浙江大学附中2013届高三数学一轮复习单元训练:统计 Word版含答案]
- 格式:doc
- 大小:297.50 KB
- 文档页数:9
浙江大学附中2013届高三数学一轮复习单元训练:圆锥曲线与方程本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.双曲线192522=-y x 的渐近线方程为( )A .3x ±4y =0B . 4x ±3y =0C . 3x ±5y =0D .5x ±3y =0【答案】C2.在同一坐标系中,方程22221a x b y +=与20ax by +=(a >b>0)的曲线大致是( )【答案】D3.知F 是椭圆12222=+by a x (a >b>0)的左焦点, P 是椭圆上的一点, PF ⊥x 轴, OP ∥AB(O 为原点),则该椭圆的离心率是( )A .22 B .42 C .21 D .23 【答案】A4.P 是椭圆14522=+y x 上的一点,1F 和2F 是焦点,若∠F 1PF 2=30°,则△F 1PF 2的面积等于( ) A .3316 B .)32(4- C .)32(16+ D . 16【答案】B5.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均和圆22:650C x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为( )A .22145x y -=B .22154x y -=C .22136x y -=D .22163x y -=【答案】B6.已知F 是椭圆12222=+by a x (a >b>0)的左焦点, P 是椭圆上的一点, PF ⊥x 轴, OP ∥AB(O 为原点), 则该椭圆的离心率是( )A .22 B .42 C .21 D .23 【答案】A7.经过原点且与抛物线23(1)4y x =+-只有一个公共点的直线有多少条?( ) A . 0 B . 1C . 2D . 3【答案】D8.已知 21、F F 分别为双曲线12222=-by a x ()0,0>>b a 的左、右焦点,P 为双曲线右支上任一点.若||||221PF PF 的最小值为a 8,则该双曲线的离心率e 的取值范围是( )A .()2,1B .(]3,1C .[]3,2D .[)+∞,3【答案】B9.若双曲线22221(0)x y a b a b-=>>的左右焦点分别为1F 、2F ,线段1F 2F 被抛物线22y bx=的焦点分成7:5的两段,则此双曲线的离心率为( ) A .98B 637C .324D 310【答案】C10.已知双曲线22122x y -=的准线过椭圆22214x y b +=的焦点,则直线2y kx =+与椭圆至多有一个交点的充要条件是( ) A . 11,22K ⎡⎤∈-⎢⎥⎣⎦B . 11,,22K ⎛⎤⎡⎫∈-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭U C . 2222K ⎡∈-⎢⎣⎦D . 22,22K ⎛⎫∈-∞-+∞ ⎪⎢ ⎪⎝⎦⎣⎭U 【答案】A11.若方程15222=-+-ky k x 表示双曲线,则实数k 的取值范围是( ) A . 2<k<5 B . k>5C . k<2或k>5D . 以上答案均不对【答案】C12.若抛物线px y 22=的焦点与双曲线1322=-y x 的右焦点重合,则p 的值为( ) A . -4 B . 4 C . -2 D . 2【答案】A第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知P 为椭圆221259x y += 上一点,F 1,F 2是椭圆的焦点,∠F 1PF 2=900,则△F 1PF 2的面积为___________; 【答案】914.已知P 是双曲线)0(1y 4x 222>=-b b上一点,F 1、F 2是左右焦点,⊿P F 1F 2的三边长成等差数列,且∠F 1 P F 2=120°,则双曲线的离心率等于 【答案】27 15.抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标为 。
浙江大学附中2013届高三数学一轮复习单元训练:统计本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.经过对2K 的统计量的研究,得到了若干个临界值,当2K 的观测值 3.841k >时,我们( )A . 在错误的概率不超过0.05的前提下可认为A 与B 有关 B . 在错误的概率不超过0.05的前提下可认为A 与B 无关C . 在错误的概率不超过0.01的前提下可认为A 与B 有关D .没有充分理由说明事件A 与B 有关 【答案】A2.对于线性相关系数,叙述正确的是( )A .||1,||r r ≤越接近于1,相关程度越弱,|r|越接近于0,相关程度越强B .||1,||r r ≤越接近于1,相关程度越强,|r|越接近于0,相关程度越弱C .||(0,),||r r ∈+∞越大,相关程度越强;|r|越小,相关程度越弱D .||(0,),||r r ∈+∞越大,相关程度越弱;|r|越小,相关程度越强【答案】B3.有五组变量:①汽车的重量和汽车每消耗1升汽油所行驶的平均路程;②平均日学习时间和平均学习成绩;③某人每日吸烟量和其身体健康情况;④正方形的边长和面积;⑤汽车的重量和百公里耗油量.其中两个变量成正相关的是( ) A .①③ B .②④ C .②⑤ D .④⑤ 【答案】C4.两个变量x ,y 与其线性相关系数r 有下列说法 (1)若r>0,则x 增大时,y 也相应增大; (2)若r<0,则x 增大时,y 也相应增大;(3)若r =1或r =-1,则x 与y 的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上,其中正确的有( )A . ①②B . ②③C . ①③D . ①②③ 【答案】C5.对100只小白鼠进行某种激素试验,其中雄性小白鼠、雌性小白鼠对激素的敏感情况统计得到如下列联表由22() 5.56()()()()n ad bc K a b c d a c b d -=≈++++附表:则下列说法正确的是( )A .在犯错误的概率不超过000.1的前提下认为“对激素敏感与性别有关”;B ..在犯错误的概率不超过000.1的前提下认为“对激素敏感与性别无关”;C .有0095以上的把握认为“对激素敏感与性别有关”;D .有0095以上的把握认为“对激素敏感与性别无关”; 【答案】C6.对变量x, y 有观测数据(1x ,1y )(i=1,2,…,10),得散点图1;对变量u ,v 有观测数据(1u ,1v )(i=1,2,…,10),得散点图2. 由这两个散点图可以判断( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关 【答案】C7.对两个变量y 和x 进行回归分析,得到一组样本数据:(x 1,y 1),(x 2,y 2),…,(x n ,y n ),则下列说法中不正确的是( )A .由样本数据得到的回归方程=x +必过样本点的中心(x ,y )B .残差平方和越小的模型,拟合的效果越好C .用相关指数R 2来刻画回归效果,R 2的值越小,说明模型的拟合效果越好D.在残差图中,残差点比较均匀地落在水平带状区域中,说明选用的模型比较合适,带状区域越窄,说明回归方程的预报精确度越高;【答案】C8.已知,x y的值如表所示:如果y与x呈线性相关且回归直线方程为72y bx=+,则b=( )A.12-B.12C.110-D.110【答案】B9.给出下列结论:在回归分析中可用(1)可用相关指数2R的值判断模型的拟合效果,2R越大,模型的拟合效果越好;(2)可用残差平方和判断模型的拟合效果,残差平方和越大,模型的拟合效果越好;(3)可用相关系数r的值判断模型的拟合效果,r越大,模型的拟合效果越好;(4)可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高.以上结论中,正确的是( )A.(1)(3)(4)B.(1)(4)C.(2)(3)(4)D.(1)(2)(3)【答案】B10.现有以下两项调查:①某校高二年级共有15个班,现从中选择2个班,检查其清洁卫生状况;②某市有大型、中型与小型的商店共1500家,三者数量之比为1∶5∶9.为了调查全市商店每日零售额情况,抽取其中15家进行调查.完成①、②这两项调查宜采用的抽样方法依次是( )A.简单随机抽样法,分层抽样法B.系统抽样法,简单随机抽样法C.分层抽样法,系统抽样法D.系统抽样法,分层抽样法【答案】A11.为防止某种疾病,今研制一种新的预防药.任选取100只小白鼠作试验,得到如下的列联表:2 3.2079K的观测值为,则在犯错误的概率不超过( )的前提下认为“药物对防止某种疾病有效”。
浙江大学附中2013届高三数学一轮复习单元训练:数系的扩充与复数的引入本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试工夫120分钟. 第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只需一项是符合标题要求的) 1.已知复数,21,321i z bi z -=-=若21z z 是实数,则实数b 的值为( )A .6B .-6C .0D .61【答案】A2.若等比数列{}n a 前n 项和为a S nn +-=2,则复数i a iz +=在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A3.设i 是虚数单位,复数12aii+-为纯虚数,则实数a 的值为( ) A .2 B .—2C .12-D .12【答案】A4.ii i i +---+1)2(1)21(22等于( ) A .i 43- B .i 43+-C .i 43+D .i 43--【答案】B5.在复平面内,复数32ii -+对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D6.27.i 是虚数单位,i12+=( )A .1+iB .1iC .2+2iD .22i【答案】B7.若复数11iz i-=+(i 为虚数单位),则246810W z z z z z =++++的值为( ) A . 1 B . 1- C . i D . i -【答案】B8.以下命题中正确的是( )A .任意两复数均不能比较大小B .复数z 是实数的充要条件是z =zC .虚轴上的点表示的是纯虚数D . i+1的共轭复数是i -1【答案】B9.复数z=22i i-+(i 为虚数单位)在复平面内对应的点所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D10.设复数121,2z i z bi =+=+,若21z z 为纯虚数,则实数b =( )A .2B . 1C . 1-D . 2-【答案】D11.若关于x 的方程2(12)30x i x m i ++++=有实根,则实数m 等于( ) A .112B .112i C .112-D .112i -【答案】A 12.复数ii z +-=131的虚部是( ) A . 2 B . 2-C .i 2D .i 2-【答案】B第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.设117,,(12ia b R a bi i i-∈+=-为虚数单位),则a b +==___________. 【答案】814.已知i 是虚数单位,复数2(1)1i z i+=-,则z 等于____________.【答案】1z i =--15.12= ;【答案】1- 16.计算31ii-+= (其中i 是虚数单位)【答案】i 21-三、解答题(本大题共6个小题,共70分,解答应写出文字阐明,证明过程或演算步骤)17.实数m 取甚么值时,复数(1)(1)z m m m i =-+-是 (1)实数? (2)纯虚数? 【答案】(1)m=1 (2)m=018.设复数()()i m m m m z 2322lg 22+++--=,当m 取何实数时? (1)z 是纯虚数;(2)z 对应的点位于复平面的第二象限。
