人教版九年级数学 垂直于弦的直径
- 格式:ppt
- 大小:1.66 MB
- 文档页数:26
人教版数学九年级上册24.1.2《垂直于弦的直径》教学设计一. 教材分析人教版数学九年级上册24.1.2《垂直于弦的直径》是圆的一部分性质的教学内容。
本节课主要让学生了解并掌握垂直于弦的直径的性质,能灵活运用这一性质解决相关问题。
教材通过实例引导学生探究,培养学生的观察、思考和动手能力,为后续圆的弦和圆弧的学习打下基础。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和定理有一定的理解。
但垂直于弦的直径这一性质较为抽象,学生可能难以理解。
因此,在教学过程中,要注重引导学生通过观察、操作、思考、讨论等方式,逐步掌握性质,提高学生的空间想象和逻辑思维能力。
三. 教学目标1.了解垂直于弦的直径的性质,能证明并运用这一性质解决相关问题。
2.培养学生的观察、思考、动手和合作能力。
3.提高学生对圆的一部分性质的兴趣,为后续圆的学习打下基础。
四. 教学重难点1.垂直于弦的直径的性质及其证明。
2.灵活运用垂直于弦的直径的性质解决实际问题。
五. 教学方法1.情境教学法:通过实例引导学生观察、思考,激发学生的学习兴趣。
2.问题驱动法:提出问题,引导学生探究,培养学生的解决问题能力。
3.合作学习法:分组讨论,共同完成任务,提高学生的团队协作能力。
4.实践操作法:让学生动手操作,加深对性质的理解。
六. 教学准备1.教学课件:制作课件,展示实例和动画,辅助教学。
2.教学素材:准备相关的几何图形,便于学生观察和操作。
3.教学设备:投影仪、计算机、黑板、粉笔等。
七. 教学过程1.导入(5分钟)利用实例引入课题,展示垂直于弦的直径的性质,激发学生的兴趣。
2.呈现(10分钟)展示垂直于弦的直径的性质,引导学生观察、思考,并提出问题。
3.操练(10分钟)分组讨论,让学生动手操作,证明垂直于弦的直径的性质。
4.巩固(10分钟)出示练习题,让学生独立解答,巩固所学知识。
5.拓展(10分钟)出示一些实际问题,让学生运用垂直于弦的直径的性质解决,提高学生的应用能力。
人教版数学九年级上册《24.1.2垂直于弦的直径》教学设计一. 教材分析《24.1.2垂直于弦的直径》是人教版数学九年级上册第24章《圆》的第二个知识点。
本节课主要学习了圆中一条特殊的直径——垂直于弦的直径,并探究了它的性质。
教材通过实例引导学生发现垂直于弦的直径的性质,并运用这一性质解决一些与圆有关的问题。
二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念、圆的周长和面积计算、圆的性质等知识。
他们具备了一定的观察、分析和解决问题的能力。
但对于垂直于弦的直径的性质及其应用,可能还比较陌生。
因此,在教学过程中,需要注重引导学生发现和总结垂直于弦的直径的性质,并通过实例让学生体会其在解决实际问题中的应用。
三. 教学目标1.理解垂直于弦的直径的性质。
2.学会运用垂直于弦的直径的性质解决与圆有关的问题。
3.培养学生的观察能力、分析能力和解决问题的能力。
四. 教学重难点1.垂直于弦的直径的性质。
2.运用垂直于弦的直径的性质解决实际问题。
五. 教学方法1.引导发现法:通过实例引导学生发现垂直于弦的直径的性质。
2.实践操作法:让学生动手画图,加深对垂直于弦的直径性质的理解。
3.问题驱动法:设置问题,引导学生运用垂直于弦的直径的性质解决问题。
六. 教学准备1.课件:制作课件,展示相关实例和问题。
2.练习题:准备一些与垂直于弦的直径性质有关的练习题。
3.圆规、直尺等画图工具:为学生提供画图所需的工具。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题:在一个圆形池塘中,怎样找到一个点,使得从该点到池塘边缘的距离最远?引导学生思考,并提出解决问题的方法。
2.呈现(10分钟)展示几个与垂直于弦的直径性质相关的实例,引导学生观察和分析这些实例,发现垂直于弦的直径的性质。
3.操练(10分钟)让学生动手画图,验证垂直于弦的直径的性质。
在这个过程中,引导学生运用圆规、直尺等画图工具,提高他们的动手能力。
24.1.2垂直于弦的直径●情景导入课件出示关于赵州桥的引例引例:你知道赵州桥吗?它是我国隋代建造的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧形,它的跨度(弧所对的弦长)为37 m,拱高(弧的中点到弦的距离)为7.23 m,现在有个人想要知道它主桥拱的半径是多少.同学们,你们能帮他求出来吗?学完了本节课的内容,我们一起来解决这个问题.【教学与建议】教学:通过赵州桥引例,导入圆的轴对称性及垂径定理.建议:学生提前收集有关圆的对称图形.●归纳导入(1)操作1:拿出准备的圆,沿着圆的直径折叠圆,你有什么发现?【归纳】圆是__轴对称__图形,__任何一条直径所在直线__都是圆的对称轴.(2)操作2:将这个圆二等分、四等分、八等分.(3)操作3:按下面的步骤做一做:第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两部分重合;第二步,展开,得到一条折痕CD;第三步,在⊙O上任取一点A,过点A作折痕CD的垂线,沿垂线将纸片折叠;第四步,将纸打开,得到新的折痕,其中点M是两条折痕的交点,即垂足,新的折痕与圆交于另一点B,如图.在上述的操作过程中,你发现了哪些相等的线段和相等的弧?【归纳】垂直于弦的直径平分弦,并且平分弦所对的两条弧.【教学与建议】教学:通过对剪圆和折叠圆的操作,活跃课堂气氛.建议:在学生操作、分析、归纳的基础上,引导学生归纳垂直于弦的直径的性质.命题角度1垂径定理及推论的辨析根据圆的轴对称性得到垂直于弦的直径所具有的性质.【例1】(1)如图,⊙O的弦AB垂直于半径OC,垂足为D,则下列结论中错误的是(C)A.∠AOD=∠BOD B.AD=BDC.OD=DC D.AC=BC(2)下列命题中错误的命题有__②③④__.(填序号)①弦的垂直平分线经过圆心;②平分弦的直径垂直于弦;③梯形的对角线互相平分;④圆的对称轴是直径.命题角度2直接利用垂径定理进行计算构造以半径、弦长的一半、弦心距为三边长的直角三角形,利用勾股定理求解.【例2】(1)如图,⊙O的半径OA=4,以点A为圆心,OA为半径的弧交⊙O于点B,C,则BC的长为(A) A.43B.52C.23D.32[第(1)题图][第(2)题图](2)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).若大圆的半径R=10,小圆的半径r=8,且圆心O到直线AB的距离为6,则AC的长是__8-27__.命题角度3垂径定理的实际应用圆弧形拱桥等问题,常通过作辅助线,使之符合垂径定理的直角三角形,运用勾股定理求解.【例3】好山好水好绍兴,石拱桥在绍兴处处可见,小明要帮忙船夫计算一艘货船是否能够安全通过一座圆弧形的拱桥,现测得桥下水面AB 宽度16 m 时,拱顶高出水平面4 m ,货船宽12 m ,船舱顶部为矩形并高出水面3 m.(1)请你帮助小明求此圆弧形拱桥的半径;(2)小明在解决这个问题时遇到困难,请你判断一下,此货船能顺利通过这座拱桥吗?说说你的理由.解:(1)连接OB .∵OC ⊥AB ,∴D 为AB 中点.∵AB =16 m ,∴BD =12AB =8 m .又∵CD =4 m ,设OB =OC =r ,则OD =(r -4)m.在Rt △BOD 中,根据勾股定理,得r 2=(r -4)2+82,解得r =10.答:此圆弧形拱桥的半径为10 m ;(2)连接ON .∵CD =4 m ,船舱顶部为矩形并高出水面3 m ,∴CE =4-3=1(m),∴OE =r -CE =10-1=9(m).在Rt △OEN 中,EN 2=ON 2-OE 2=102-92=19,∴EN =19 (m),∴MN =2EN =219 m <12 m ,∴此货船B 不能顺利通过这座拱桥.魔术蛋魔术蛋是九块板,这九块板合起来是一个椭圆,形如鸟蛋,用它可以拼出各种鸟形,因而又名“百鸟拼板”.要制作一个魔术蛋,先绘制一个椭圆形鸟蛋:上部为半圆,下部为椭圆.(1)作一个圆,圆心为O ,并通过圆心,作直径AB 的垂线MN ;(2)连接AN .并适当延长,再以A 为圆心,AB 的长为半径作圆弧交AN 的延长线于点C ;(3)连接BN .并适当延长,再以B 为圆心,BA 的长为半径作圆弧交BN 的延长线于点D ;(4)以N 为圆心,NC 为半径,作圆弧CD ,于是下部成为椭圆;(5)在OM 上作线段MF 等于NC ,以F 为圆心,MF 为半径作圆弧,交AB 于点G ,H ,连接FG ,FH ,这样魔术蛋便制好了.高效课堂 教学设计1.