高考数学函数零点的性质合集
- 格式:pdf
- 大小:248.38 KB
- 文档页数:11
考点12:零点定理【思维导图】【常见考法】考点一:求零点1.若幂函数()f x x α=的图象过点(,则函数()()3g x f x =-的零点是。
【答案】9【解析】∵幂函数()f x x α=的图象过点,∴2α=,解得1=2α,∴()12f x x =∴()123g x x =-由()1230g x x =-=,得9x =.2.函数()234f x x x =+-的零点是____________.【答案】1,4-【解析】令f (x )=0,即x 2+3x-4=0,解得:x=-4,x=1.3.若函数()2,01,0x e x f x x x ⎧≤=⎨->⎩,则函数()1y f x =-的零点是___________.【答案】0【解析】要求函数()1y f x =-的零点,则令()10y f x =-=,即()1f x =,又因为:()2,01,0x e x f x x x ⎧≤=⎨->⎩,①当0x ≤时,()xf x e =,1x e =,解得0x =.②当0x >时,()21f x x =-,211x -=,解得x =,所以x =.综上所以,函数()1y f x =-的零点是0.故答案为:04.函数y =11x-的图象与函数y =2sinπx(-2≤x≤4)的图象所有交点的横坐标之和等于.【答案】8【解析】函数y 1=11x-与y 2=2sinπx 的图象有公共的对称中心(1,0),作出两个函数的图象,由图象可知,两个函数在[-2,4上共有8个交点,两两关于点(1,0)对称设对称的两个点的横坐标分别为m 、n 则m+n=2×1=2,故所求的横坐标之和为8,故答案为8.考点二:零点区间1.函数()42xxf x -=-的零点所在区间是()A .(1,0)-B .1(0,4C .11(,42D .1(,1)2【答案】D【解析】易知函数()f x 为减函数,又121111(402424f -=-=->,11(1)042f =-<,根据零点存在性原理,可知函数()42xx f x -=-的零点所在的区间是1(,1)2,故选D.2.函数()2312x f x x -⎛⎫=- ⎪⎝⎭的零点所在的区间为()A .()0,1B .()1,2C .()2,3D .()3,4【答案】B【解析】∵函数()2312x f x x -⎛⎫=- ⎪⎝⎭单调递增,∴f (0)=-4,f (1)=-1,f (2)=7>0,根据零点的存在性定理可得出零点所在的区间是()1,2,故选B .3.函数()ln 3f x x x =+-的零点所在的区间为()A .()0,1B .()1,2C .()2,3D .()3,4【答案】C【解析】∵f (x )=ln x +x -3在(0,+∞)上是增函数f (1)=-2<0,f (2)=ln2-1<0,f (3)=ln3>0∴f (2)•f (3)<0,根据零点存在性定理,可得函数f (x )=ln x +x -3的零点所在区间为(2,3)故选:C .4.已知()f x 是定义在()0,∞+上的单调函数,满足()()2ln 21xf f x ex e --+=-,则函数()f x 的零点所在区间为()A .210,e ⎛⎫ ⎪⎝⎭B .211,e e ⎛⎫⎪⎝⎭C .1,1e ⎛⎫ ⎪⎝⎭D .()1,e 【答案】C【解析】设()2ln 2xf x e x t --+=,即()2ln 2xf x e x t =+-+,()1f t e =-,因为()f x 是定义在()0,∞+上的单调函数,所以由解析式可知,()f x 在()0,∞+上单调递增.而()12f e t =-+,()1f t e =-,故1t =,即()2ln 1xf x e x =+-.因为()110f e =->,11112ln 13ee f e e e e ⎛⎫=+-=- ⎪⎝⎭,由于11ln ln 3ln 30ee e-=-<,即有13e e <,所以1130e f e e ⎛⎫=-< ⎪⎝⎭.故()110f f e ⎛⎫< ⎪⎝⎭,即()f x 的零点所在区间为1,1e ⎛⎫ ⎪⎝⎭.故选:C .考点三:零点个数1.函数f(x)=|x-2|-lnx 在定义域内零点的个数为。