浙江省2013届高三数学一轮复习单元训练:计数原理本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.二项式的展开式中的常数项是()A .第10项B .第9项C .第8项D .:第7项 【答案】B2.设(1+x +x 2)n =a 0+a 1x +…+a 2n x 2n,则a 2+a 4+…+a 2n 的值为( )A .3n +12B .3n -12C .3n -2D .3n【答案】B 3. 321(2)2x x-10的展开式中常数项是( ) A .210 B .1052 C .14D .-105【答案】B4.从10名大学毕业生中选3人,担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为( ) A .85 B .56 C .49 D .28 【答案】C5.当n 为偶数时,011220(1)(1)(1)(1)n n n nnn n n S C x C x C x C x --=+-+++-++,则S 等于A .n xB .(1)n x +C .(1)n x -D .(1)n x -【答案】A6. (1+2x )5的展开式中,x 2的系数等于( )A .80B .40C .20D .10 【答案】B7.三位老师和三位学生站成一排,要求任何两位学生都不相邻,则不同的排法总数为( )A .720 B.144 C .36 D .12 【答案】B 8.若(x +12x)n 的展开式中前三项的系数成等差数列,则展开式中x 4项的系数为( ) A .6 B .7C .8D .9【答案】B 9.二项式83(2x x-的展开式中常数项是( ) A .-28 B .-7C .7D .-28【答案】C10.从5名男同学,4名女同学中选出3名同学组队参加课外活动,要求男、女同学都有,则不同的方案个数共有( ))(A140)(B100)(C80)(D70【答案】D11.二项式的展开式中的常数项是( )A.第10项B.第9项C.第8项D.:第7项【答案】B【解析】利用二项展开式的通项公式求出通项,令x的指数为0,求出r的值代入通项,求出展开式的常数项.解:展开式的通项公式520211052,20082rr rrT C x r r-+=-==令,得展开式中常数项是第9项,故选B同的三位数的个数是( )A.36B.48C.52D.54【答案】B第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.在(x +1x-2)20的展开式中含x -17项的系数是________(用数字作答).【答案】-988014.已知55443322105)1(x a x a x a x a x a a x +++++=-,则())(531420a a a a a a ++++ 的值等于 . 【答案】256-15.已知)1()1(6-+ax x 的展开式中,3x 的系数为10,则实数a 的 值为 【答案】216.若10(21)a x dx =+⎰,则二项式(1ax x+)6的展开式中的常数项为 . 【答案】160三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.把3盆不同的兰花和4盆不同的玫瑰花摆放在如图所示的图案中的1,2,3,4,5,6,7所处的位置上,其中3盆兰花不能放在一条直线上,求不同的摆放方法.【答案】用间接法.7盆花在7个位置的全排列为A 77;3盆兰花在同一条直线上的排列方法有以下几类:在1,2,3,或1,4,7,或3,4,5,或5,6,7,或2,4,6,每一类的排列方法数都是A 33,4盆玫瑰花的排列方法有A 44种.故所求排列方法数共有A 77-5A 33A 44=4320.18.已知(1+2x )n的展开式中,某一项的系数是它前一项系数的2倍,而又等于它后一项系数的56.(1)求展开后所有项的系数之和及所有项的二项式系数之和; (2)求展开式中的有理项.【答案】根据题意,设该项为第r +1项,则有⎩⎪⎨⎪⎧C r n 2r=2C r -1n 2r -1,C r n 2r =56C r +1n 2r +1,即⎩⎪⎨⎪⎧C rn =C r -1n ,C r n =53C r +1n ,亦即⎩⎪⎨⎪⎧n =2r -1,n !r !(n -r )!=53×n !(r +1)!(n -r -1)!,解得⎩⎪⎨⎪⎧r =4,n =7.(1)令x =1得展开式中所有项的系数和为(1+2)7=37=2 187.所有项的二项式系数和为27=128.(2)展开式的通项为T r +1=C r 72rx r2,r ≤7且r ∈N.于是当r =0,2,4,6时,对应项为有理项,即有理项为T 1=C 0720x 0=1,T 3=C 2722x =84x ,T 5=C 4724x 2=560x 2,T 7=C 6726x 3=448x 3.19.如果⎝ ⎛⎭⎪⎫3x 2-2x 3n的展开式中含有非零常数项,求正整数n 的最小值.【答案】∵T r +1=C r n (3x 2)n -r·⎝ ⎛⎭⎪⎫-2x 3r =(-1)r ·C r n ·3n -r ·2r ·x 2n -5r , ∴若T r +1为常数项,必有2n -5r =0.∴n =5r 2,∵n 、r ∈N *,∴n 的最小值为5.20. 已知n 4)x 21x (+的展开式前三项中的x 的系数成等差数列。
阶段检测三数列与不等式一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a,b,c为实数,且a<b<0,则下列结论正确的是()A.ac2<bc2B.<C.>D.a2>ab>b22.若集合A={x|x(x-2)<3},B={x|(x-a)(x-a+1)=0},且A∩B=B,则实数a的取值范围是()A.-1<a<3B.0<a<3C.0<a<4D.1<a<43.已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.844.已知{a n}是等差数列,a5=15,a10=-10,记数列{a n}的第n项到第n+5项的和为T n,则|T n|取得最小值时的n的值为()A.5或6B.4或5C.6或7D.9或105.设变量x,y 满足约束条件则目标函数z=y-2x的最小值为()A.-7B.-4C.1D.26.已知函数f(x)=若数列{a n}(n∈N*)的前n项和为S n,且a1=,a n+1=f(a n),则S2016=()A.895B.896C.897D.8987.已知定义在R上的函数f(x)对任意x1,x2∈R,x1≠x2,都有(x1-x2)f(x1)-f(x2)]>0,若函数f(x+1)为奇函数,则不等式f(1-x)>0的解集为()A.(-∞,-1)B.(-∞,0)C.(0,+∞)D.(1,+∞)8.已知不等式2x+m+>0对一切x∈(1,+∞)恒成立,则实数m的取值范围是()A.(-10,+∞)B.(-∞,-10)C.(-∞,+∞)D.(-∞,-8)9.已知点P(m,n)到点A(0,4)和B(-8,0)的距离相等,则+的最小值为()A.-3B.3C.16D.410.函数y=f(x)为定义在R上的减函数,函数y=f(x-1)的图象关于点(1,0)对称,若x,y满足不等式f(x2-2x)+f(2y-y2)≤0,M(1,2),N(x,y),O为坐标原点,则当1≤x≤4时,·的取值范围为()A.12,+∞)B.0,3]C.3,12]D.0,12] 11.已知数列{a n}是等差数列,数列{b n}满足b n=a n a n+1a n+2(n∈N*),设S n为{b n}的前n项和,若a12=a5>0,则当S n取得最大值时n 的值为()A.15B.16C.17D.1812.在数列{a n}中,对于任意n∈N*,若存在常数λ1,λ2,…,λk,使得a n+k=λ1a n+k-1+λ2a n+k-2+…+λk a n(λi≠0,i=1,2,…,k)恒成立,则称数列{a n}为k阶数列.现给出下列三个结论:①若a n=2n,则数列{a n}为1阶数列;②若a n=2n+1,则数列{a n}为2阶数列;③若a n=n2,则数列{a n}为3阶数列.其中正确结论的序号是()A.①②B.①③C.②③D.①②③1 2 3 4 5 6 7 8 9 10 11 12 得分二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.已知集合A={x|x2-2x-3≤0},B={x|log2(x2-x)>1},则A∩B=.14.已知正实数m,n满足m+n=1,且使+取得最小值.若曲线y=x a过点P,则a的值为.15.在数列{a n}中,已知a1=1,a n+1-a n=sin,记S n为数列{a n}的前n项和,则S2016=.16.已知公差为2的等差数列{a n}及公比为2的等比数列{b n}满足a1+b1>0,a2+b2<0,则a3+b3的取值范围是.三、解答题(共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设数列{a n}的前n项和为S n,已知a2=2,S4=4,a n+a n+2=2a n+1对任意n∈N*恒成立.(1)求数列{a n}的通项公式;(2)在平面直角坐标系中,设u=(4,S2),v=(4k,-S3),若u∥v,求实数k的值.18.(本小题满分12分)已知关于x的不等式ax2-3x+2>0的解集为{x|x<1或x>b}.(1)求a,b的值;(2)当c∈R时,解关于x的不等式ax2-(ac+b)x+bc<0(用c表示).19.(本小题满分12分)设数列{a n}满足a1=2,a2+a4=8,且对任意n∈N*,函数f(x)=(a n-a n+1+a n+2)x+a n+1cosx-a n+2sinx满足f'=0.(1)求数列{a n}的通项公式;(2)若b n =2,求数列{b n}的前n项和S n. 20.(本小题满分12分)经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴.在2015年“双十一”网购狂欢节前,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量p万件与促销费用x万元满足p=3-(其中0≤x≤a,a为正常数).已知生产该产品还需投入成本(10+2p)万元(不含促销费用),产品的销售价格定为元/件,假定厂家的生产能力能满足市场的销售需求.(1)将该产品的利润y万元表示为促销费用x万元的函数;(2)促销费用投入多少万元时,厂家的利润最大?并求出最大利润.21.(本小题满分12分)已知正项数列{a n},{b n},{c n}满足b n=a2n-1,c n=a2n,n∈N*,数列{b n}的前n项和为S n,(b n+1)2=4S n,数列{c n}的前n项和T n=3n-1.(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和A n.22.(本小题满分12分)已知等差数列{a n}的前n项和为S n,a2=2,S5=15,数列{b n}满足:b1=,b n+1=b n(n∈N*),数列{b n}的前n 项和为T n.(1)求数列{a n}的通项公式及前n项和;(2)求数列{b n}的通项公式及前n项和;(3)记集合M=,若M的子集个数为16,求实数λ的取值范围.阶段检测三数列与不等式一、选择题1.D因为a<b<0,所以>,<1,>1,故<,>均不成立;当c2=0时,ac2<bc2不成立.故选D.2.B因为集合A={x|x(x-2)<3}={x|-1<x<3},B={x|(x-a)(x-a+1)=0}={a,a-1},且A∩B=B,所以B⊆A,即B中的两个元素a,a-1都在集合A中,则-1<a<3且-1<a-1<3,那么a的取值范围是0<a<3.3.B由于a1+a3+a5=a1(1+q2+q4)=21,a1=3,所以q4+q2-6=0,所以q2=2(q2=-3舍去),所以a3=6,a5=12,a7=24,所以a3+a5+a7=42.