探索并了解圆的对称性和垂径定理.2.能运用垂径定理解决几何证明、计算问题,并会解决一些实际问题. ▲重点垂径定理、推论及其应用. ▲难点发现并证明垂径定理.◆活动1 新课导入1.请同学们把手中的圆对折,你会发现圆是一个什么样的图形? 答:圆是轴对称图形,每一条直径所在的直线都是圆的对称轴.2.请同学们再把手中的圆沿直径向上折,折痕是圆的一条什么呢?通过观察,你能发现直径与这条折痕的关系吗?答:折痕是圆的一条弦,直径平分这条弦,并且平分弦所对的两条弧. ◆活动2 探究新知 1.教材P 81 探究. 提出问题:(1)通过上面的折纸,圆是轴对称图形吗?有几条对称轴?(2)“圆的任意一条直径都是它的对称轴”这种说法对吗?若不对,应该怎样说? 学生完成并交流展示.2.教材P 82 例2以上内容. 提出问题:(1)证明了圆是轴对称图形后,观察图24.1-6,对应线段、对应弧之间有什么关系?由此可得到什么结论?(2)若把P 81的条件“直径CD ⊥AA ′于点M ”改为“直径CD 平分弦AA ′(不是直径)于点M ”,还能证明出图形是轴对称图形吗?此时对应线段、对应弧之间有什么关系?(3)当第(2)问中的弦AA ′为直径时,相关结论还成立吗?为什么? 学生完成并交流展示. ◆活动3 知识归纳1.圆是__轴__对称图形,任何一条__直径所在的直线__都是它的对称轴,它也是中心对称图形,对称中心为__圆心__.2.垂直于弦的直径__平分__弦,并且__平分__弦所对的两条弧,即一条直线如果满足:①__AB 经过圆心O 且与圆交于A ,B 两点__;②__AB ⊥CD 交CD 于点E __;那么可以推出:③__CE =DE __;④CB =DB ;⑤CA =DA .3.__平分弦(不是直径)__ 的直径垂直于弦,并且__平分__弦所对的两条弧.提出问题:“推论”里的被平分的弦为什么不能是直径? 学生完成并交流展示. ◆活动4 例题与练习 例1 教材P 82 例2.例2 如图,D ,E 分别为AB ,AC 的中点,DE 交AB ,AC 于点M ,N .求证:AM =AN .证明:连接OD ,OE 分别交AB ,AC 于点F ,G .∵D ,E 分别为AB ,AC 的中点,∴∠DFM =∠EGN =90°.∵OD =OE ,∴∠D =∠E ,∴∠DMB =∠ENC .∵∠DMB =∠AMN ,∠ENC =∠ANM ,∴∠AMN =∠ANM ,∴AM =AN .练习1.教材P 83 练习第1,2题.2.已知弓形的弦长为6 cm ,弓形的高为2 cm ,则这个弓形所在的圆的半径为__134__cm__.3.如图,AB 为⊙O 的直径,E 是BC 的中点,OE 交BC 于点D ,BD =3,AB =10,则AC =__8__. 4.如图,⊙O 中弦CD 交半径OE 于点A ,交半径OF 于点B ,若OA =OB ,求证:AC =BD .证明:过点O 作OG ⊥CD 于点G . ∵OG 过圆心,∴CG =DG . ∵OA =OB .∴AG =BG ,∴CG -AG =DG -BG ,∴AC =BD . ◆活动5 课堂小结 垂径定理及其推论,以及常用的辅助线(作垂径)和解题思路(构造由半径、半弦、弦心距组成的直角三角形).1.作业布置(1)教材P 90 习题24.1第8,11题; (2)对应课时练习. 2.教学反思。
人教版九年级数学上册第二十四章圆24.1 圆的有关性质一:考点归纳考点一、圆在一个平面内,一条线段O A绕它的一个端点O旋转一周,另一个端点A所形成的图形叫作圆. 圆心:固定的端点叫作圆心.半径:线段OA的长度叫作这个圆的半径.(1)圆的表示方法:以点O为圆心的圆,记作“ ⊙O ”,读作“圆O”. 同圆的第二定义:所有到定点的距离等于定长的点组成的图形叫作圆.考点二、垂直于弦的直径(1)圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,圆有无数条对称轴.(2)垂直于弦的直径平分弦,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.考点三、弧、弦、圆心角(1)顶点在圆心的角叫做圆心角 .(2)在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.(3)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等. 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.考点四、圆周角(1)圆周角定义:顶点在圆上,并且两边都和圆相交的角叫圆周角. 特征:①角的顶点在圆上;②角的两边都与圆相交.(2)同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半.(3)在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.(4)半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.(5)如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.圆内接四边形的对角互补.二:【题型归纳】【题型一】圆1.下列说法正确的是()①弦是圆上两点间的部分;②直径是弦;③经过圆心的每一条直线都是圆的对称轴;A.0个B.1个C.2个D.3个2.下列说法:①直径是弦;②长度相等的两条弧是等弧;③半圆是弧,但弧不一定是半圆;④圆的对称轴是直径;⑤外心在三角形的一条边上的三角形是直角三角形,正确的命题有()A.1个B.2个C.3个D.4个【题型二】垂直于弦的直径3.如图,DC是⊙O的直径,弦AB⊥CD于点F,连接BC,BD,则错误结论为()A.OF=CF B.AF=BF C.AD BDD.∠DBC=90°4.如图,在⊙O中,半径OC垂直弦AB于D,点E在⊙O上,∠E=22.5º,AB=2,则半径OB等()A .1B .22C .2D .2【题型三】弧、弦、圆心角5.给出下列命题:①弦是直径;②圆上两点间的距离叫弧;③长度相等的两段弧是等弧;④圆心角的度数与它所对的弧的度数相等;⑤圆是轴对称图形,不是中心对称图形;⑥直径是弦.其中正确的个数为( )A .1B .2C .3D .46.如图,AB 为O 的直径,点D 是弧AC 的中点,过点D 作DE AB ⊥于点E ,延长DE 交O 于点F ,若12AC =,3AE =,则O 的直径长为( )A .10B .13C .15D .16.7.O 是四边形ABCD 的外接圆,AC 平分BAD ∠,则正确结论是( )A .AB AD = B .BC CD = C .AB BD = D .ACB ACD ∠=∠【题型四】圆周角8.如图,O 是ABC 的外接圆,CD 是O 的直径,35B ∠=︒,则ACD ∠的度数是( )A .45︒B .50︒C .55︒D .60︒9.如图,AB 为⊙O 的直径,CD 为⊙O 的弦,∠ACD=40°,则∠BAD 的大小为()A .60ºB .30ºC .45ºD .50º三:基础巩固和培优一、单选题1.如图,点A 、B 、C 在⊙O 上,CO 的延长线交AB 于点D ,∠A =50°,∠B =30°,∠ACD 的度数为( )A .10°B .15°C .20°D .30°2.如图,在5×5的正方形网格中,一条圆弧经过A ,B ,C 三点,那么这条弧所在圆的半径是( )A .2B .5C .22D .33.如图是我市环北路改造后一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB 宽为4m ,水面最深地方的高度为1m ,则该输水管的半径为( )A .2mB .2.5mC .4mD .5m4.如图,在⊙O 中,半径OC 垂直弦AB 于D ,点E 在⊙O 上,∠E =22.5º,AB =2,则半径OB 等( )A .1B .22C .2D .25.下列说法中,正确的是( )A .直径所对的弧是半圆B .相等的圆周角所对的弦相等C .两个半圆是等弧D .一条弧所对的圆心角等于它对的圆周角的一半6.如图,已知抛物线()()31916y x x =---与x 轴交于,A B 两点,对称轴与抛物线交于点C ,与x 轴交于点D ,C 的半径为2,G 为C 上一动点,P 为AG 的中点,则DP 的最大值为( )A .412B .23C .72D .57.如图,AB 是O 的直径,弦CD 交AB 于点P ,4AP =,8BP =,45APC ∠=︒,则CD 的长为( )A .34B .62C .234D .128.已知,AB 为圆O 的一条弦,∠AOB=80°,则弦AB 所对的圆周角的度数为( )A .40︒B .140︒C .70︒D .40︒或140︒9.