高考数学零点知识点高考是每个中国学生都不可逃避的大事件,而数学科目则是许多学生的噩梦。
与其他科目相比,数学有着更多的细节和技巧,需要掌握各种知识点。
本文将为大家介绍一些高考数学中的零点知识点,希望能对广大考生在备考中有所帮助。
一、函数的性质高考数学中,函数是一个重要的概念。
在解题过程中,常常会用到函数的性质。
首先,函数的奇偶性是要掌握的重要内容。
如果一个函数满足$f(x)=f(-x)$,那么它是一个偶函数;如果一个函数满足$f(x)=-f(-x)$,那么它是一个奇函数。
除此之外,函数的单调性也是一个需要关注的内容。
函数的递增区间和递减区间,以及最值点的判断都需要掌握。
二、二次函数高考数学中的二次函数是一个非常重要的知识点。
首先,二次函数的图像是一个抛物线,对于二次函数的图像的形态和性质要有一个清晰的认识。
其次,二次函数的最值点的求解是一道常考的题目。
对于$y=ax^2+bx+c$的二次函数,最值点的横坐标为$x=-\frac{b}{2a}$。
此外,还要注意二次函数与坐标轴的交点以及与直线的交点的求解方法。
三、三角函数三角函数是高考数学中的另一个重要内容。
熟练掌握基本的三角函数的定义和性质对于解题至关重要。
首先,要了解正弦函数、余弦函数和正切函数的定义以及对应的图像。
其次,要掌握三角函数的周期性和对称性,这样才能准确地求解函数的值。
最后,利用三角函数的性质,解决一些实际问题也是高考中的一个重点。
四、立体几何立体几何是数学中的一个重要分支,也是高考数学中的难点之一。
对于几何体的面积和体积的计算,要掌握各个几何体的公式和计算方法。
此外,还要了解相似三角形和相似立体的性质。
这样才能在解决实际问题时,灵活运用几何知识,得出正确的答案。
五、概率概率是数学中的一门重要分支,它在高考数学中也占有一席之地。
对于概率的计算,首先要掌握基本的概率公式,包括事件的概率、独立事件的计算等。
其次,要了解互斥事件和对立事件的概念和计算方法。
高考数学《函数零点的个数问题》知识讲解与例题讲解一、知识点讲解与分析:1、零点的定义:一般地,对于函数()()y f x x D =∈,我们把方程()0f x =的实数根x 称为函数()()y f x x D =∈的零点2、函数零点存在性定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b <,那么在开区间(),a b 内至少有函数()f x 的一个零点,即至少有一点()0,x a b ∈,使得()00f x =。
(1)()f x 在[],a b 上连续是使用零点存在性定理判定零点的前提 (2)零点存在性定理中的几个“不一定”(假设()f x 连续) ① 若()()0f a f b <,则()f x 的零点不一定只有一个,可以有多个 ② 若()()0f a f b >,那么()f x 在[],a b 不一定有零点 ③ 若()f x 在[],a b 有零点,则()()f a f b 不一定必须异号3、若()f x 在[],a b 上是单调函数且连续,则()()()0f a f b f x <⇒在(),a b 的零点唯一4、函数的零点,方程的根,两图像交点之间的联系设函数为()y f x =,则()f x 的零点即为满足方程()0f x =的根,若()()()f x g x h x =−,则方程可转变为()()g x h x =,即方程的根在坐标系中为()(),g x h x 交点的横坐标,其范围和个数可从图像中得到。
由此看来,函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化。
(详见方法技巧) 二、方法与技巧:1、零点存在性定理的应用:若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内。
例如:对于方程ln 0x x +=,无法直接求出根,构造函数()ln f x x x =+,由()110,02f f ⎛⎫>< ⎪⎝⎭即可判定其零点必在1,12⎛⎫⎪⎝⎭中 2、函数的零点,方程的根,两函数的交点在零点问题中的作用 (1)函数的零点: 工具:零点存在性定理作用:通过代入特殊值精确计算,将零点圈定在一个较小的范围内。