故选B.4.A 由得从而等差数列{a n}的通项公式为a n=40-5n,得T n=(40-5n)+…+(15-5n)=165-30n,因为|T n|≥0,且n∈N*,故当n=5或6时,|T n|取得最小值15.5.A解法一:将z=y-2x化为y=2x+z,作出可行域和直线y=2x(如图所示),当直线y=2x向右下方平移时,直线y=2x+z 在y轴上的截距z减小,数形结合知当直线y=2x+z经过点B(5,3)时,z取得最小值3-10=-7.故选A.解法二:易知平面区域的三个顶点坐标分别为(1,3),(2,0),(5,3),分别代入z=y-2x得z的值为1,-4,-7,故z的最小值为-7.故选A.6.B a1=,a2=f =,a3=f =-3=-,a4=,……,可得数列{a n}是周期为3的数列,一个周期内的三项之和为,又2016=672×3,所以S2016=672×==896.7.B令x1<x2,因为(x1-x2)f(x1)-f(x2)]>0,所以f(x1)<f(x2),故f(x)在R上是增函数.由f(x+1)为奇函数,得f(x)的图象关于点(1,0)对称,由不等式f(1-x)>0,得1-x>1,即x<0.8.A解法一:不等式2x+m+>0可化为2(x-1)+>-m-2,∵x>1,∴2(x -1)+≥2×2=8,当且仅当x=3时取等号.∵不等式2x+m+>0对一切x∈(1,+∞)恒成立,∴-m-2<8,解得m>-10,故选A.解法二:不等式2x+m+>0对一切x∈(1,+∞)恒成立可化为m>,x∈(1,+∞),令f(x)=-2x-,x∈(1,+∞),则f(x)=--2≤-2-2=-2×4-2=-10,当且仅当x=3时取等号,∴m>-10,故选A.9.C因为点P(m,n)到点A(0,4)和B(-8,0)的距离相等,所以=,即2m+n=-6,又>0,>0,所以+≥2=2=2=16,当且仅当即2m=n=-3时取等号.10.D由题意得函数y=f(x)的图象关于点(0,0)对称,则函数y=f(x)为奇函数,由f(x2-2x)+f(2y-y2)≤0,得f(x2-2x)≤f(-2y+y2),又y=f(x)为定义在R上的减函数,所以x2-2x≥-2y+y2,即(x-y)(x+y-2)≥0.作出不等式组表示的平面区域,如图中阴影部分所示,易得·=x+2y,设t=x+2y.易知当直线t=x+2y过点C(4,-2)时,t取得最小值0,当直线过点B(4,4)时,t取得最大值12,即·的取值范围为0,12].11.B设{a n}的公差为d,由a12=a5>0,得a1=-d,d<0,所以a n =d,从而当1≤n≤16时,a n>0,当a≥17时,a n<0,所以当1≤n≤14时,b n>0,b15=a15a16a17<0,b16=a16a17a18>0,当n≥17时,b n<0,故S14>S13>…>S1,S14>S15,S15<S16,S16>S17>S18>….因为a15=-d>0,a18=d<0,所以a15+a18=-d+d=d<0,所以b15+b16=a16a17(a15+a18)>0,所以S16>S14,故当S n取得最大值时n=16.12.D①∵a n=2n,∴∃k=1,λ=2,使a n+k=λa n+k-1成立,∴{a n}为1阶数列,故①正确;②∵a n=2n+1,∴∃k=2,λ1=2,λ2=-1,使a n+k=λ1a n+k-1+λ2a n+k-2成立,∴{a n}为2阶数列,故②正确;③∵a n=n2,∴∃k=3,λ1=3,λ2=-3,λ3=1,使a n+k=λ1a n+k-1+λ2a n+k-2+λ3a n+k-3成立,∴{a n}为3阶数列,故③正确.二、填空题13.答案(2,3]解析因为A={x|x2-2x-3≤0}=-1,3],B={x|log2(x2-x)>1}={x|x2-x>2}=(-∞,-1)∪(2,+∞),所以A∩B=(2,3]. 14.答案解析+=(m+n)=17++≥17+2=25,当且仅当n=4m=时取等号,故点P,由于曲线y=x a过点P,所以=,从而可得a=.15.答案1008解析由a n+1-a n =sin⇒a n+1=a n +sin,∴a2=a1+sinπ=1+0=1,a3=a2+sin=1+(-1)=0,a4=a3+sin2π=0+0=0,a5=a4+sin=0+1=1,如此继续可得a n+4=a n(n∈N*),数列{a n}是一个以4为周期的数列,而2016=4×504,因此S2016=504×(a1+a2+a3+a4)=504×(1+1+0+0)=1008.16.答案(-∞,-2)解析由题意可得该不等式组在平面直角坐标系a1Ob1中表示的平面区域如图中阴影部分所示.当直线a3+b3=a1+4+4b1经过点(2,-2)时a3+b3取得最大值-2,又(2,-2)不在平面区域内,则a3+b3<-2.三、解答题17.解析(1)∵a n+a n+2=2a n+1对任意n∈N*恒成立,∴数列{a n}是等差数列.设数列{a n}的公差为d,∵a2=2,S4=4,∴解得∴a n=a1+(n-1)d=-2n+6.(2)S n =·n=·n=-n2+5n,∴S2=6,S3=6,∴u=(4,6),v=(4k,-6),∵u∥v,∴4×(-6)=6×4k,∴k=-1.18.解析(1)由已知得1,b是方程ax2-3x+2=0的两个实数根,且b≥1,a>0,所以解得(2)由(1)得原不等式可化为x2-(2+c)x+2c<0,即(x-2)(x-c)<0,所以当c>2时,所求不等式的解集为{x|2<x<c},当c<2时,所求不等式的解集为{x|c<x<2},当c=2时,所求不等式的解集为⌀.19.解析(1)由题设可得f'(x)=a n-a n+1+a n+2-a n+1sinx-a n+2·cosx.对任意n∈N*,f'=a n-a n+1+a n+2-a n+1=0,即a n+1-a n=a n+2-a n+1,故{a n}为等差数列.由a1=2,a2+a4=8,求得{a n}的公差d=1,所以a n=2+(n-1)×1=n+1.(2)b n =2=2=2n++2,故S n=b1+b2+…+b n=2n+2·+=n2+3n+1-.20.解析(1)由题意知y=p-x-(10+2p),将p=3-代入,化简得y=16--x(0≤x≤a).(2)由(1)知y=17-,当a≥1时,y≤17-2=13,当且仅当=x+1,即x=1时取等号.所以促销费用投入1万元时,厂家的利润最大,最大利润为13万元.当a<1时,函数y=17-在0,a]上单调递增,所以当x=a时,函数有最大值,所以促销费用投入a万元时,厂家的利润最大,最大利润为万元.综上,当a≥1时,促销费用投入1万元,厂家的利润最大,且最大利润为13万元;当a<1时,促销费用投入a万元,厂家的利润最大,且最大利润为万元.21.解析(1)由(b n+1)2=4S n,得(b1+1)2=4b1,∴b1=1.又(b n-1+1)2=4S n-1,n≥2,则(b n+1)2-(b n-1+1)2=4S n-4S n-1=4b n,n≥2,化简得-=2(b n+b n-1),n≥2,又b n>0,所以b n-b n-1=2,n≥2,则数列{b n}是首项为1,公差为2的等差数列,所以b n=1+2(n-1)=2n-1=a2n-1,所以当n为奇数时,a n=n.由T n=3n-1得c1=2,T n-1=3n-1-1,n≥2,则c n=3n-3n-1=2×3n-1,n≥2,当n=1时,上式也成立,所以c n=2×3n-1=a2n,所以当n为偶数时,a n =2×.所以a n =(2)①当n为偶数时,A n 中有个奇数项,个偶数项,奇数项的和为=,偶数项的和为=-1,所以A n =+-1;②当n为奇数时,n+1为偶数,A n=A n+1-a n+1=+-1-2×=+-1.综上,可得A n =22.解析(1)设数列{a n}的公差为d,由题意得解得所以a n=n,S n =.(2)由题意得=·,当n≥2时,b n =··…··b1=·=,又b1=也满足上式,故b n =.故T n =+++…+①,T n =+++…++②,①-②得T n =+++…+-=-=1-,所以T n =2-.(3)由(1)(2)知=,令f(n)=,n∈N*,则f(1)=1,f(2)=,f(3)=,f(4)=,f(5)=.因为f(n+1)-f(n)=-=,所以当n≥3时,f(n+1)-f(n)<0,f(n+1)<f(n),因为集合M的子集个数为16,所以M中的元素个数为4,所以不等式≥λ,n∈N*的解的个数为4,所以<λ≤1.。
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设函数()214f x x x =+--.则不等式()2f x >的解集是( )A .5{7}3x x -<< B .⎭⎬⎫⎩⎨⎧>-<35,7x x x 或 C .{7,4}x x x <-≥或D .⎭⎬⎫⎩⎨⎧>-≤35,21x x x 或 【答案】B2.如图5,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,PA =8,OA =6,则tan ∠APO 的值为( )A .34 B .53 C .54 D .43【答案】D 3.圆)sin (cos 2θθρ+=的圆心坐标是( )A . ⎪⎭⎫⎝⎛4,21πB .⎪⎭⎫⎝⎛4,1π C .⎪⎭⎫⎝⎛4,2πD .⎪⎭⎫⎝⎛4,2π 【答案】B4.如图,E 是平行四边形ABCD 的边BC 的延长线上 的一点,连结AE 交CD 于F ,则图中共有相似三角形( )A . 1对B . 2对C . 3对D . 4对【答案】C5.已知实数,,x y z 满足21x y z ++=,212222=++z y x ,则z 的取值范围是( )A .102z ≤≤ B . 104z <≤C .02z ≤≤D .01z <≤【答案】A6.圆内接三角形ABC 角平分线CE 延长后交外接圆于F ,若2,FB =1EF =,则CE =( )A . 3B . 2C . 4D . 1【答案】A 7.已知,则使得都成立的取值范围是( )A .(,)B .(,)C .(,)D.(,)【答案】B8.若不等式|2x 一a |>x -2对任意x ∈(0,3)恒成立,则实数a 的取值范围是( )A . (-∞, 2] U [7, +∞)B . (-∞, 2) U (7, +∞)C . (-∞, 4) U [7, +∞)D .(-∞, 2) U (4,+ ∞) 【答案】C9.设0a >,不等式||ax b c +<的解集是{|21}x x -<<,则::a b c 等于( )A .1:2:3B . 2:1:3C .3:1:2D .3:2:1【答案】B10.不等式3|1|1<+<x 的解集为( )A .(0,2)B .(-2,0)∪(2,4)C .(-4,0)D .(-4,-2)∪(0,2) 【答案】D11.设0a >,不等式||ax b c +<的解集是{|21}x x -<<,则::a b c 等于( )A .1:2:3B . 2:1:3C .3:1:2D .3:2:1【答案】B12.若关于x 的不等式2124x x a a +--<-有实数解,则实数a 的取值范围为( )A .(,1)(3,)-∞+∞B .(1,3)C .(,3)(1,)-∞--+∞D .(3,1)--【答案】A第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.如图,PAB 、PCD 为⊙O 的两条割线,若 PA=5,AB=7,CD=11,2AC =,则BD等于 .【答案】614.若直线3x+4y+m=0与圆 1cos y 2sin x θθ=+,⎧⎨=-+⎩(θ为参数)没有公共点,则实数m 的取值范围是 . 【答案】0m <或10m >15.已知曲线C 的方程为28(8x t t y t⎧=⎨=⎩为参数),过点(2,0)F 作一条倾斜角为4π的直线交曲线C 于A 、B 两点,则AB 的长度为【答案】1616.在平面直角坐标系xOy 中,曲线21,C C 的参数方程分别为⎪⎭⎫ ⎝⎛≤≤⎩⎨⎧==20sin 5cos 5πθθθθ为参数,y x 和()为参数t t y tx ⎩⎨⎧-=-=1,则曲线1C 与2C 的交点坐标为 ____________ 【答案】()1,2三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.已知大于1的正数,,x y z 满足3 3.x y z ++=(1)求证:22232323232x y z x y z y z x z x y ++≥++++++(2)求333333111log log log log log log x y y z z x+++++的最小值。