下列说法:①直径是弦;②长度相等的两条弧是等弧;③半圆是弧,但弧不一定是半圆;④圆的对称轴是直径;⑤外心在三角形的一条边上的三角形是直角三角形,正确的命题有 ( )A .1个B .2个C .3个D .4个10.如图,已知100BOC ∠=︒,则A ∠的度数为( )A .50︒B .80︒C .100︒D .130︒二、填空题 11.圆弧形蔬菜大棚的剖面如图,已知AB =16m ,半径OA =10m ,OC ⊥AB ,则中柱CD 的高度为_________m .12.若圆的半径为6cm ,圆中一条弦长为3cm ,则此弦中点到此弦所对弧的中点的距离为_______cm.13.如图,在⊙O中,CA DB,∠1=30°,则∠2=_________°.14.如图,⊙O的半径为10,弦AB的长为12,OD⊥AB,交AB于点D,交⊙O于点C,则CD=______.15.如图,△ABC的三个顶点都在⊙O上,∠ACB=40°,则∠OAB=______.三、解答题16.如图,⊙O的半径OD⊥弦AB于点C,联结AO并延长交⊙O于点E,联结EC.已知AB=8,CD=2.(1)求OA的长度;(2)求CE的长度.17.如图,已知,AB是O的直径,弦CD⊥AB于点E,∠ACD=30°,AE=3cm,求BD的长度.18.如图,D 是O 弦BC 的中点,A 是BC 上一点,OA 与BC 交于点E ,已知8AO =,12BC =. (1)求线段OD 的长.(2)当2EO BE =时,求ED ,EO 的长.19.已知P 是O 上一点,过点P 作不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别有动点A B 、 (不与P ,Q 重合),连接AP 、BP 若=APQ BPQ ∠∠.(1)如图1,当=45APQ ∠︒,=1AP ,=22BP O 的半径;(2)如图2,选接AB ,交PQ 于点M ,点N 在线段PM 上(不与P M 、重合),连接ON OP 、,若+2=90NOP OPN ∠∠︒,探究直线AB 与ON 的位置关系,并证明.20.如图,90BCD ∠=︒,BC DC =,直线PQ 经过点D .设PDC α∠=(45135α︒<<︒),BA PQ ⊥于点A ,将射线CA 绕点C 按逆时针方向旋转90︒,与直线PQ 交于点E .(1)判断:ABC ∠________PDC ∠(填“>”或“=”或“<”);(2)猜想ACE △的形状,并说明理由;(3)若ABC的外心在其内部(不含边界),直接写出 的取值范围.参考答案题型归纳【解析】:1【详解】①弦是连接圆上两点间线段,故不正确;②直径是最长的弦,故正确;③经过圆心的每一条直线都是圆的对称轴,故正确;故选C.2.【详解】解:①直径是弦,是真命题;②在同圆与等圆中,长度相等的两条弧是等弧,原命题是假命题;③半圆是弧,但弧不一定是半圆,是真命题;④圆的对称轴是直径所在的直线,原命题是假命题;⑤外心在三角形的一条边上的三角形是直角三角形,是真命题;故选:C.【解析】3.【详解】解:∵DC是⊙O直径,弦AB⊥CD于点F,∴AF=BF,AD BD,∠DBC=90°,∴B、C、D正确;∵点F不一定是OC的中点,∴A错误.故选:A.4.【详解】解:∵半径OC⊥弦AB于点D,∴=AC BC,∴∠E=12∠BOC=22.5°,∴∠BOD=45°,∴△ODB是等腰直角三角形,∵AB=2,10∴DB=OD=1,则半径OB.故选:D.【解析】:5【详解】解:①弦不一定是直径,原命题是假命题;②圆上任意两点间的部分叫弧,原命题是假命题;③在同圆或等圆中,长度相等的两段弧是等弧,原命题是假命题;④圆心角的度数与它所对的弧的度数相等,是真命题;⑤圆是轴对称图形,也是中心对称图形,原命题是假命题;⑥直径是弦,是真命题.故选:B.6【详解】解:连接OD交AC于点G,∵AB⊥DF,∴AD AF=,DE=EF.又点D是弧AC的中点,∴AD CD AF==,OD⊥AC,∴AC DF=,∴AC=DF=12,∴DE=6.设O的半径为r,∴OE=AO-AE=r-3,在Rt△ODE中,根据勾股定理得,OE2+DE2=OD2,∴(r-3)2+62=r2,解得r=152.∴O的直径为15.故选:C.7.【详解】解:ACB ∠与ACD ∠的大小关系不确定,AB ∴与AD 不一定相等,故选项A 错误; AC 平分BAD ∠,BAC DAC ∴∠=∠,BC CD ∴=,故选项B 正确;ACB ∠与ACD ∠的大小关系不确定,∴AB 与AD 不一定相等,选项C 错误;∵BCA ∠与DCA ∠的大小关系不确定,选项D 错误;故选B .8.【详解】解:连接AD ,∵CD 是圆的直径,∴∠DAC=90°,∵∠B=∠D=35°,∴∠ACD=90°-∠D=90°-35°=55°,故选C .9.【详解】连结BD ,∵同弧所对的圆周角相等,∴∠B=∠C=40º,∵AB 为直径,∴∠ADB=90º,∴∠DAB+∠B=90º,∴∠DAB=90º-40º=50º.故选择:D.二:基础巩固和培优1.C【详解】解:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B=30°,∠BOC=∠B+∠BDC,∴∠BDC=∠BOC-∠B=100°-30°=70°,∴∠ACD=70°-50°=20°;故选:C.2.B【详解】解:如图线段AB的垂直平分线和线段BC的垂直平分线的交点M,即点M为圆心,22+125故选:B.3.B【详解】过点O作OD⊥AB于点D,连接OA,设OA=x,则OD=x-1,在Rt△AOD中, x2=(x-1)2+22,解得x=2.5m.故选B.4.D【详解】解:∵半径OC⊥弦AB于点D,∴=AC BC,∴∠E=12∠BOC=22.5°,∴∠BOD=45°,∴△ODB是等腰直角三角形,∵AB=2,∴DB=OD=1,则半径OB2211=2.故选:D.5.A【详解】解:A、直径所对的弧是半圆,正确,符合题意;B、同圆或等圆中,相等的圆周角所对的弦相等,故原命题错误,不符合题意;C、半径相等的两个半圆是等弧,故原命题错误,不符合题意;D、同圆或等圆中,一条弧所对的圆心角等于它对的圆周角的一半,故原命题错误,不符合题意,故选:A.6.C【详解】如图,连接BG,由题意可得:A(1,0),B(9,0),D是AB的中点,∴AB=8,∴BD=4, 3y=(1)(9)16x x ---=23(5)316x --+, ∴C(5,3),∴CD=3,由D 、P 分别是AB 、AG 的中点可得:DP 是ABG 的中位线, ∴DP=12BG ,要求DP 的最大值,即要求BG 的最大值,当G 、C 、B 三点共线时,BG 最大,BC=22345+=,BG=5+2=7,DP=12BG=72.故选:C .7.C【详解】解:∵4AP =,8BP =,∴AB=12,AO=6,∴PO=2,作OM ⊥CD ,连接OC ,∵45DPB APC ∠=∠=︒,∴∠AOM=45°,△MOP 为等腰直角三角形,∴222MO OP ,在Rt △OCM 中根据勾股定理22226(2)34CMCO OM , ∴2234CD CM .故选:C .8.D【详解】解:如图,弦AB 所对的圆周角为C D ∠∠,,80AOB ∠=︒,40D ∴∠=︒,四边形ADBC 为O 的内接四边形,180C D ∴∠+∠=︒,=140C ∴∠︒.故选D .9.C【详解】解:①直径是弦,是真命题;②在同圆与等圆中,长度相等的两条弧是等弧,原命题是假命题; ③半圆是弧,但弧不一定是半圆,是真命题;④圆的对称轴是直径所在的直线,原命题是假命题;⑤外心在三角形的一条边上的三角形是直角三角形,是真命题; 故选:C .10.A【详解】解:∵100BOC ∠=︒,∴A ∠=1250BOC ∠=︒,故选A .11.4【详解】解:∵CD 垂直平分AB ,∴AD =8.∴OD =22108-=6m ,∴CD =OC−OD =10−6=4(m ).故答案是:412.3或9【详解】在⊙O 中,弦AB=63cm ,半径6R =;过圆心O 作直径MN ,且MN ⊥AB 于点C ,连接OB ;则AC=BC=12AB=33,OB=6, 由勾股定理得:()22226333OB BC -=-=,∴CM=6+3=9,CN=6-3=3;∵MN ⊥AB ,且MN 为⊙O 的直径,∴点M 、N 分别为AMB 、ANB 的中点, ∴AB 弦中点到弦所对应的弧的中点的距离分别为3或9. 故答案为:3或9.13.30【详解】解:CA DB =,BC BC =,∴AB CD =,∴∠1=∠2,∠1=30°,∴∠2=30°;故答案为30.14.2【详解】∵OD ⊥AB ,OD 过圆心O , ∴162AD BD AB ===,由勾股定理可得:8OD ===, ∴1082CD CO OD =-=-=; 故答案是2.15.50°【详解】解:根据圆周角定理得:∠AOB=2∠ACB ,∵∠ACB=40°,∴∠AOB=2×40°=80°,∵OA=OB ,∴∠OAB=∠OBA ,∴∠OAB+∠OBA+∠AOB=180°, ∴∠OAB=50°.