分析高中数学中的函数的零点与极限的重要性质函数是高中数学中的重要概念之一,它包含了数学研究中的许多重要性质。
函数的零点和极限是函数研究的两个关键概念,它们在数学理论和实际问题求解中都具有重要意义。
首先,我们来讨论函数的零点。
函数的零点是指使函数取值为零的输入值。
零点的概念在数学中是非常重要的,因为零点可以帮助我们解决方程和不等式等问题。
通过求得函数的零点,我们可以找到方程的根或者不等式的解,这在解决实际问题时具有重要作用。
零点的概念也与函数图像的特征密切相关。
函数的零点可以揭示函数图像与x轴的交点,通过分析零点的性质,我们可以得到函数图像的有关信息。
例如,函数在零点处取得极值,或者函数图像在零点处存在断点等情况。
其次,我们来讨论函数的极限。
极限是用来描述函数在某一点“无限接近于某个值”的概念。
函数的极限与函数的连续性和稳定性相关。
通过研究函数的极限,我们可以了解函数在某一点附近的行为,判断函数的连续性和研究函数的性质。
函数的极限还可以帮助我们解决一些求解问题的困难。
例如,在求导数的过程中,我们经常会使用极限的性质来进行推导。
通过对函数极限的理解,我们可以更好地理解导数的概念,从而更加深入地研究函数的性质。
此外,函数的极限还与数学分析中的许多重要概念密切相关。
例如,利用函数的极限可以定义函数的导数、积分和级数等。
这些概念在数学分析中起着重要的作用,并且在实际问题求解中也有广泛的应用。
函数的零点和极限在高中数学中的学习和理解中是不可或缺的。
通过研究函数的零点和极限,我们可以深入了解函数的性质,从而在实际问题求解中更加准确地把握函数的特点。
同时,对于将来进一步学习数学的同学来说,函数的零点和极限也是他们深入研究数学分析所必备的基础。
总结起来,函数的零点和极限是高中数学中的重要概念。
它们不仅是数学理论中的关键概念,而且在实际问题求解中具有重要意义。
函数的零点和极限能够帮助我们解决方程和不等式等问题,同时也能揭示函数图像和函数性质的重要信息。
高考数学总复习考点知识与题型专题讲解§3.7 利用导数研究函数的零点考试要求 函数零点问题在高考中占有很重要的地位,主要涉及判断函数零点的个数或范围.高考常考查三次函数与复合函数的零点问题,以及函数零点与其他知识的交汇问题,一般作为解答题的压轴题出现. 题型一 利用函数性质研究函数的零点 例1已知函数f (x )=x sin x -1.(1)讨论函数f (x )在区间⎣⎢⎡⎦⎥⎤-π2,π2上的单调性;(2)证明:函数y =f (x )在[0,π]上有两个零点. (1)解 因为函数f (x )的定义域为R ,f (-x )=-x sin(-x )-1=f (x ),所以函数f (x )为偶函数,又f ′(x )=sin x +x cos x ,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f ′(x )≥0,所以函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增,又函数f (x )为偶函数,所以f (x )在⎣⎢⎡⎭⎪⎫-π2,0上单调递减,综上,函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增,在⎣⎢⎡⎭⎪⎫-π2,0上单调递减.(2)证明 由(1)得,f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增,又f (0)=-1<0,f ⎝ ⎛⎭⎪⎫π2=π2-1>0,所以f (x )在⎣⎢⎡⎦⎥⎤0,π2内有且只有一个零点, 当x ∈⎝ ⎛⎦⎥⎤π2,π时,令g (x )=f ′(x )=sin x +x cos x ,则g ′(x )=2cos x -x sin x ,当x ∈⎝ ⎛⎦⎥⎤π2,π时,g ′(x )<0恒成立,即g (x )在⎝ ⎛⎦⎥⎤π2,π上单调递减,又g ⎝ ⎛⎭⎪⎫π2=1>0,g (π)=-π<0,则存在m ∈⎝ ⎛⎦⎥⎤π2,π,使得g (m )=0,且当x ∈⎝ ⎛⎭⎪⎫π2,m 时,g (x )>g (m )=0,即f ′(x )>0,则f (x )在⎝ ⎛⎭⎪⎫π2,m 上单调递增,当x ∈(m ,π]时,有g (x )<g (m )=0,即f ′(x )<0,则f (x )在(m ,π]上单调递减, 又f ⎝ ⎛⎭⎪⎫π2=π2-1>0,f (π)=-1<0,所以f (x )在(m ,π]上有且只有一个零点,综上,函数y =f (x )在[0,π]上有2个零点.