答案 一.选择题本大题共10小题, 每小题5分, 共50分. 在每小题给出的四个选项中, 只有一项是符合题目要求的.DBCDAABBCC二、填空题:11.64 12. (1 13. 14. 15.2 16. 17. -2 本大题有5小题,共72分,解答应写出文字说明、证明过程或演算步骤.(Ⅰ)cos(2x+)+3, 故的最大值为+3;最小正周期.(Ⅱ)由得cos(2A+)+3=3-2, 故cos(2A+)=-1,又由0<A<得A+<+, A+=,解得A=.又B=C=. ∴=2cosC=0. 14分 19.(本题满分14分) (Ⅰ)//,得2sin2A1cosA=0,即cosA=或cosA=-1(舍去), 所以A=. -----------------------------------------------------------6分 (Ⅱ)a,由//,得λsin2A1cosA=0, 即cosA=或cosA=-1(舍去),----------------------------------------------10分 又cosA=, 综上,λ需要满足,得λ≥..(本小题满分1分)(Ⅰ)设等差数列的公差为,等比数列的公比为.由题意, 得,解得d=q=3.∴,. (Ⅱ).∴.∴.∴..(本小题满分1分)Ⅰ)当时, 当时,; 当时,; 当时,. 所以当时,取极小值. ………………7分 (Ⅱ)当时,,,, 故l1中,不存函数图象的切线. 由得与, 当时,求得 当时,求得. 15分 22.(本小题满分1分)Ⅰ )由题意知:, 所以抛物线C的方程.(Ⅱ),因为、、、四点共圆,所以确定圆的方程为: ① 又⊙:② 又由①-②得直线的方程:.(Ⅲ)方程为,由于⊙M与直线相切,得到,整理得到: ,即,所以或, 经检验得点坐标为. 高考学习网: 高考学习网:。
浙江大学附中2013届高三数学一轮复习单元训练:三角函数本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在一幢20 m 高的楼顶测得对面一塔吊顶部的仰角为60°,塔基的俯角为45°,那么该塔吊的高是( )A .201⎛⎝m B .20(1mC .10mD .20m【答案】B2.已知32cos sin =+αα,则=+ααcot tan ( ) A .95-B .95C .518D .518-【答案】D3.已知函数sin(6)4y x π=+的图象上各点的横坐标伸长到原来的3倍,再向右平移8π个单位,得到的函数的一个对称中心是( )A .(0)16π,B .(0)9π, C .(0)4π,D .(0)2π,【答案】D4.5cos()6π-的值是( )A .B .12C .D . 12-【答案】C5.将函数sin()3y x =-π的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图像向左平移3π个单位,则所得函数图像对应的解析式为( )A .1sin()26y x =-πB .1sin()23y x =-πC .1sin 2y x= D .sin(2)6y x =-π【答案】A 6.若tan α=21,tan β=31,则tan(αβ+)=( ) A .75B .65 C .1D .2【答案】C7.在ABC ∆中,若cos cos a B b A =,则ABC ∆的形状一定是( )A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形 【答案】D 8.已知函数()()sin f x A x ωϕ=+(0x R A ∈>,,02πωϕ><,)的图象(部分)如图所示,则()x f 的解析式是( )A .()()2sin 6f x x x ππ⎛⎫=+∈ ⎪⎝⎭RB .()()2sin 26f x x x ππ⎛⎫=+∈ ⎪⎝⎭RC .()()2sin 3f x x x ππ⎛⎫=+∈ ⎪⎝⎭RD .()()2sin 23f x x x ππ⎛⎫=+∈ ⎪⎝⎭R【答案】A9.要得到函数)42cos(π-=x y 的图像,只需将函数x y 2cos =的图像( )A .向左平移8π个长度单位 B .向右平移8π个长度单位 C .向左平移4π个长度单位D .向右平移4π个长度单位 【答案】B10.在ABC ∆中, 已知向量cos18,cos 72AB =(), 2cos 63,2cos 27BC =(),则ABC ∆的面积为( )A .22B .24C .32D .2【答案】A11.为了在一条河上建一座桥,施工前在河两岸打上两个桥位桩,A B (如图),要测算,A B 两点的距离,测量人员在岸边定出基线BC ,测得50BC m =,105,45ABC BCA ∠=∠=,就可以计算出,A B 两点的距离为( )A .502mB .503mC .252mD .252【答案】A12.已知锐角α的终边上一点P (sin 40︒,1cos 40+︒),则α等于( )A .010B .020C . 070D .080 【答案】C第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.0tan 390=314.函数f x x x x ()cos sin cos =-223的最小正周期是 .【答案】π15.一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东060,行驶h 4后,船到达C 处,看到这个灯塔在北偏东015,这时船与灯塔距离为 km. 【答案】23016.已知扇形的圆心角为2α(定值),半径为R (定值),分别按图一、二作扇形的内接矩形,若按图一作出的矩形面积的最大值为2tan 2R α,则按图二作出的矩形面积的最大值为 .图二图一2α2α【答案】21tan 2R α 三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.已知角α的终边经过点(3,4)P -.(1) 求sin()cos()tan()πααπα-+-+的值; (2)求))cos(2)23(cos()2sin(πααπαπ--+⋅+的值. 【答案】由角α的终边过点(3,4)P -知:4sin 5α==,3cos 5α==-,44tan 33α==--, (1)sin()cos()sin cos tan()tan πααααπαα-+-+=+ =4343()/()55320--=-, (2)))cos(2)23(cos()2sin(πααπαπ--+⋅+=)cos 2(sin cos ααα+…11分=24336()2()55525⨯-+⨯-=。
浙江大学附中2013届高三数学一轮复习单元训练:算法初步与框图本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试工夫120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只需一项是符合标题要求的)1.把十进制73化成四进制后,其末位数字是( )A .0B .1C .2D .3 【答案】B2.用秦九韶算法计算多项式123456)(2345+++++=x x x x x x f 当x =5的值时,乘法运算和加法运算的次数分别( ) A .10,5 B .5,5 C .5,6 D .15,6【答案】B3.算法的三种基本结构是( )A . 按次结构 条件结构 循环结构B . 按次结构 模块结构 条件结构C . 按次结构 循环结构 模块结构D . 模块结构 条件结构 循环结构【答案】A4.将两个数8,17a b ==交换,使17,8a b ==,上面语句正确一组是( )【答案】B5.履行上面的程序框图,如果输出的N 是6,那么输出的p 是( )A .120B .720C .1440D .5040【答案】B6.以下程序运转的结果是( )A . 1, 2 ,3B . 2, 3, 1C . 2, 3, 2D . 3, 2, 1【答案】C7.用秦九韶算法计算多项式2345()1510105f x x x x x x =+++++在2x =-时的值时,3v 的值为( ) A . 1 B . 2 C . 3 D . 4 【答案】B8.算法的有穷性是指( )A . 算法必须包含输出B .算法中每个操作步骤都是可履行的C . 算法的步骤必须无量D .以上说法均不正确 【答案】C9.四进制数201(4)表示的十进制数的是( )A .31B .32C .33D .34 【答案】C10.计算机履行上面的程序,输出的结果是( ) a=1 b=3 a=a+bb=b *a 输出 a ,b EndA .1,3B .4,9C .4,12D .4,8 【答案】C11.计算机中常用十六进制,采用数字0~9和字母A ~F 共16个计数符号与十进制得对应关系如下表:例如用十六进制表示有D+E =1B ,则A ×B=( )A . 6EB . 7C C . 5FD . B0【答案】A12.运转如图所示的程序流程图,则输出I 的值是( )A . 5B .6C .7D . 8【答案】C第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.根据条件把流程图补充残缺,求11000→内一切奇数的和; (1) 处填 (2) 处填【答案】(1)s s i =+(2)2i i =+ 14.840与1764的最大公约数是 _____ 【答案】8415.以下程序履行后输出的结果是S = . i =1 S =0WHILE i<=50S=S+ii=i+1WENDPRINT SEND【答案】127516.下图程序运转结果是.【答案】21三、解答题(本大题共6个小题,共70分,解答应写出文字阐明,证明过程或演算步骤) 17.铁路托运转李,从甲地到乙地,规定每张火车票托运转李不超过50公斤时,每公斤0.2元,超过50公斤时,超过部分按每公斤0.3元计算,(不足1公斤时按1公斤计费),试设计一个计算某人坐火车托运转李所需费用的算法,要求画出框图,并用基本语句写出算法。
浙江大学附中2013届高三数学一轮复习单元训练:概率本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,矩形OABC 内的阴影部分是由曲线()()()sin 0,f x x x π=∈及直线()()0,x a a π=∈与x 轴围成,向矩形OABC 内随机投掷一点,若落在阴影部分的概率为14,则a 的值是( )A.712π B .23π C.34π D . 56π 【答案】B2.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c(a 、b 、(0,1)c ∈),已知他投篮一次得分的数学期望为2(不计其它得分情况),则ab 的最大值为( )A .148B .124C .112D .16【答案】D3.给出下列四个命题:①15秒内,通过某十字路口的汽车的数量是随机变量;②在一段时间内,某侯车室内侯车的旅客人数是随机变量;③一条河流每年的最大流量是随机变量;④一个剧场共有三个出口,散场后某一出口退场的人数是随机变量。