故答案为: 50°.16.(1)5;(2)【详解】解:(1)∵在⊙O 中,OD ⊥弦AB , ∴AC =BC =12AB =4,设OA 为x ,则OD =OA =x ,∵CD =2,∴OC=x﹣2在Rt△ACO中,AC2+OC2=AO2∴42+(x﹣2)2=x2,解得x=5,∴OA=5;(2)连接BE,∵OA=OE,AC=BC,∴OC∥BE且OC=12 BE,∴∠EBA=∠OCA=90°,∵OC=OD﹣CD=5﹣2=3,∴BE=6,在Rt△ECB中,BC2+EB2=EC2∴42+62=EC2,∴CE=213.17.63BD cm=【详解】连接OC、OD,AB是⊙O的直径,弦CD⊥AB,∴CE=DE,∠AEC=∠DEB=90°,AC AD=,∴30ACD ∠=︒,∴260COA DOA ACD ∠=∠=∠=︒, OC =OA ,∴AOC △是等边三角形,∴AE =EO =3cm ,∴AO =DO =OB =6cm ,∴BE =9cm ,DE =22226333OD OE -=-=cm , ∴BD =22229(33)63BE DE +=+=cm . ∴DB 的长为63cm .18.(1)线段OD 的长为27;(2)ED 2=,EO=42【详解】解:(1)连接OB .∵OD 过圆心,且D 是弦BC 中点, ∴OD ⊥BC ,BD=12BC , 在Rt △BOD 中,OD 2+BD 2=BO 2. ∵BO=AO=8,BD=6.∴22228627BO BD --= (2)在Rt △EOD 中,OD 2+ED 2=EO 2. 设BE=x ,则2x ,DE=6x -, (())222762x x +-=, 整理得:212640x x +-=,解得:12416x x ==-,(舍去).∴BE=4,ED=642-=,EO=42.19.(1) ☉O 的半径是32;(2)A B ∥ON ,证明见解析 【详解】解:(1)连接AB ,在☉o 中,o APQ BPQ 45∠=∠=,o APB APQ BPQ 90∴∠=∠+∠=AB ∴是☉0的直径.Rt APB ∴∆在中,22AB AP BP =+AB=3∴∴☉0的半径是32(2)AB//ON证明:连接OA , OB , OQ ,在☉0中, AQ AQ =, BQ BQ =,Q 2APQ,B0Q 2BPO AO ∴∠=∠∠=∠.又APQ BPQ ∠=∠,AOQ BOQ ∴∠=∠.在AOB ∆中,OA OB =, AOQ BOQ ∠=∠,OC AB ∴⊥,即o OCA 90∠=连接OQ ,交AB 于点C在☉0中,OP OQ =OPN OQP.∴∠=∠延长PO 交☉0于点R ,则有2OPN QOR ∠=∠o NOP 2OPN 90∴∠+∠=,又:o NOP NOQ QOR 180∠+∠+∠=,NOQ 90O ∴∠=NOQ OCA 180O ∴∠+∠= .AB//ON ∴20.(1)=;(2)ACE △是等腰直角三角形;理由见解析;(3)4590α︒<<︒.【详解】解:(1) 90AB AD DCB ⊥∠=︒,,3609090180CDA ABC ∴∠+∠=︒-︒-︒=︒,180CDA CDE ∠+∠=︒,.EDC ABC ∴∠=∠故答案为:=.(2)ACE △是等腰直角三角形.理由如下:由旋转可得:90ACE BCD ∠=∠=︒,90ECD DCA DCA BCA ∴∠+∠=︒=∠+∠,ECD BCA ∴∠=∠,在ECD 与ACB △中,ECD BCA CD CBEDC ABC ∠=∠⎧⎪=⎨⎪∠=∠⎩()ECD ACB ASA ∴≌EC AC ∴=,又90ACE ∠=︒ACE ∴是等腰直角三角形.(3)当∠ABC=α=90°时, ABC 的外心在其斜边上,∠ABC=α>90°时,ABC 的外心在其外部,由PDC ∠>45EAC ∠=︒,PDC DCA EAC ∠=∠+∠<135︒, ∴ 45°<α<135°,故:4590α︒<<︒.。
人教版九年级数学上册24.1.2《垂直于弦的直径》说课稿一. 教材分析人教版九年级数学上册第24章《圆》的1.2节《垂直于弦的直径》是本章的重要内容。
这部分主要介绍了垂径定理及其推论,为后续学习圆的性质和圆的方程打下基础。
本节内容通过探究垂直于弦的直径的性质,引导学生利用几何推理证明结论,培养学生的逻辑思维能力。
二. 学情分析九年级的学生已经掌握了初中阶段的基本几何知识,对圆的基本概念和性质有所了解。
但学生在解决几何问题时,往往缺乏推理证明的能力。
因此,在教学过程中,教师需要关注学生的思维过程,引导学生掌握几何推理的方法。
三. 说教学目标1.知识与技能:掌握垂径定理及其推论,能运用垂径定理解决简单几何问题。
2.过程与方法:通过观察、探究、推理,培养学生的逻辑思维能力和几何直观能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养合作探究的精神。
四. 说教学重难点1.教学重点:垂径定理及其推论的证明和应用。
2.教学难点:垂径定理的证明,以及如何引导学生运用几何推理方法。
五. 说教学方法与手段1.教学方法:采用问题驱动、合作探究的教学方法,引导学生主动参与课堂讨论。
2.教学手段:利用多媒体课件辅助教学,直观展示几何图形的性质和推理过程。
六. 说教学过程1.导入新课:通过回顾圆的基本性质,引出垂直于弦的直径的性质。
2.探究垂直于弦的直径的性质:让学生分组讨论,观察几何图形,引导学生发现垂直于弦的直径的性质。
3.推理证明:引导学生运用几何推理方法,证明垂径定理及其推论。
4.应用拓展:举例说明垂径定理在解决实际问题中的应用。
5.总结归纳:对本节课的主要内容进行总结,强调垂径定理及其推论的重要性。
七. 说板书设计板书设计如下:垂直于弦的直径性质:垂直于弦的直径平分弦,且平分弦所对的弧。
八. 说教学评价本节课通过课堂提问、学生作业、小组讨论等方式进行教学评价。
主要评价学生在掌握垂径定理、运用几何推理方法以及解决实际问题方面的表现。
人教版九年级数学上册《24.1.2垂直于弦的直径》公开课说课稿一. 教材分析人教版九年级数学上册《24.1.2垂直于弦的直径》这一节的内容,是在学生已经掌握了垂径定理和圆周角定理的基础上进行教学的。
本节课主要让学生了解并证明圆中垂直于弦的直径的性质,即垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
这一性质在解决圆的相关问题中有着重要的作用。
教材通过引导学生观察、思考、探索,培养学生的逻辑思维能力和空间想象能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对圆的相关知识有一定的了解。
但是,对于证明圆中垂直于弦的直径的性质,学生可能还存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习情况,针对学生的实际水平,采取适当的教学策略,引导学生克服困难,掌握这一性质。
三. 说教学目标1.知识与技能目标:让学生掌握圆中垂直于弦的直径的性质,能够运用这一性质解决相关问题。
2.过程与方法目标:通过观察、思考、探索,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学的美妙。
四. 说教学重难点1.教学重点:圆中垂直于弦的直径的性质。
2.教学难点:证明圆中垂直于弦的直径的性质。
五. 说教学方法与手段1.教学方法:采用问题驱动法、启发式教学法、合作学习法等。
2.教学手段:利用多媒体课件、圆规、直尺等教学工具。
六. 说教学过程1.导入新课:通过复习垂径定理和圆周角定理,引出本节课的内容——圆中垂直于弦的直径的性质。
2.探究新知:引导学生观察、思考、探索,发现垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
3.证明性质:分组讨论,每组选择一种证明方法,证明圆中垂直于弦的直径的性质。
4.应用拓展:出示相关练习题,让学生运用所学知识解决问题。
5.课堂小结:回顾本节课所学内容,总结垂直于弦的直径的性质及证明方法。
6.布置作业:布置适量作业,巩固所学知识。