思维升华利用函数性质研究函数的零点,主要是根据函数单调性、奇偶性、最值或极值的符号确定函数零点的个数,此类问题在求解过程中可以通过数形结合的方法确定函数存在零点的条件.跟踪训练1(2023·芜湖模拟)已知函数f (x )=ax +(a -1)ln x +1x -2,a ∈R . (1)讨论f (x )的单调性;(2)若f (x )只有一个零点,求a 的取值范围.解 (1)函数f (x )的定义域为(0,+∞),f ′(x )=a +a -1x -1x 2=(ax -1)(x +1)x 2,①若a ≤0,则f ′(x )<0,f (x )在(0,+∞)上单调递减;②若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )<0,f (x )单调递减,当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )>0,f (x )单调递增.综上,当a ≤0时,f (x )在(0,+∞)上单调递减;当a >0时,f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递减,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递增.(2)若a ≤0,f ⎝ ⎛⎭⎪⎫1e =a e +1-a +e -2=⎝ ⎛⎭⎪⎫1e -1a +e -1>0,f (1)=a -1<0.结合函数的单调性可知,f (x )有唯一零点.若a >0,因为函数在⎝ ⎛⎭⎪⎫0,1a 上单调递减,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,所以要使得函数有唯一零点,只需f (x )min =f ⎝ ⎛⎭⎪⎫1a =1-(a -1)ln a +a -2=(a -1)(1-ln a )=0,解得a =1或a=e.综上,a ≤0或a =1或a =e. 题型二 数形结合法研究函数的零点例2(2023·郑州质检)已知函数f (x )=e x -ax +2a ,a ∈R . (1)讨论函数f (x )的单调性; (2)求函数f (x )的零点个数.解 (1)f (x )=e x -ax +2a ,定义域为R ,且f ′(x )=e x -a ,当a ≤0时,f ′(x )>0,则f (x )在R 上单调递增;当a >0时,令f ′(x )=0,则x =ln a , 当x <ln a 时,f ′(x )<0,f (x )单调递减;当x >ln a 时,f ′(x )>0,f (x )单调递增. 综上所述,当a ≤0时,f (x )在R 上单调递增;当a >0时,f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增. (2)令f (x )=0,得e x =a (x -2),当a =0时,e x =a (x -2)无解,∴f (x )无零点, 当a ≠0时,1a =x -2e x ,令φ(x )=x -2e x ,x ∈R ,∴φ′(x )=3-xe x , 当x ∈(-∞,3)时,φ′(x )>0;当x ∈(3,+∞)时,φ′(x )<0,∴φ(x )在(-∞,3)上单调递增,在(3,+∞)上单调递减,且φ(x )max =φ(3)=1e 3, 又x →+∞时,φ(x )→0, x →-∞时,φ(x )→-∞, ∴φ(x )的图象如图所示.当1a >1e 3,即0<a <e 3时,f (x )无零点; 当1a =1e 3,即a =e 3时,f (x )有一个零点; 当0<1a <1e 3,即a >e 3时,f (x )有两个零点; 当1a <0,即a <0时,f (x )有一个零点.