其中正确的个数是( )A .1B .2C .3D .4【答案】D4.设ξ~N(0,1),且P(ξ<1.623)=p,那么P(-1.623≤0≤ξ)的值是( )A . pB . -pC . 0.5-pD . p-0.5【答案】D5.已知直线y =x +b 的横截距在[-2,3]范围内,则该直线在y 轴上的纵截距大于1的概率是( )A . 15B . 25C . 35D . 45【答案】A6.某中学高考数学成绩近似地服从正态分布()100,100N ,则此校数学成绩在120~80分的考生占总人数的百分比为( )A .31.74﹪B .68.26﹪C .95.44﹪D .99.74﹪【答案】C7.从一批产品中取出三件,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是( )A .A 与C 互斥B .B 与C 互斥 C .任两个均互斥D .任两个均不互斥【答案】B8.从装有红球、黑球和白球的口袋中摸出一个球,若摸出的球是红球的概率是0.4,摸出的球是黑球的概率是0.25,那么摸出的球是白球的概率是( )A. 0.35B. 0.65C.0.1D.不能确定【答案】A9.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆。
浙江大学附中2013届高三数学一轮复习单元训练:空间几何体 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.ABCD 是正方形,PA ⊥平面AC ,且PA=AB ,则二面角A-PD-B 的度数为( )A . 060B .090C . 0120D . 0135【答案】C2.如图是某一几何体的三视图,则这个几何体的体积为( )A .4B .8C .16D .20【答案】A 3.已知点M 在平面ABC 内,并且对空间任一点O ,x OM 3121++= 则x 的值为( )A .21B .31C .61D .0【答案】C4.m 和n 是分别在两个互相垂直的面α、β内的两条直线,α与β交于l ,m 和n 与l 既不垂直,也不平行,那么m 和n 的位置关系是 ( )A .可能垂直,但不可能平行B .可能平行,但不可能垂直C .可能垂直,也可能平行D .既不可能垂直,也不可能平行【答案】D5.已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为( )A.B. C. D .34【答案】D6.设,m n 是两条不同的直线,γβα,,是三个不同的平面,给出下列四个命题: ①若m ⊥α,α//n ,则n m ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ③若α//m ,α⊂n ,则m n // ④若αγ⊥,βγ⊥,则//αβ其中正确命题的序号是( )A .①和②B .②和③C .③和④D .①和④【答案】A7.对于四面体ABCD ,给出下列命题:①相对棱AB 与CD 所在的直线异面;②由顶点A 作四面体的高,其垂足是BAD ∆的三条高线的交点;③若分别作ABC ∆和ABD ∆的边AB 上的高,则这两条高所在直线异面;④分别作出三组相对棱中点的连线,所得的三条线段相交于一点;⑤最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱.其中正确命题的个数为( )A .1B .2C .3D .4【答案】C8.点P (1,4,-3)与点Q (3,-2,5)的中点坐标是( )A .(4,2,2,)B .(2,1,1,)C .(2,-1,2,)D .(4,-1,2,)【答案】B9.把正方形ABCD 沿对角线AC 折起,当以A 、B 、C 、D 四点为顶点的正棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为( )A . 90°B . 60°C . 45°D . 30°【答案】C10.在棱柱中满足( )A . 只有两个面平行B . 所有面都平行C . 所有面都是平行四边形D . 两对面平行,且各侧棱也相互平行【答案】D11.如图,在正方体ABCD —A 1B 1C 1D 1中E 、F 分别为棱DD 1、BB 1上的动点,且BF=D 1E ,设EF 与AB 所成角为α,EF 与BC 所成的角为β,则βα+的最小值为( )A .︒45B .︒60C .︒90D .无法确定【答案】C12.一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积是( )A .8πcm2B .12πcm2C .16πcm2D .20πcm2【答案】D第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.如图,在空间四边形OABC 中,已知E 是线段BC 的中点,G 是AE 的中点,若,,OA OB OC 分别记为,,a b c ,则用,,a b c 表示OG 的结果为OG = .【答案】111244a b c ++ 14.已知=(1-t ,1-t ,t),=(2,t ,t ),则|-|的最小值为 。
一、选择题1. 答案:D解析:由题意知,函数f(x)在x=1处连续,且f(1)=2。
根据导数的定义,f'(1) = lim(x→1) [f(x) - f(1)] / (x - 1) = lim(x→1) [f(x) - 2] / (x - 1)。
由于f(x)在x=1处连续,因此f(x) - 2在x=1处也连续,所以f'(1) = 0。
2. 答案:B解析:由题意知,数列{an}是一个等差数列,且公差d=2。
首项a1=3,所以第n项an = a1 + (n - 1)d = 3 + 2(n - 1) = 2n + 1。
因此,数列{an}的通项公式为an = 2n + 1。
3. 答案:A解析:设直线l的方程为y = kx + b。
由于直线l经过点P(1, 2),代入得2 = k + b。
又因为直线l与曲线y = x^2 + 1相切,所以切线斜率k等于曲线在切点处的导数,即k = 2x。
将x=1代入得k=2。
代入2 = k + b,解得b=0。
因此,直线l的方程为y = 2x。
4. 答案:C解析:设复数z=a+bi,则|z|^2 = a^2 + b^2。
由题意知|z|^2 = 5,所以a^2 + b^2 = 5。
又因为z在复平面上对应的点位于圆x^2 + y^2 = 5上,所以z可以表示为z = 2 + 2i。
因此,a=2,b=2。
5. 答案:D解析:由题意知,向量a和向量b垂直,所以a·b = 0。
又因为|a| = |b| = 1,所以a^2 = b^2 = 1。
根据向量的数量积公式,|a+b|^2 = |a|^2 + 2a·b +|b|^2 = 1 + 0 + 1 = 2。
因此,|a+b| = √2。
二、填空题6. 答案:-1/2解析:由题意知,等比数列{an}的首项a1=2,公比q=-1/2。
第n项an = a1q^(n-1) = 2 (-1/2)^(n-1)。
当n=4时,an = 2 (-1/2)^3 = -1/2。
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设等差数列{}n a 的公差d ≠0,14a d =.若k a 是1a 与2k a 的等比中项,则k =( ) A . 3或-1 B . 3或1C . 3D . 1【答案】C2.在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列, 则n S 等于( ) A . 122n +- B .3nC .2nD .31n -。
【答案】C3.数列{a n }中,a n+1=nna a 31+,a 1=2,则a 4为( )A .78 B .58 C .516 D .192 【答案】D4.已知数列{}n a 满足:11a =,212a =,且2121n n n n a a a a +++=+ (n ∈N *),则下图中第9行所有数的和为( )A . 90B . 9!C . 1022D . 1024【答案】C5.在各项均不为零的等差数列{}n a 中,若2110n n n a a a +--+=(2)n ≥,则214n S n --=( )A .0B .2-C .1D .2 【答案】B6.在等比数列{}n a 中,21=a ,前n 项和为n S .若数列{}1+n a 也成等比数列,则n S 等于( )A .221-+nB .n 3C . n 2D .13-n【答案】C7.等差数列{}n a 中,652,30,a S ==则8S =( ) A .31 B .32C .33D .34【答案】B 8.在数列{ }中,已知 =1, =5,= - (n ∈N ※),则 等于( ) A . -4 B . -5C . 4D . 5【答案】D9.等差数列{n a }中, 若34567450a a a a a ++++=,则28a a +等于( ) A . 45B . 75C . 180D . 320【答案】C10.已知}{n a 为等差数列,105531=++a a a ,99642=++a a a ,以n S 表示}{n a 的前n 项和,则使得n S 达到最大值的n 是( )A .21B .20C .19D .18【答案】B11.已知{}n a 为等差数列,105531=++a a a ,99642=++a a a ,则20a 等于( ) A .-1 B .1C .3D . 7【答案】B 12.已知等差数列满足,,则它的前10项的和( )A .138B .135C .95D .23【答案】C第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.数列{a n }的通项公式为a n =1n +n +1,其前n 项之和为10,则在平面直角坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为____________. 【答案】120-14.等比数列{a n }的前n 项和为S n ,公比不为1。
浙江大学附中2013届高三数学一轮复习单元训练:空间几何体 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.ABCD 是正方形,PA ⊥平面AC ,且PA=AB ,则二面角A-PD-B 的度数为( )A . 060B .090C . 0120D . 0135 【答案】C2.如图是某一几何体的三视图,则这个几何体的体积为( )A .4B .8C .16D .20【答案】A 3.已知点M 在平面ABC 内,并且对空间任一点O,OA x OM ++= 则x 的值为( )A .21B .31C .61D .0【答案】C4.m 和n 是分别在两个互相垂直的面α、β内的两条直线,α与β交于l ,m 和n 与l 既不垂直,也不平行,那么m 和n 的位置关系是 ( )A .可能垂直,但不可能平行B .可能平行,但不可能垂直C .可能垂直,也可能平行D .既不可能垂直,也不可能平行【答案】D5.已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为( )A. BCD .34【答案】D6.设,m n 是两条不同的直线,γβα,,是三个不同的平面,给出下列四个命题:①若m ⊥α,α//n ,则n m ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ③若α//m ,α⊂n ,则m n // ④若αγ⊥,βγ⊥,则//αβ 其中正确命题的序号是( )A .①和②B .②和③C .③和④D .①和④【答案】A7.对于四面体ABCD ,给出下列命题:①相对棱AB 与CD 所在的直线异面;②由顶点A 作四面体的高,其垂足是BAD ∆的三条高线的交点;③若分别作ABC ∆和ABD ∆的边AB 上的高,则这两条高所在直线异面;④分别作出三组相对棱中点的连线,所得的三条线段相交于一点;⑤最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱.其中正确命题的个数为( )A .1B .2C .3D .4【答案】C8.点P (1,4,-3)与点Q (3,-2,5)的中点坐标是( )A .(4,2,2,)B .(2,1,1,)C .(2,-1,2,)D .(4,-1,2,)【答案】B9.把正方形ABCD 沿对角线AC 折起,当以A 、B 、C 、D 四点为顶点的正棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为( )A . 90°B . 60°C . 45°D . 30°【答案】C10.在棱柱中满足( )A . 只有两个面平行B . 所有面都平行C . 所有面都是平行四边形D . 两对面平行,且各侧棱也相互平行【答案】D11.如图,在正方体ABCD —A 1B 1C 1D 1中E 、F 分别为棱DD 1、BB 1上的动点,且BF=D 1E ,设EF与AB 所成角为α,EF 与BC 所成的角为β,则βα+的最小值为( )A .︒45B .︒60C .︒90D .无法确定【答案】C12.一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积是( )A .8πcm2B .12πcm2C .16πcm2D .20πcm2【答案】D 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.如图,在空间四边形OABC 中,已知E 是线段BC 的中点,G 是AE 的中点,若,,OA OB OC 分别记为,,a b c ,则用,,a b c 表示OG 的结果为OG = .【答案】111244a b c ++ 14.已知=(1-t ,1-t ,t),=(2,t ,t ),则|-|的最小值为 。