专题24.3 垂直于弦的直径-垂径定理(知识讲解)【学习目标】1.理解圆的对称性;2.掌握垂径定理及其推论;3.利用垂径定理及其推论进行简单的计算和证明.【要点梳理】知识点一、垂径定理1.垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.特别说明: (1)垂径定理是由两个条件推出两个结论,即 (2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的推论根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.特别说明:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、利用垂径定理求圆的半径、弦心距、角度、弦1.如图,AB 是O e 的直径,弦CD AB ^于点E ,点M 在O e 上,MD 恰好经过圆心O ,连接MB .(1)若16CD =,4BE =,求O e 的直径;(2)若M D Ð=Ð,求D Ð的度数.【答案】(1)20;(2)30°【分析】(1)由CD =16,BE =4,根据垂径定理得出CE =DE =8,设⊙O 的半径为r ,则4OE r =-,根据勾股定理即可求得结果;(2)由OM =OB 得到∠B =∠M ,根据三角形外角性质得∠DOB =∠B +∠M =2∠B ,则2∠B +∠D =90°,加上∠B =∠D ,所以2∠D +∠D =90°,然后解方程即可得∠D 的度数.解:(1)∵AB ⊥CD ,CD =16,∴CE =DE =8,设OB r =,又∵BE =4,∴4OE r =-∴222(4)8r r =-+,解得:10r =,∴⊙O 的直径是20.(2)∵OM =OB ,∴∠B =∠M ,∴∠DOB =∠B +∠M =2∠B ,∵∠DOB +∠D =90°,∴2∠B +∠D =90°,∵M DÐ=Ð,∴∠B=∠D,∴2∠D+∠D=90°,∴∠D=30°;【点拨】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.举一反三:e中,弦AB长50mm.求:【变式1】如图,在半径为50mm的OÐ的度数;(1)AOB(2)点O到AB的距离.【答案】(1)60°;(2)【分析】V是等边三角形,从而可得结论;(1)证明AOBAC BC再利用勾股定理可(2)过点O作OC⊥AB,垂足为点C,利用垂径定理求解,,得答案.解:(1)∵OA,OB是⊙O的半径,∴OA=OB=50mm,又∵AB=50mm,∴OA=OB=AB,∴△AOB是等边三角形,∴∠AOB=60°. (2)过点O作OC⊥AB,垂足为点C,如图所示,由垂径定理得AC =CB =12AB =25mm ,在Rt △OAC 中OC 2=OA 2-AC 2=502-252=252×3,∴OC mm ),即点O 到AB 的距离是.【点拨】本题考查的是等边三角形的判定与性质,圆的性质,垂径定理的应用,勾股定理的应用,熟练垂径定理的运用是解题的关键.【变式2】如图,AB 是O e 的直径,E 为O e 上一点,EF AB ^于点F ,连接OE ,//AC OE ,OD AC ^于点D .若2,4BF EF ==,求线段AC 长.【答案】6【分析】设OE =x ,根据勾股定理求出x ,根据全等三角形的判定定理和性质定理得到AD =OF =3,根据垂径定理得到答案.解:设OE =x ,则OF =x -2,由勾股定理得,OE 2=OF 2+EF 2,即x 2=(x -2)2+42,解得,x =5,∴OF =3,∵AC ∥OE ,OD ⊥AC ,∴OD ⊥OE ,∠A =∠EOF ,∵OA =OE ,EF ⊥AB ,∴△ADO ≌△OFE ,∴AD =OF =3,∵OD ⊥AC ,∴AC=2AD=6.【点拨】本题考查的是垂径定理的应用,掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.类型二、利用垂径定理求进行证明2.如图,在⊙O中,AB、AC是互相垂直且相等的两条弦,OD^AB,OE^AC,垂足分别为D、E.(1)求证:四边形ADOE是正方形;(2)若AC=2cm,求⊙O的半径.【答案】(1)见分析【分析】(1)根据AC^AB,OD^AB,OE^AC,可得四边形ADOE是矩形,由垂径定理可得AD=AE,根据邻边相等的矩形是正方形可证;(2)连接OA,由勾股定理可得.(1)证明:∵AC^AB,OD^AB,OE^AC,∴四边形ADOE是矩形,12AD AB=,12AE AC=,又∵AB=AC,∴AD=AE,∴四边形ADOE是正方形.(2)解:如图,连接OA,∵四边形ADOE是正方形,∴112OE AE AC===cm,在Rt△OAE中,由勾股定理可得:OA==,即⊙O cm.【点拨】本题考查圆与正方形,熟练掌握正方形的判定方法、圆有关的性质,是解题的关键.举一反三:【变式1】如图,AB、CD为⊙O的两条弦,AB∥CD,经过AB中点E的直径MN与CD交于F点,求证:CF=DF【分析】根据垂径定理进行解答即可.解:∵E为AB中点,MN过圆心O,∴MN⊥AB,∴∠MEB=90°,∵AB∥CD,∴∠MFD=∠MEB=90°,即MN⊥CD,∴CF=DF.【点拨】本题考查了垂径定理的运用,垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧.【变式2】已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).求证:AC=BD.【分析】过圆心O 作OE ⊥AB 于点E ,根据垂径定理得到AE=BE ,同理得到CE=DE ,又因为AE-CE=BE-DE ,进而求证出AC=BD .解:过O 作OE ⊥AB 于点E ,则CE=DE ,AE=BE ,∴BE-DE=AE-CE.即AC=BD.【点拨】本题考查垂径定理的实际应用.类型三、利用垂径定理推论求圆的半径、弦心距、角度、弦3.如图,∠AOB 按以下步骤作图:①在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作圆弧PQ ,交射线OB 于点D ;②连接CD ,分别以点C 、D 为圆心,CD 长为半径作弧,交圆弧PQ 于点M 、N ;③连接OM ,MN .根据以上作图过程及所作图形完成下列作答.(1)求证:OA 垂直平分MD .(2)若30AOB Ð=°,求∠MON 的度数.(3)若20AOB Ð=°,6OC =,求MN 的长度.【答案】(1)证明见分析;(2)90MON Ð=°;(3)6MN =.【分析】(1)由垂径定理直接证明即可得;(2)根据相等的弧所对的圆心角也相等求解即可得;(3)由(2)可得:20COM COD DON Ð=Ð=Ð=°,得出60MON Ð=°,根据等边三角形得判定可得OMN n 为等边三角形,即可得出结果.(1)证明:如图所示,连接MD ,由作图可知,CM CD =,∴»ºCM C D =,∵OA 是经过圆心的直线,∴OA 垂直平分MD ;(2)解:如图所示,连接ON ,∵CM CD DN ==,∴»º»CM C D D N ==,∴30COM COD DON Ð=Ð=Ð=°,∴90MON COM COD DON Ð=Ð+Ð+Ð=°,即90MON Ð=°;(3)解:由(2)可得:20COM COD DON Ð=Ð=Ð=°,∴60MON Ð=°,∵OM ON =,∴OMN n 为等边三角形,∴6MN OM OC ===.【点拨】题目主要考查垂径定理,等弧所对的圆心角相等,等边三角形的判定和性质等,理解题意,综合运用这些基础知识点是解题关键.举一反三:【变式1】 如图,AB 为圆O 直径,F 点在圆上,E 点为AF 中点,连接EO ,作CO ⊥EO 交圆O 于点C ,作CD ⊥AB 于点D ,已知直径为10,OE =4,求OD 的长度.【答案】3【分析】根据垂径定理的逆定理得到OE ⊥AF ,由CO ⊥EO ,得到OC ∥AF ,即可得到∠OAE =∠COD ,然后通过证得△AEO ≌△ODC ,证得CD =OE =4,然后根据勾股定理即可求得OD .解:∵E 点为AF 中点,∴OE ⊥AF ,∵CO ⊥EO ,∴OC ∥AF ,∴∠OAE =∠COD ,∵CD ⊥AB ,∴∠AEO =∠ODC ,在△AEO 和△ODC 中,OAE COD AEO ODC OA OC Ð=ÐìïÐ=Ðíï=î,∴△AEO ≌△ODC (AAS ),∴CD =OE =4,∵OC =5,∴OD=3.【点拨】本题考查垂径定理的逆定理、平行线的判定与性质、全等三角形的判定与性质、勾股定理,熟练掌握垂径定理和全等三角形的判定与性质是解答的关键.【变式2】如图所示,直线=y x 轴、y 轴分别交于A 、B 两点,直线BC 交x 轴于D ,交△ABO 的外接圆⊙M 于C ,已知∠COD =∠OBC .(1)求证:MC ⊥OA ;(2)求直线BC 的解析式.