且独立的通道,每个通道设有独立的CT、PT稳压电源元件。
两个通道可实现自动跟踪和无扰动切换。
单通道可以完全满足发电机各种工况运行。
发电机灭磁发电机灭磁就是消灭发电机转子内部储存的能量的过程,它的主要目的是加快正常的停机速度,特别地,当降低因为发电机故障时可能导致的损坏,把故障造成的损失减小到最小程度。
发电机的正常灭磁都应该采用逆变灭磁,只有事故时保护动作才启动跳灭磁开关等灭磁方式,甚至在许多大的机组的灭磁设计中,当发电机机组故障仍然首先采用逆变灭磁,然后再启动跳开关灭磁的灭磁时序[]。
1灭磁方式的发展过程1.1 串联耗能灭磁灭磁最初就是直接利用耗能开关吸收发电机转子中储存的能量。
比如俄罗斯生产的耗能开关利用弧间隔燃烧来耗能。
但是这种方式存在如下缺点:a. 体积大b. 不易维护c. 灭磁成功与否取决于弧的形成d. 容易引起事故e. 产品根据发电机机组容量需要特殊订制,不易规模化,系列化由于这些缺点的存在,采用耗能开关的灭磁方式逐渐被并联移能灭磁方式代替。
1.2 机械开关并联移能灭磁机械开关串联于励磁主回路、灭磁耗能电阻并联在转子两端是这类灭磁的接线方式。
如图4-1所示:图4-1 机械开关并联灭磁ANSI/IEEEC37.18-1979标准规定,一般机械开关需要有至少一对主触头(MK1)、一对灭磁常闭触头(MK2)。
20年来,随着国内ZnO电阻耗能在灭磁系统中的应用,灭磁触头也并非必要了。
但值得注意的是,在不采用灭磁触头的灭磁系统中,需认真核算ZnO的灭磁残压与荷电率。
这类灭磁方式在国内是主要的灭磁方式。
主回路有明显的开断触头,在励磁系统内部故障时,可以开断励磁主回路,切断故障源,快速地消灭发电机主磁场,将发电机损失控制在最小范围内。
目前使用的机械开关主要有DM2、DM4、DMX、E3H、E4H、UR、PHB、MM74、CEX等。
这类灭磁方式的主要问题是灭磁开关选型比较困难。
小机组选大的开关,成本比较高;选小开关满足不了工况要求;大型尤其是巨型水力发电机机组开关选择更为困难。
1.3 电子开关并联移能灭磁前些年,国内一些厂家将灭磁开关建压任务转移到电力电子器件上来。