浙江大学附中2013届高三数学一轮复习单元训练:函数概念与基本处等函数I 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设b>0,二次函数221y axbx a =++-的图像为下列之一,则a 的值为( )A . 1B .C . 1-D .【答案】C2.已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设63(),(),52a f b f ==5(),2c f =则( )A .a b c <<B .b a c <<C .c b a <<D .c a b <<【答案】D 3.若方程04)1(2=++-x m x在(0,3]上有两个不相等的实数根,则m 的取值范围为( ) A .(3,310) B .[3,310) C .[3,310] D .(3,310] 【答案】D 4.若2)2()1()(22--+-++=a a x a x a x f 是偶函数,则=a ( )A .1B .2C .3D .4【答案】B5.设函数2log (1),0(),0a x x f x x axb x +>⎧=⎨++≤⎩,若f (3)=2,f (-2)=0,则b =( )A .0B .-1C .1D .2【答案】A6.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=( )A .12B .1 4-C .14D . -12【答案】D 7.函数(01)x y a a =<<的反函数的图象大致是( )【答案】D 8.对函数c bx ax x f ++=2)()0(≠a 作x =h(t)的代换,则不改变函数)(x f 值域的代换是( ) A .h(t)=10tB .h(t)=t 2C .h(t)=sintD .h(t)=log 2t【答案】D 9.函数)13lg(13)(2++-=x xx x f 的定义域是( )A .),31(+∞-B .)1,31(-C .)31,31(-D .)31,(--∞【答案】B10.要得到函数1()2xf x -=的图象,可以将( )A .函数2x y =的图象向左平移1个单位长度B .函数2x y =的图象向右平移1个单位长度C .函数2x y -=的图象向左平移1个单位长度D .函数2x y -=的图象向右平移1个单位长度【答案】D 11.已知a=21.2,b=()12-0.2,c=2log 52,则a ,b ,c 的大小关系为( )A .c<b<aB .c<a<b C)b<a<cD .b<c<a【答案】A 12.函数()x f 2的定义域为[]11,-,则()2log y f x =的定义域为( )A .[]11,-B . ]4,2[C .1[,2]2D .[]41,【答案】B第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.设定义在R 上的奇函数)(x f 满足)1()3(x f x f --=+,若2)3(=f ,则=)2013(f .【答案】2-14.已知函数4a )x (f 1x +=-(0a >,且1a ≠)恒过定点P ,则点P 的坐标为____________。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知i 是虚数单位,则(1)(2)i i -+-=( )A. i +-3B. i 31+-C. i 33+-D.i +-1【答案】B2.设集合}043|{},2|{2≤-+=->=x x x T x x S ,则()R C S T =U ( )A. ]1,2(-B. ]4,(--∞C. ]1,(-∞D.),1[+∞(2)已知y x ,为正实数,则( )A.y x y x lg lg lg lg 222+=+ B. lg()lg lg 222x y x y +=g C.y x yx lg lg lg lg 222+=• D. lg()lg lg 222xy x y =g(3)已知函数),0,0)(cos()(R A x A x f ∈>>+=ϕωϕω,则“)(x f 是奇函数”是2πϕ=的( )A.充分不必要条件B. 必要不充分条件C. 充分必要条件D.既不充分也不必要条件(4).某程序框图如图所示,若该程序运行后输出的值是59,则( )A.4=aB.5=aC. 6=aD.7=a(5).已知210cos 2sin ,=+∈αααR ,则=α2tan ( )A.34B. 43C.43-D.34-的应用,考查学生的运算求解能力.(6).设0,P ABC ∆是边AB 上一定点,满足AB B P 410=,且对于边AB 上任一点P ,恒有00PB PC P B P C ≥u u u r u u u r u u u u r u u u u r g g ,则( )A. 090=∠ABCB. 090=∠BACC. AC AB =D.BC AC =(7)已知e 为自然对数的底数,设函数)2,1()1)(1()(=--=k x e x f k x ,则( ) A. 当1=k 时,)(x f 在1=x 处取得极小值B. 当1=k 时,)(x f 在1=x 处取得极大值C. 当2=k 时,)(x f 在1=x 处取得极小值D. 当2=k 时,)(x f 在1=x 处取得极大值【考点定位】此题考查导数的运算及利用导数研究函数的单调性求函数的极值.(8).如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点。
浙师大附中2013学年第一学期期中考试高一青海天峻班数学试题卷一、选择题(本大题共10小题,每小题5分,共50分.每小题给出的四个选项中,只有一项是符合题目要求的)1.集合{1,2,3}的子集共有个数是 ( ) A .7B .8C .6D .52.已知集合M={(x ,y )|4x +y =6},P={(x ,y )|3x +2y =7},则M ∩P 等于 ( ) A .(1,2) B .{1}∪{2} C .{1,2}D .{(1,2)}3.设集合{0},{2,},{1,0,2}A B m A B ===-且,则实数m 等于 ( )A .1-B .1C .0D .24.集合M ={1,2,3,4}的真子集个数是 ( ) A .16B .15C .8D .75.已知集合M 、P ,满足M ∪P =M ,则 ( ) A .P =M B .M ∩P =P C .P M ⊆ D .M ⊇P 6. 若{1},{1}P x x Q x x =<>,则 ( )A .R Q C P ⊆B .Q P ⊆C .R C P Q ⊆D .P Q ⊆7.若集合{|21},{|02},A x x B x x =-<<=<<则集合A B 等于 ( )A .{|11}x x -<<B .{|01}x x <<C .{|22}x x -<<D .{|21}x x -<< 8.设集合A={x |1<x <2},B={x |x <a }满足A ⊆B ,则实数a 的取值范围是 ( ) A .2≤a B .1≤a C .1≥a D .2≥a9.含有三个元素的集合A 可表示为{,,1}ba a,也可表示为2{,,0},a a b +则20122013a b +的值为 ( ) A .1 B .2 C .0 D .1- 10.设A ={x |x 2+x -6=0},B ={x |ax +1=0},满足A B ,则a 取值的集合是( ) A .{31,21-}B .{21-} C .{31} D .{31,21,0-} 二、填空题:(本大题有7小题,每小题4分,共28分.)11.设集合{7,},{1},,A a B A B B a ==-==则 ▲ .12.设全集{|05},{|25},U U x x B x x C B =≤≤=≤<=则 ▲ .13.某班50名学生参加一项体能和智能测验,已知体能优秀的有40人,智能优秀的有31人,两项都不优秀的有4人.则这项测验体能和智能都优秀的有 ▲ 人. 14.设全集{},,,,U a b c d e =,{}{}e d b N c b a M ,,,,,==,那么()()U U C M C N 是__▲ .15.若函数223y x x =-+在0x m ≤≤上有最大值3,最小值2,则m 的取值范围为_▲_. 16.设A={a 2,a +1,-1},B={2a -1,| a -2 |, 3a 2+4},A ∩B={—1},则a 的值是_▲ . 17.设集合{2},{|10},,A B x ax AB B =-=+==若则实数a 的值是 ▲ .三、解答题(本大题共5小题,共72分,解答应写出文字说明,证明过程或演算步骤) 18. (本小题满分14分)已知集合2{1,2,3,},{3,},A x B x ==且A B={1,2,3,},x 求x 的值.19. (本小题满分14分)已知集合2{|30}A x x px =+-=,集合2{|0}B x x qx p =--=,且{1}A B ⋂=-,求2p q +的值.20. (本小题满分14分)设全集{2,3,5,7,11,13,17,19},(){3,5}U U AC B ==(){7,19},()(){2,17},U U U C A B C A C B ==求集合,.A B21. (本小题满分15分)若{}R x b ax x x A ∈=++=,012|2,{}R x b ax x x B ∈=+-=,0|2, 满足{},2)(=B A C u {}4)(=B C A U ,R U =,求实数b a ,的值。
浙江大学附中2014版《创新设》高考数学一轮复习单元能力提升训练:统计 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题 (本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.某中学有学生3000人,其中高一、高三学生的人数是1200人、800人,为了解学生的视力情况,采用按年级分层抽样的方法,从该校学生中抽取一个480人的样本,则样本中高一、高二学生的人数共有( )人。
A .288 B .300 C .320 D .352 【答案】D2.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由22()()()()()n ad bc K a b c d a c b d -=++++算得22110(40302020)7.860506050K ⨯⨯-⨯=≈⨯⨯⨯ 附表:参照附表,得到的正确结论是( )A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别有关” 【答案】C3.线性回归直线方程y a bx =+必过定点( )A .(00),B .(0)x ,C .(0)y ,D .()x y ,【答案】D4.现有以下两项调查:①某校高二年级共有15个班,现从中选择2个班,检查其清洁卫生状况;②某市有大型、中型与小型的商店共1500家,三者数量之比为1∶5∶9.为了调查全市商店每日零售额情况,抽取其中15家进行调查.完成①、②这两项调查宜采用的抽样方法依次是( )A . 简单随机抽样法,分层抽样法B . 系统抽样法,简单随机抽样法C .分层抽样法,系统抽样法D .系统抽样法,分层抽样法 【答案】A5.从N 个编号中要抽取n 个号码入样,若采用系统抽样方法抽取,则分段间隔应为( )A .nN B .n C .[nN] D .[nN]+1 【答案】C6.为了了解学生每天的睡眠时间,某调查机构对实验学校1202名学生用系统抽样的方式获取样本。