【答案】(1)见分析;(2)y=【分析】(1)利用弧弦角转化得¼¼OC AC=,由垂径定理即可得MC⊥OA;(2)由直线=y x与x轴、y轴分别交于A、B两点,求出A、B两点坐标,从而得到A、B中点M点坐标,再由勾股定理求出OM,进而求出点C坐标.由B、C两点坐标用待定系数法求直线BC解析式即可.解:(1)证明:∵∠COD=∠OBC,∴¼¼OC AC=,∵点M是圆心,∴由垂径定理的推论,得MC⊥OA;(2)解:∵MC⊥OA,∴OG=GA=12OA,∵点M是圆心,∴BM=AM,∴GM是△AOB的中位线,∴GM,∵=y x轴、y轴分别交于A、B两点,∴当x=0时,y y=0时,x=3,∴B(0,A(3,0)∴OB OA=3,∴MG OG=32,连接OM,在Rt△OGM中,由勾股定理,得OM=∴GC=∵点C 在第三象限,∴C (32,).设直线BC 的解析式为:y =kx +b ,∴32k b =+解得:k b ìïíïî,直线BC的解析式为:y =【点拨】本题主要考查了弧弦角的性质,垂径定理,数形结合求出关键点坐标是解决本题的关键.类型四、利用垂径定理推论求进行证明4.如图所示,已知在⊙O 中,AB 是⊙O 的直径,弦CG ⊥AB 于D ,F 是⊙O 上的点,且»»CFCB =,BF 交CG 于点E ,求证:CE =BE .【分析】证法一:连接CB ,可证»»CFGB =,从而可证明CE =BE ;证法二:作ON ⊥BF ,垂足为N ,连接OE ,证明△ONE ≌△ODE ,可得NE =DE,再结合垂径定理可得BN=CD,再根据线段的差即可证明结论;证法三:连接OC交BF于点N,只需要证明△CNE≌△BDE即可证明结论.解:证法一:如图(1),连接BC,∵AB是⊙O的直径,弦CG⊥AB,∴»»CB GB=,∵»»CF BC=,∴»»CF GB=,∴∠C=∠CBE,∴CE=BE.证法二:如图(2),作ON⊥BF,垂足为N,连接OE.∵AB是⊙O的直径,且AB⊥CG,∴»»CB BG=,∵»»CB CF=,∴»»»CF BC BG==,∴BF=CG,ON=OD,∵∠ONE=∠ODE=90°,OE=OE,ON=OD,∴△ONE≌△ODE(HL),∴NE=DE.∵12BN BF=,12CD CG=,∴BN=CD,∴BN-EN=CD-ED,∴BE=CE.证法三:如图(3),连接OC交BF于点N.∵»»=,CF BC∴OC⊥BF,∵AB是⊙O的直径,CG⊥AB,∴»»=,BG BC∴»»»==,CF BG BC=,∴»»BF CG=,ON OD∵OC=OB,∴OC-ON=OB-OD,即CN=BD,又∠CNE=∠BDE=90°,∠CEN=∠BED,∴△CNE≌△BDE,∴CE=BE.【点拨】本题考查垂径定理、圆周角定理、全等三角形的性质和判定等.熟练掌握垂径定理及其推理是解题关键.举一反三:【变式1】如图,已知AB,CD是⊙O内非直径的两弦,求证:AB与CD不能互相平分.【分析】根据反证法的步骤进行证明:先假设AB与CD能互相平分,结合垂径定理的推论,进行推理,得到矛盾,从而肯定命题的结论正确.解:设AB,CD交于点P,连接OP,假设AB与CD能互相平分,则CP=DP,AP=BP,∵AB,CD是圆O内非直径的两弦,∴OP⊥AB,OP⊥C D,这与“过一点有且只有一条直线与已知直线垂直相矛盾”,所以假设不成立,所以AB与CD不能互相平分【点拨】本题考查了反证法,解题的关键是:掌握反证法的步骤.【变式2】如图,已知在⊙O中,»»»==,OC与AD相交于点E.求证:AB BC CD(1)AD∥BC(2)四边形BCDE为菱形.【分析】(1)连接BD,根据圆周角定理可得∠ADB=∠CBD,根据平行线的判定可得结论;(2)证明△DEF≌△BCF,得到DE=BC,证明四边形BCDE为平行四边形,再根据»»=得到BC=CD,从而证明菱形.BC CD解:(1)连接BD,∵»»»==,AB BC CD∴∠ADB=∠CBD,∴AD∥BC;(2)连接CD ,∵AD ∥BC ,∴∠EDF =∠CBF ,∵»»BCCD =,∴BC =CD ,∴BF =DF ,又∠DFE =∠BFC ,∴△DEF ≌△BCF (ASA ),∴DE =BC ,∴四边形BCDE 是平行四边形,又BC =CD ,∴四边形BCDE 是菱形.【点拨】本题考查了垂径定理,圆周角定理,弧、弦、圆心角的关系,全等三角形的判定和性质,菱形的判定,解题的关键是合理运用垂径定理得到BF =DF .类型五、垂径定理及推论解决其他问题5.如图,AB 为O e 的一条弦,连接OA 、OB ,请在O e 上作点C 使得ABC V 为以AB 为底边的等腰三角形.(尺规作图,保留作图痕迹,不写作法)【分析】分别以点A 、B 为圆心,大于AB 长的一半为半径画弧,交于两点,连接这两点,交O e 于点C ,则问题可求解.解:如图所示:【点拨】本题主要考查垂径定理及等腰三角形的性质,熟练掌握垂径定理是解题的关键.举一反三:【变式1】如图,一段圆弧与长度为1的正方形网格的交点是A、B、C,以点O为原点,建立如图所示的平面直角坐标系.(1)根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD;(2)请在(1)的基础上,完成下列填空:⊙D的半径为 ;点(6,﹣2)在⊙D (填“上”、“内”、“外”);∠ADC的度数为 .【答案】(1)见分析;(2)90°【分析】(1)根据原点所在的位置,建立平面直角坐标系即可;根据圆心D必在线段AB和线段BC的垂直平分线上进行求解即可;(2)由(1)得到D点坐标,即可得到OA,OD的长,利用勾股定理求解即可得到AD 的长;利用两点距离公式求出点(6,-2)到圆心D的距离与AD的长比较即可得到点(6,-2)与圆D的位置关系;利用勾股定理的逆定理判断△ADC是直角三角形即可得到答案.解:(1)如图所示,即为所求;(2)由(1)可知D 点坐标为(2,0),A 点坐标为(0,4)∴OD =2,OA =4,AD ==∴圆D 的半径为∵点(6,﹣2)到圆心D =∴点(6,﹣2)到圆心D 的距离等于半径的长,∴点(6,﹣2)在⊙D 上.∵D (2,0),C (6,2),A (0,4),∴CD ==,AC ==,∴222CD AD AC +=,∴∠ADC =90°,故答案为:90°.【点拨】本题主要考查了坐标与图形,两点距离公式,确定圆心位置,点与圆的位置关系,勾股定理的逆定理,解题的关键在于能够熟知相关知识.【变式2】如图,O e 中,P 是»AB 的中点,C 、D 是PA 、PB 的中点,过C 、D 的直线交O e 于E 、F .求证:EC FD =.【分析】连结OC,OD,OP交EF于G,由P是»AB的中点,可得¼¼AP BP=,根据弧等相等可得AP=BP,由C、D是PA、PB的中点,根据垂径定理可得OC⊥PA,OD⊥PB,CP=12AP,DP=12BP,可求∠PCO=∠PDO=90°,CP=DP,由勾股定理OC==OD,根据线段垂直平分线判定可得OP是CD的垂直平分线,可得CG=DG,根据垂径定理可得EG=FG即可.解:连结OC,OD,OP交EF于G,∵P是»AB的中点,∴¼¼AP BP=,∴AP=BP,∵C、D是PA、PB的中点,∴OC⊥PA,OD⊥PB,CP=12AP,DP=12BP,∴∠PCO=∠PDO=90°,CP=DP,∴OC=OD,∴OP是CD的垂直平分线,∴CG=DG,∵CD在EF上,EF是弦,OP为半径,OP⊥EF,∴EG=FG,∴EC=EG-CG=GF-GD=DF.∴EC= DF.【点拨】本题考查弧了垂径定理,等腰三角形判定与性质,线段垂直平分线判定与性质,线段和差,掌握垂径定理,等腰三角形判定与性质,线段垂直平分线判定与性质,线段和差是解题关键.类型六、利用垂径定理及推论的实际应用6.把一张圆形纸片按如图方式折叠两次后展开,图中的虚线表示折痕,且折痕6AB =,求O e 的半径.【答案】【分析】过点O 作OE ⊥AB 于点E ,连接OA ,根据垂径定理,可得132AE AB ==,由折叠得: 12OE OA =,然后在Rt AEO V 中,利用勾股定理即可求得结果.解:如图,过点O 作OE ⊥AB 于点E ,连接OA ,∴132AE AB ==,由折叠得:12OE OA =,设=2OE x OA x =,则,∴在Rt AEO V 中,由勾股定理得:222=OE AE OA +,即:2223=4x x +解得: x 1x 2=∴2x答:O e 的半径为【点拨】本题主要考查了折叠的性质、垂径定理和勾股定理,熟练运用相关性质和定理是解题的关键.举一反三:【变式1】某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面(要求用尺规作图,保留作图痕迹,不写作法);AB=,水面最深地方的高度(即»AB的中点(2)若这个输水管道有水部分的水面宽16cm到弦AB的距离)为4cm,求这个圆形截面所在圆的半径.