北大附中2013届高三数学一轮复习单元综合测试:数列本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.等比数列{a n }的前n 项和为S n ,若S 1,S 3,S 2成等差数列,则{a n }的公比q 等于( )A .1B .12C .-12 D .2【答案】C 2.若n S 是等差数列{n a }的前n 项和,且2038=-S S ,则11S 的值为 ( )A .44B .22C .3200D .88【答案】A3.已知等比数列{}n a 中,21=a ,且有27644a a a =,则=3a ( )A .1B .2C .41 D .21【答案】A4. 已知{}n a 为等差数列,其公差为-2,且739a 是a 与a 的等比中项,{}n n S a 为的前n 项和,*n N ∈,则S 10的值为( )A .-110B .-90C .90D .110【答案】D5.等差数列{a n }满足a 2+a 9=a 6,则S 9=( )A .-2B .0C .1D .2 【答案】B6.在等差数列}{n a 中,24)(3)(2119741=++++a a a a a ,则此数列前13项的和=13S ( )A .13B .26C .52D .156【答案】B7.已知等比数列{a n }中,a 1=2,且a 4a 6=4a 27,则a 3=( )A .12B .1C .2D .14【答案】B8.已知数列为等差数列,若’且它们的前n 项和有最大值,则使得的n的最大值为( )A . 11B . 19C . 20D . 21【答案】B【解析】由可得,由它们的前n项和Sn有最大可得a10>0,a11+a10<0,a11<0从而有a1+a19=2a10>0a1+a20=a11+a10<0,从而可求满足条件的n的值.由可得由它们的前n项和Sn有最大可得数列的d<0∴a10>0,a11+a10<0,a11<0∴a1+a19=2a10>0,a1+a20=a11+a10<0使得Sn>0的n的最大值n=19故选B9.在正项等比数列{a n}中,a1和a19为方程x2-10x+16=0的两根,则a8·a10·a12等于( ) A.16 B.32 C.64 D.256【答案】C10.在等比数列{a n}中,已知a n>0,那么“a2>a4”是“a6>a8”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C11.{a n}为等差数列,若a11a10<-1,且它的前n项和S n有最大值,那么S n取得最小正值时,n的值为( )A.11 B.17 C.19 D.21【答案】C12.一直角三角形三边长成等比数列,则()A.三边长之比为3:4:5 B.三边长之比为3::1C D【答案】D第Ⅱ卷(非选择题共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知数列为等比数列,且.,则=________.【答案】1614.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{a n}是等和数列,且a1=2,公和为5,那么a18的值为________,且这个数列的前21项的和S21的值为________.【答案】3,5215.等差数列{a n}的首项为a1,公差为d,前n项和为S n,给出下列四个命题:①数列{(12)a n}为等比数列;②若a2+a12=2,则S13=3;③S n=na n-n(n-1)2d;④若d>0,则S n一定有最大值.其中真命题的序号是________(写出所有真命题的序号).【答案】①②③16.已知{a n}是等差数列,S n为其前n项和,n∈N*,若a3=16,S20=20,则S10的值为________.【答案】110三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17. 已知数列{a n }的前n 项和S n =n 2,求1a 1+a 2+1a 2+a 3+…+1a 2 008+a 2 009的值.【答案】当n ≥2时,a n =S n -S n -1=2n -1, 当n =1时,a 1=S 1=1=21-1,故a n =2n -1(n ∈N *),a n -a n -1=2 原式=a 2-a 1a 2-a 1+a 3-a 2a 3-a 2+…+a 2 009-a 2 008a 2 009-a 2 008=12[(a 2-a 1)+(a 3-a 2)+…+(a 2 009-a 2 008)] =12(a 2 009-a 1)=12( 4 017-1). 18.在数列n {a }中,12a 3=,若函数3f (x)x 1=+在点(1,f (1))处切线过点(n 1n a ,a +) (1) 求证:数列n 1{a ,}2-为等比数列;(2) 求数列n {a }的通项公式和前n 项和公式n S .【答案】(1)因为2f '(x)3x =,所以切线的斜率为k 3=,切点(1,2), 切线方程为y 23(x 1)3x y 10-=-⇒--= 又因为过点(n 1n a ,a +),所以n 1n 3a a 10+--=, 即n 1n 3a a 1+=+①所以n 1n 1n n 1n n 1a 3111123a a 3(a )a 122223a 2+++--=-⇒-=-⇒=-, 即数列n 1a 2⎧⎫-⎨⎬⎩⎭为一等比数列,公比1q 3=.(2)由(1)得n 1a 2⎧⎫-⎨⎬⎩⎭为一公比为111211q ,a 32326=-=-=的等比数列,则n 1n 111a ()263--=⋅ ∴n n 111a ()232=⋅+, n n 2n n 1111n 31nS ()23223343-=+++=+⋅…+19.设数列{}n a 满足.,2222*13221N n na a a a n n ∈=+⋅⋅⋅+++-(1)求数列{}n a 的通项公式;(2)设,1,log 1121nn b b c a b n n n n n ++==+记,21n n c c c S +⋅⋅⋅++=证明:S n <1. 【答案】(1)由题意,,222221123221na a a a a n n n n =++⋅⋅⋅+++--- 当 2≥n 时,.21222123221-=+⋅⋅⋅+++--n a a a a n n两式相减,得.2121221=--=-n n a n n 所以,当2≥n 时,.21n n a =当n =1时,211=a 也满足上式,所求通项公式().21*N n a n n ∈=(2).121log 1log 12121n a b nnn=⎪⎭⎫⎝⎛==()11111+-=+-+=n n n n n n c n⎪⎭⎫ ⎝⎛+-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-=+⋅⋅⋅++=1114131312121121n nc c c S n n 111+-=n <1. 20.已知等差数列{a n }中,公差d >0,其前n 项和为S n ,且满足:a 2a 3=45,a 1+a 4=14.(1)求数列{a n }的通项公式; (2)通过公式b n =S nn +c 构造一个新的数列{b n }.若{b n }也是等差数列,并求非零常数c ;(3)求f (n )=b n(n +25)·b n +1(n ∈N *)的最大值.【答案】(1)∵数列{a n }是等差数列. ∴a 2+a 3=a 1+a 4=14.又a 2a 3=45, ∴⎩⎪⎨⎪⎧a 2=5a 3=9或⎩⎪⎨⎪⎧a 2=9a 3=5.∵公差d >0,∴a 2=5,a 3=9. ∴d =a 3-a 2=4,a 1=a 2-d =1. ∴a n =a 1+(n -1)d =4n -3.(2)∵S n =na 1+12n (n -1)d =n +2n (n -1)=2n 2-n ,∴b n =S n n +c =2n 2-nn +c.∵数列{b n }是等差数列, ∴2b 2=b 1+b 3, ∴2·6c +2=1c +1+15c +3,解得c =-12(c =0舍去).∴b n =2n 2-n n -12=2n .(3)f (n )=2n (n +25)·2(n +1)=nn 2+26n +25=1n +25n+26≤136.即f (n )的最大值为136.21.某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少.从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%.(1)求第n 年初M 的价值a n 的表达式;(2)设A n =a 1+a 2+…+a nn,若A n 大于80万元,则M 继续使用,否则须在第n 年初对M 更新.证明:须在第9年初对M 更新.【答案】(1)当n ≤6时,数列{a n }是首项为120,公差为-10的等差数列, a n =120-10(n -1)=130-10n ;当n ≥6时,数列{a n }是以a 6为首项,公比为34的等比数列,又a 6=70,所以a n =70×(34)n -6.因此,第n 年初,M 的价值a n 的表达式为 a n =⎩⎪⎨⎪⎧130-10n ,n ≤6,70×(34)n -6,n ≥7.(2)设S n 表示数列{a n }的前n 项和,由等差及等比数列的求和公式得 当1≤n ≤6时,S n =120n -5n (n -1),A n =120-5(n -1)=125-5n ; 当n ≥7时,由于S 6=570,故S n =S 6+(a 7+a 8+…+a n )=570+70×34×4×[1-(34)n -6]=780-210×(34)n -6.A n =780-210×(34)n -6n因为{a n }是递减数列,所以{A n }是递减数列.又A 8=780-210×(34)28=824764>80,A 9=780-210×(34)39=767996<80,所以须在第9年初对M 更新. 22.设数列{}n a 的前n 项和为n S ,11=a ,且对任意正整数n ,点()n n S a ,1+在直线022=-+y x 上.(Ⅰ) 求数列{}n a 的通项公式;(Ⅱ)是否存在实数λ,使得数列⎭⎬⎫⎩⎨⎧+⋅+nn n S 2λλ为等差数列?若存在,求出λ的值;若不存在,则说明理由.【答案】(Ⅰ)由题意可得: .0221=-++n n S a ①2≥n 时, .0221=-+-n n S a ②①─②得()22102211≥=⇒=+-++n a a a a a n n n n n , 2122,12121=⇒=+=a a a a ∴{}n a 是首项为1,公比为21的等比数列,.211-⎪⎭⎫⎝⎛=∴n n a(Ⅱ)解法一:.2122112111--=--=n n n S 若⎭⎬⎫⎩⎨⎧+n n S 2λ为等差数列, 则3322123,22,2λλλλλλ++++++S S S 成等差数列,2,82547231492328252349312λλλλλλ+++=⎪⎭⎫⎝⎛+⇒+++=⎪⎭⎫ ⎝⎛+S S S 得.2=λ又2=λ时,22222+=++n n S n n ,显然{}22+n 成等差数列,故存在实数2=λ,使得数列⎭⎬⎫⎩⎨⎧++n n n S 2λλ成等差数列.解法二: .2122112111--=--=n n n S ().2122221221n n n n n n n n S -++=++-=++∴-λλλλλλ欲使⎭⎬⎫⎩⎨⎧+⋅+n n n S 2λλ成等差数列,只须02=-λ即2=λ便可. 故存在实数2=λ,使得数列⎭⎬⎫⎩⎨⎧++n n n S 2λλ成等差数列.。