【答案】(1)见分析(2)10cm【分析】(1)根据尺规作图的步骤和方法做出图即可,(2)先过圆心O作半径CO⊥AB,交AB于点D,设半径为r,得出AD、OD的长,在Rt△AOD中,根据勾股定理求出这个圆形截面的半径.(1)如图所示,⊙O为所求作的圆形截面.(2)如图,作半径OC⊥AB于D,连接OA,AB=8 cm,点C为AB n的中点,则AD=12进而,CD=4 cm.设这个圆形截面所在圆的半径为r cm,则OD=(r-4)cm.在Rt△ADO中,有82+(r-4)2=r2,解得r=10.即这个圆形截面所在圆的半径为10 cm.【点拨】此题考查了垂经定理和勾股定理,关键是根据题意画出图形,再根据勾股定理进行求解.【变式2】如图,有一座圆弧形拱桥,它的跨度AB为30m,拱高PM为9m,当洪水泛滥到跨度只有15m时,就要采取紧急措施,若某次洪水中,拱顶离水面只有2m,即PN=2m时,试求:(1)拱桥所在的圆的半径;(2)通过计算说明是否需要采取紧急措施.【答案】(1)拱桥所在的圆的半径为17m;(2)不需要采取紧急措施,理由见分析.【分析】(1)由垂径定理可知AM=BM、A′N=B′N,再在Rt△AOM中,由勾股定理得出方程,即可求出半径;(2)求出ON=OP﹣PN=15(m),再由勾股定理可得A′N=8(m),则A′B′=2A'N=16米>15m,即可得出结论.解:(1)设圆弧所在圆的圆心为O,连接OA、OA′,设半径为xm,则OA=OA′=OP,由垂径定理可知AM=BM,A′N=B′N,∵AB=30m,AB=15(m),∴AM=12在Rt△AOM中,OM=OP﹣PM=(x﹣9)m,由勾股定理可得:AO2=OM2+AM2,即x2=(x﹣9)2+152,解得:x=17,即拱桥所在的圆的半径为17m;(2)∵OP=17m,∴ON=OP﹣PN=17﹣2=15(m),在Rt△A′ON中,由勾股定理可得A′N=8(m),∴A′B′=2A'N=16米>15m,∴不需要采取紧急措施.【点拨】本题主要考查了垂径定理的应用,勾股定理,准确计算是解题的关键.。
24.1 圆的有关性质24.1.1 圆1.认识圆,理解圆的本质属性.2.认识弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,并了解它们之间的区别和联系.3.利用圆的有关概念进行简单的证明和计算.一、情境导入在我们日常生活中常常可以看到有许多圆形物体,例如茶碗的碗口、锅盖、太阳、车轮、射击用的靶子等都是圆的,怎样画出一个圆呢?木工师傅是用一根黑线来画圆的,给你一根细绳、一个图钉和一支铅笔,你能画出一个圆吗?二、合作探究探究点:圆的有关概念【类型一】圆的有关概念的理解有下列五个说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆;⑤任意一条直径都是圆的对称轴.其中错误的说法个数是( ) A.1 B.2 C.3 D.4解析:根据圆、直径、弦、半圆等概念来判断.半径确定了,只能说明圆的大小确定了,但是位置没有确定;直径是弦,但弦不一定是直径;圆的对称轴是一条直线,每一条直径所在的直线是圆的对称轴,所以①③⑤的说法是错误的.故选C.方法总结:对称轴是直线,不能说成每条直径就是圆的对称轴;注意圆的对称轴有无数条.【类型二】圆中有关线段的证明如图所示,OA、OB是⊙O的半径,点C、D分别为OA、OB的中点,求证:AD=BC.解析:先挖掘隐含的“同圆的半径相等”、“公共角”两个条件,再探求证明△AOD ≌△BOC 的第三个条件,从而可证出△AOD ≌△BOC ,根据全等三角形对应边相等得出结论.证明:∵OA 、OB 是⊙O 的半径,∴OA =OB .∵点C 、D 分别为OA 、OB 的中点,∴OC =12OA ,OD =12OB ,∴OC =OD .又∵∠O =∠O ,∴△AOD ≌△BOC (SAS),∴BC =AD .方法总结:“同圆的半径相等”、“公共角”、“直径是半径的2倍”等都是圆中隐含的条件.在解决问题时,要充分利用图形的直观性挖掘出这些隐含的条件,从而使问题迎刃而解.【类型三】圆中有关角的计算如图所示,AB 是⊙O 的直径,CD 是⊙O 的弦,AB ,CD 的延长线交于点E .已知AB=2DE ,∠E =18°,求∠AOC 的度数.解析:要求∠AOC 的度数,由图可知∠AOC =∠C +∠E ,故只需求出∠C 的度数,而由AB =2DE 知DE 与⊙O 的半径相等,从而想到连接OD 构造等腰△ODE 和等腰△OCD .解:连接OD ,∵AB 是⊙O 的直径,OC ,OD 是⊙O 的半径,AB =2DE ,∴OD =DE ,∴∠DOE =∠E =18°,∴∠ODC =∠DOE +∠E =36°.∵OC =OD ,∴∠C =∠ODC =36°,∠AOC =∠C +∠E =36°+18°=54°.三、板书设计教学过程中,强调学生自己动手画圆,了解圆形成的过程,同时讨论、交流各自发现的圆的有关的性质.24.1.2 垂直于弦的直径1.进一步认识圆是轴对称图形.2.能利用圆的轴对称性,通过探索、归纳、验证得出垂直于弦的直径的性质和推论,并能应用它解决一些简单的计算、证明和作图问题.3.认识垂径定理及推论在实际中的应用,会用添加辅助线的方法解决问题.一、情境导入你知道赵州桥吗?它又名“安济桥”,位于河北省赵县,是我国现存的著名的古代石拱桥,距今已有1400多年了,是隋代开皇大业年间(605~618)由著名将师李春建造的,是我国古代人民勤劳和智慧的结晶.它的主桥拱是圆弧形,全长50.82米,桥宽约10米,跨度37.4米,拱高7.2米,是当今世界上跨径最大、建造最早的单孔敞肩石拱桥.你知道主桥拱的圆弧所在圆的半径吗?二、合作探究探究点一:垂径定理【类型一】垂径定理的理解如图所示,⊙O 的直径AB 垂直弦CD 于点P ,且P 是半径OB 的中点,CD =6cm ,则直径AB 的长是( )A .23cmB .32cmC .42cmD .43cm解析:∵直径AB ⊥DC ,CD =6,∴DP =3.连接OD ,∵P 是OB 的中点,设OP 为x ,则OD 为2x ,在Rt △DOP 中,根据勾股定理列方程32+x 2=(2x )2,解得x = 3.∴OD =23,∴AB =4 3.故选D.方法总结:我们常常连接半径,利用半径、弦、垂直于弦的直径造出直角三角形,然后应用勾股定理解决问题.【类型二】垂径定理的实际应用如图,一条公路的转弯处是一段圆弧(图中的AB ︵),点O 是这段弧的圆心,C 是AB ︵上一点,OC ⊥AB ,垂足为D ,AB =300m ,CD =50m ,则这段弯路的半径是________m.解析:本题考查垂径定理,∵OC ⊥AB ,AB =300m ,∴AD =150m.设半径为R ,根据勾股定理可列方程R 2=(R -50)2+1502,解得R =250.故答案为250.方法总结:将实际问题转化为数学问题,再利用我们学过的垂径定理、勾股定理等知识进行解答.探究点二:垂径定理的推论【类型一】利用垂径定理的推论求角如图所示,⊙O 的弦AB 、AC 的夹角为50°,M 、N 分别是AB ︵、AC ︵的中点,则∠MON的度数是( )A .100°B .110°C .120°D .130°解析:已知M 、N 分别是AB ︵、AC ︵的中点,由“平分弧的直径垂直平分弧所对的弦”得OM ⊥AB 、ON ⊥AC ,所以∠AEO =∠AFO =90°,而∠BAC =50°,由四边形内角和定理得∠MON =360°-∠AEO -∠AFO -∠BAC =360°-90°-90°-50°=130°.故选D.【类型二】利用垂径定理的推论求边如图,点A 、B 是⊙O 上两点,AB =10cm ,点P 是⊙O 上的动点(与A 、B 不重合),连接AP 、BP ,过点O 分别作OE ⊥AP 于E ,OF ⊥PB 于F ,求EF 的长.解析:运用垂径定理先证出EF 是△ABP 的中位线,然后运用三角形中位线性质把要求的EF 与AB 建立关系,从而解决问题.解:在⊙O 中,∵OE ⊥AP ,OF ⊥PB ,∴AE =PE ,BF =PF ,∴EF 是△ABP 的中位线,∴EF =12AB =12×10=5cm. 方法总结:垂径定理虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯通,在解决问题时才能得心应手.【类型三】动点问题如图,⊙O 的直径为10cm ,弦AB =8cm ,P 是弦AB 上的一个动点,求OP 的长度范围.解析:当点P 处于弦AB 的端点时,OP 最长,此时OP 为半径的长;当OP ⊥AB 时,OP 最短,利用垂径定理及勾股定理可求得此时OP 的长.解:作直径MN ⊥弦AB ,交AB 于点D ,由垂径定理,得AD =DB =12AB =4cm.又∵⊙O 的直径为10cm ,连接OA ,∴OA =5cm.在Rt △AOD 中,由勾股定理,得OD =OA 2-AD 2=3cm.∵垂线段最短,半径最长,∴OP 的长度范围是3≤OP ≤5(单位:cm).方法总结:解题的关键是明确OP 最长、最短时的情况,灵活利用垂径定理求解.容易出错的地方是不能确定最值时的情况.三、板书设计教学过程中,强调垂径定理的得出跟圆的轴对称密切相关.在圆中求有关线段长时,可考虑垂径定理的应用.24.1.3 弧、弦、圆心角1.在实际操作中发现圆的旋转不变性.2.结合图形了解圆心角的概念,学会辨别圆心角.3.能发现圆心角、弦、弧之间的关系,并会初步运用这些关系解决有关的问题.一、情境导入人类为了获得健康和长寿,经过不断的实践探索,到十九世纪末才提出“生命在于运动”的口号.要健康长寿,更重要的是每天要摄取均衡的营养包括蛋白质、糖类、脂肪、维生素、矿物质、纤维和水.根据中国营养学会公布的“中国居民平衡膳食指南”,每人每日摄取量如图.你能求出各扇形的圆心角吗?二、合作探究 探究点一:圆心角【类型一】圆心角的识别如图所示的圆中,下列各角是圆心角的是( )A .∠ABCB .∠AOBC .∠OABD .∠OCB解析:根据圆心角的概念,∠ABC 、∠OAB 、∠OCB 的顶点分别是B 、A 、C ,都不是圆心O ,因此都不是圆心角.只有B 中的∠AOB 的顶点在圆心,是圆心角.故选B.方法总结:确定一个角是否是圆心角,只要看这个角的顶点是否在圆心上,顶点在圆心上的角就是圆心角,否则不是.探究点二:圆心角的性质【类型一】利用圆心角的性质求角如图,已知:AB 是⊙O 的直径,C 、D 是BE ︵的三等分点,∠AOE =60°,则∠COE的大小是( )A .40°B .60°C .80°D .120°解析:∵C 、D 是BE ︵的三等分点,∴BC ︵=CD ︵=DE ︵,∴∠BOC =∠COD =∠DOE .∵∠AOE =60°,∴∠BOC =∠COD =∠DOE =13×(180°-60°)=40°,∴∠COE =80°.故选C.方法总结:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.探究点三:圆心角、弦、弧之间的关系 【类型一】结合三角形内角和求角如图所示,在⊙O 中,AB ︵=AC ︵,∠B =70°,则∠A =________.解析:由AB ︵=AC ︵,得这两条弧所对的弦AB =AC ,所以∠B =∠C .因为∠B =70°,所以∠C =70°.由三角形的内角和定理可得∠A 的度数为40°.故答案为40°.方法总结:在应用弧、弦、圆心角之间的关系定理时,注意根据具体的需要选择有关部分,本题只需由两弧相等,得到两弦相等就可以了.【类型二】弧相等的简单证明如图所示,已知AB 是⊙O 的直径,M ,N 分别是OA ,OB 的中点,CM ⊥AB ,DN ⊥AB ,垂足分别为M ,N .求证:AC ︵=BD ︵.解析:根据圆心角、弧、弦、弦心距之间的关系,可先证明它们所对的圆心角相等或它们所对的弦相等.证法1:如图所示,连接OC ,OD ,则OC =OD .∵OA =OB .又M ,N 分别是OA ,OB 的中点,∴OM =ON .又∵CM ⊥AB ,DN ⊥AB ,∴∠CMO =∠DNO =90°.∴Rt △CMO ≌Rt △DNO .∴∠1=∠2.∴AC ︵=BD ︵.证法2:如图①所示,分别延长CM ,DN 交⊙O 于点E ,F .∵OM =12OA ,ON =12OB ,OA =OB ,∴OM =ON .又∵OM ⊥CE ,ON ⊥DF ,∴CE =DF ,∴CE ︵=DF ︵.又∵AC ︵=12CE ︵,BD ︵=12DF ︵.∴AC ︵=BD ︵.图①图②证法3:如图②所示,连接AC ,BD .由证法1,知CM =DN .又∵AM =BN ,∠AMC =∠BND =90°,∴△AMC ≌△BND .∴AC =BD ,∴AC ︵=BD ︵.方法归纳:在同圆或等圆中,要证明圆心角、弧、弦、弦心距这四组量中的某一组量相等,通常是转化成证明另外三组量中的某一组量相等.三、板书设计教学过程中,强调弧、弦、圆心角及弦心距之间的关系,只要确定一组等量关系,其他三组也随之确定了.24.1.4 圆周角1.掌握圆周角定理及其推论并能应用其进行简单的计算与证明. 2.掌握圆内接多边形的有关概念及性质.3.在探索过程中,体会观察、猜想的思维方法,在定理的证明过程中,体会化归和分类讨论的数学思想和归纳的方法.一、情境导入你喜欢看足球比赛吗?你踢过足球吗?第十九届世界杯决赛于2014年在巴西举行,共有来自世界各地的32支球队参加赛事,共进行64场比赛决定冠军队伍.比赛中如图所示,甲队员在圆心O 处,乙队员在圆上C 处,丙队员带球突破防守到圆上C 处,依然把球传给了甲,你知道为什么吗?你能用数学知识解释一下吗?二、合作探究探究点一:圆周角定理如图,AB 是⊙O 的直径,C ,D 为圆上两点,∠AOC =130°,则∠D 等于( )A .25°B .30°C .35°D .50°解析:本题考查同弧所对圆周角与圆心角的关系.∵∠AOC =130°,∠AOB =180°,∴∠BOC =50°,∴∠D =25°.故选A.探究点二:圆周角定理的推论【类型一】利用圆周角定理的推论求角如图,在⊙O 中,AB ︵=AC ︵,∠A =30°,则∠B =( ) A .150° B .75° C .60° D .15°解析:因为AB ︵=AC ︵,根据“同弧或等弧所对的圆周角相等”得到∠B =∠C ,因为∠A +∠B +∠C =180°,所以∠A +2∠B =180°,又因为∠A =30°,所以30°+2∠B =180°,解得∠B =75°,故选B.方法总结:解题的关键是掌握在同圆或等圆中,相等的两条弧所对的圆周角也相等.注意方程思想的应用.如图,BD 是⊙O 的直径,∠CBD =30°,则∠A 的度数为( ) A .30° B.45° C .60° D .75°解析:由BD 是直径得∠BCD =90°.∵∠CBD =30°,∴∠BDC =60°.∵∠A 与∠BDC 是同弧所对的圆周角,∴∠A =∠BDC =60°.故选C.【类型二】利用圆周角定理的推论求线段长如图所示,点C 在以AB 为直径的⊙O 上,AB =10cm ,∠A =30°,则BC 的长为________.解析:由AB 为⊙O 的直径得∠ACB =90°.在Rt △ABC 中,因为∠A =30°,所以BC =12AB=12×10=5cm.【类型三】利用圆周角定理的推论进行有关证明如图所示,已知△ABC 的顶点在⊙O 上,AD 是△ABC 的高,AE 是⊙O 的直径,求证:∠BAE =∠CAD .解析:连接BE 构造Rt △ABE ,由AD 是△ABC 的高得Rt △ACD ,要证∠BAE =∠CAD ,只要证出它们的余角∠E 与∠C 相等,而∠E 与∠C 是同弧AB 所对的圆周角.证明:连接BE ,∵AE 是⊙O 的直径,∴∠ABE =90°,∴∠BAE +∠E =90°.∵AD 是△ABC 的高,∴∠ADC =90°,∴∠CAD +∠C =90°.∵AB ︵=AB ︵,∴∠E =∠C ,∵∠BAE +∠E =90°,∠CAD +∠C =90°,∴∠BAE =∠CAD .方法总结:涉及直径时,通常是利用“直径所对的圆周角是直角”来构造直角三角形,并借助直角三角形的性质来解决问题.探究点三:圆的内接四边形及性质【类型一】利用圆的内接四边形的性质进行计算如图,点A,B,C,D在⊙O上,点O在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=________度.解析:∵四边形ABCD是圆内接四边形,∴∠B+∠ADC=180°.∵四边形OABC为平行四边形,∴∠AOC=∠B.又由题意可知∠AOC=2∠ADC.∴∠ADC=180°÷3=60°.连接OD,可得AO=OD,CO=OD.∴∠OAD=∠ODA,∠OCD=∠ODC.∴∠OAD+∠OCD=∠ODA+∠ODC=∠D =60°.【类型二】利用圆的内接四边形的性质进行证明如图,已知A,B,C,D是⊙O上的四点,延长DC,AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.解析:由已知易得∠E=∠BCE,由同角的补角相等,得∠A=∠BCE,则∠E=∠A.证明:∵BC=BE,∴∠E=∠BCE.∵四边形ABCD是圆内接四边形,∴∠A+∠DCB=180°.∵∠BCE+∠DCB=180°,∴∠A=∠BCE.∴∠A=∠E.∴AD=DE.∴△ADE是等腰三角形.方法总结:圆内接四边形对角互补.三、板书设计教学过程中,强调圆周角定理得出的理论依据,使学生熟练掌握并会学以致用.在圆中,利用圆周定理及其推论求相关的角度时,注意辅助线的添加及多种可能情况的考虑.。