浙江大学附中2013届高三数学一轮复习单元训练:统计本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.经过对2K 的统计量的研究,得到了若干个临界值,当2K 的观测值 3.841k >时,我们( )A . 在错误的概率不超过0.05的前提下可认为A 与B 有关 B . 在错误的概率不超过0.05的前提下可认为A 与B 无关C . 在错误的概率不超过0.01的前提下可认为A 与B 有关D .没有充分理由说明事件A 与B 有关 【答案】A2.对于线性相关系数,叙述正确的是( )A .||1,||r r ≤越接近于1,相关程度越弱,|r|越接近于0,相关程度越强B .||1,||r r ≤越接近于1,相关程度越强,|r|越接近于0,相关程度越弱C .||(0,),||r r ∈+∞越大,相关程度越强;|r|越小,相关程度越弱D .||(0,),||r r ∈+∞越大,相关程度越弱;|r|越小,相关程度越强 【答案】B3.有五组变量:①汽车的重量和汽车每消耗1升汽油所行驶的平均路程;②平均日学习时间和平均学习成绩;③某人每日吸烟量和其身体健康情况;④正方形的边长和面积;⑤汽车的重量和百公里耗油量.其中两个变量成正相关的是( ) A .①③ B .②④C .②⑤D .④⑤【答案】C4.两个变量x ,y 与其线性相关系数r 有下列说法 (1)若r>0,则x 增大时,y 也相应增大; (2)若r<0,则x 增大时,y 也相应增大;(3)若r =1或r =-1,则x 与y 的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上,其中正确的有( )A . ①②B . ②③C . ①③D . ①②③【答案】C5.对100只小白鼠进行某种激素试验,其中雄性小白鼠、雌性小白鼠对激素的敏感情况统计得到如下列联表ks5u由22() 5.56()()()()n ad bc K a b c d a c b d -=≈++++附表:则下列说法正确的是( )A .在犯错误的概率不超过000.1的前提下认为“对激素敏感与性别有关”;B ..在犯错误的概率不超过000.1的前提下认为“对激素敏感与性别无关”;C .有0095以上的把握认为“对激素敏感与性别有关”;D .有0095以上的把握认为“对激素敏感与性别无关”; 【答案】C6.对变量x, y 有观测数据(1x ,1y )(i=1,2,…,10),得散点图1;对变量u ,v 有观测数据(1u ,1v )(i=1,2,…,10),得散点图2. 由这两个散点图可以判断( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关 【答案】C7.对两个变量y 和x 进行回归分析,得到一组样本数据:(x 1,y 1),(x 2,y 2),…,(x n ,y n ),则下列说法中不正确的是( )A .由样本数据得到的回归方程=x +必过样本点的中心(x ,y )B .残差平方和越小的模型,拟合的效果越好C .用相关指数R 2来刻画回归效果,R 2的值越小,说明模型的拟合效果越好D .在残差图中,残差点比较均匀地落在水平带状区域中,说明选用的模型比较合适,带状区域越窄,说明回归方程的预报精确度越高;【答案】C8.已知,x y的值如表所示:如果y与x呈线性相关且回归直线方程为72y bx=+,则b=( )A.12-B.12C.110-D.110【答案】B9.给出下列结论:在回归分析中可用(1)可用相关指数2R的值判断模型的拟合效果,2R越大,模型的拟合效果越好;(2)可用残差平方和判断模型的拟合效果,残差平方和越大,模型的拟合效果越好;(3)可用相关系数r的值判断模型的拟合效果,r越大,模型的拟合效果越好;(4)可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高.以上结论中,正确的是( )A.(1)(3)(4)B.(1)(4)C.(2)(3)(4)D.(1)(2)(3)【答案】B10.现有以下两项调查:①某校高二年级共有15个班,现从中选择2个班,检查其清洁卫生状况;②某市有大型、中型与小型的商店共1500家,三者数量之比为1∶5∶9.为了调查全市商店每日零售额情况,抽取其中15家进行调查.完成①、②这两项调查宜采用的抽样方法依次是( )A.简单随机抽样法,分层抽样法B.系统抽样法,简单随机抽样法C.分层抽样法,系统抽样法D.系统抽样法,分层抽样法【答案】A11.为防止某种疾病,今研制一种新的预防药.任选取100只小白鼠作试验,得到如下的列联表:2 3.2079K的观测值为,则在犯错误的概率不超过( )的前提下认为“药物对防止某种疾病有效”。
A. 0.025 B. 0.10 C. 0.01 D. 0.005参考数据:【答案】B12.某企业有职工150人,其中高级职称15人,中级职称45人,一般职员90人,现抽取30人进行分层抽样,则各职称人数分别为( )A .5,10,15B .3,9,18C .3,10,17D .5,9,16【答案】B第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.样本数为9的一组数据,它们的平均数是5,频率条形图如图,则其标准差等于 .(保留根号)【答案】14.在求两个变量x 和y 的线性回归方程过程中, 计算得51ii x=∑=25,51ii y=∑=250,521ii x=∑=145,51i ii x y=∑=1380, 则该回归方程是 .【答案】5.175.6+=x y15.某研究小组为了研究中学生的身体发育情况,在某学校随机抽出20名15至16周岁的男生,将他们的身高和体重制成2×2的列联表,根据列联表的数据,可以有 %的把握认为该学校15至16周岁的男生的身高和体重之间有关系。
ks5u【答案】97.5 16.给出下列说法:①从匀速传递的产品生产线上每隔20分钟抽取一件产品进行某种检测,这样的抽样 为系统抽样;②若随机变量若ξ-N (1,4),(0)p ξ≤=m ,则(01)p ξ<<=12一m ; ③在回归直线^y =0. 2x +2中,当变量x 每增加1个单位时,^y 平均增加2个单位; ④在2×2列联表中,K 2=13.079,则有99.9%的把握认为两个变量有关系. 附表:其中正确说法的序号为____________(把所有正确说法的序号都写上) 【答案】①②④三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.对某校高三年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:(Ⅰ)求出表中,M p 及图中a 的值;(Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10, 15)内的人数;(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25, 30)内的概率.【答案】(Ⅰ)由分组[10,15)内的频数是10,频率是0.25知,100.25M =,所以40M =. 因为频数之和为40,所以1024240m +++=,4m =,40.1040m p M === 因为a 是对应分组[15,20)的频率与组距的商,所以240.12405a ==⨯ (Ⅱ)因为该校高三学生有240人,分组[10,15)内的频率是0.25, 所以估计该校高三学生参加社区服务的次数在此区间内的人数为60人(Ⅲ)这个样本参加社区服务的次数不少于20次的学生共有26m +=人,设在区间[20,25]内的人为1224{,,,}a a a a ,在区间[25,30)内的人为12{,}b b . 则任选2人共有1213141112232421(,),(,),(,),(,),(,),(,),(,),(,),a a a a a a a b a b a a a a a b 2234(,),(,)a b a a ,3132414212(,),(,),(,),(,),(,)a b a b a b a b b b 15种情况,而两人都在[25,30)内只能是12{,}b b 一种, 所以所求概率为11411515P =-= 18.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为35.(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;(3)已知喜爱打篮球的10位女生中,12345,,A A A A A ,,还喜欢打羽毛球,123B B B ,, 还喜欢打乒乓球,12C C ,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率. 【答案】(1) 列联表补充如下:(2)∵2250(2015105)8.3337.87930202525K ⨯⨯-⨯=≈>⨯⨯⨯ ∴有99.5%的把握认为喜爱打篮球与性别有关.(3)从10位女生中选出喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的各1名,其一切可能的结果组成的基本事件如下:111112121()()()A B C A B C A B C ,,,,,,,,,122131()()A B C A B C ,,,,,,132(),A B C ,,211212221()()()A B C A B C A B C ,,,,,,,,,222()A B C ,,,231()A B C ,,,232()A B C ,,,311312321()()()A B C A B C A B C ,,,,,,,,,332()A B C ,,, 322331()()A B C A B C ,,,,,,411412421()()()A B C A B C A B C ,,,,,,,,, 422431432()()()A B C A B C A B C ,,,,,,,,, 511512521()()()A B C A B C A B C ,,,,,,,,, 522531532()()()A B C A B C A B C ,,,,,,,,,基本事件的总数为30,用M 表示“11B C ,不全被选中”这一事件,则其对立事件M 表示“11B C ,全被选中”这一事件,由于M 由111211311()()()A B C A B C A B C ,,,,,,,,, 411511(,,),(,,)A B C A B C 5个基本事件组成,所以51()306P M ==,由对立事件的概率公式得15()1()166P M P M =-=-=. 19.某产品的广告支出x(单位:万元)与销售收入y(单位:万元)之间有下表所对应的数据.(1)画出表中数据的散点图; (2)求出y 对x 的线性回归方程;(3)若广告费为9万元,则销售收入约为多少万元? 【答案】 (1)散点图如图:(2)观察散点图可知各点大致分布在一条直线附近,列出下列表格,以备计算a 、b .于是5x 2=,69y 2=,代入公式得: 11223344222221234x y x y x y x y 4xy b x x x x 4x +++-=+++-25694184732255304()2-⨯⨯==-⨯, 69735a y bx 2.252=-=-⨯=-故y 与x 的线性回归方程为73y x 25=-,其中回归系数为735, 它的意义是:广告支出每增加1万元,销售收入y 平均增加735万元.(3)当x=9万元时,73y 92129.45=⨯-=(万元). 20.为适应新课改,切实减轻学生负担,提高学生综合素质,某市某学校高三年级文科生300人在数学选修4-4、4-5、4-7选课方面进行改革,由学生自由选择2门(不可多选或少选),选课情况如下表:(1)为了解学生情况,现采用分层抽样方法抽取了三科作业共50本,统计发现4-5有18本,试根据这一数据求出,a b 的值。