综上所述,当a ∈[0,e 3)时,f (x )无零点;当a ∈(-∞,0)∪{e 3}时,f (x )有一个零点;当a ∈(e 3,+∞)时,f (x )有两个零点.思维升华含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x 表示参数的函数,作出该函数的图象,根据图象特征求参数的范围或判断零点个数.跟踪训练2(2023·长沙模拟)已知函数f (x )=a ln x -2x . (1)若a =2,求曲线y =f (x )在x =1处的切线方程; (2)若函数f (x )在(0,16]上有两个零点,求a 的取值范围.解 (1)当a =2时,f (x )=2ln x -2x ,该函数的定义域为(0,+∞),f ′(x )=2x -1x ,又f (1)=-2,f ′(1)=1,因此,曲线y =f (x )在x =1处的切线方程为y +2=x -1,即x -y -3=0. (2)①当a ≤0时,f ′(x )=a x -1x<0,则f (x )在(0,+∞)上单调递减,不符合题意; ②当a >0时,由f (x )=a ln x -2x =0可得2a =ln xx ,令g (x )=ln x x,其中x >0,则直线y =2a 与曲线y =g (x )的图象在(0,16]内有两个交点, g ′(x )=x x -ln x2x x =2-ln x2x x,令g ′(x )=0,可得x =e 2<16,列表如下,所以函数g (x )在区间(0,16]上的极大值为g (e 2)=2e ,且g (16)=ln 2,作出g (x )的图象如图所示.由图可知,当ln 2≤2a <2e ,即e<a ≤2ln 2时,直线y =2a 与曲线y =g (x )的图象在(0,16]内有两个交点, 即f (x )在(0,16]上有两个零点, 因此,实数a 的取值范围是⎝ ⎛⎦⎥⎤e ,2ln 2.题型三 构造函数法研究函数的零点例3(12分)(2022·新高考全国Ⅰ)已知函数f (x )=e x -ax 和g (x )=ax -ln x 有相同的最小值. (1)求a ;[切入点:求f (x ),g (x )的最小值](2)证明:存在直线y =b ,其与两条曲线y =f (x )和y =g (x )共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.[关键点:利用函数的性质与图象判断e x -x =b ,x -ln x =b 的解的个数及解的关系]思维升华涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间内的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围.跟踪训练3(2021·全国甲卷)已知a>0且a≠1,函数f(x)=x aa x(x>0).(1)当a=2时,求f(x)的单调区间;(2)若曲线y=f(x)与直线y=1有且仅有两个交点,求a的取值范围.解(1)当a=2时,f(x)=x22x(x>0),f′(x)=x(2-x ln 2)2x(x>0),令f′(x)>0,则0<x<2ln 2,此时函数f(x)单调递增,令f ′(x )<0,则x >2ln 2,此时函数f (x )单调递减,所以函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,2ln 2,单调递减区间为⎝ ⎛⎭⎪⎫2ln 2,+∞.(2)曲线y =f (x )与直线y =1有且仅有两个交点,可转化为方程x a a x =1(x >0)有两个不同的解,即方程ln x x =ln aa 有两个不同的解. 设g (x )=ln xx (x >0),则g ′(x )=1-ln x x 2(x >0), 令g ′(x )=1-ln xx 2=0,得x =e ,当0<x <e 时,g ′(x )>0,函数g (x )单调递增, 当x >e 时,g ′(x )<0,函数g (x )单调递减, 故g (x )max =g (e)=1e , 且当x >e 时,g (x )∈⎝ ⎛⎭⎪⎫0,1e ,又g (1)=0,所以0<ln a a <1e ,所以a >1且a ≠e , 即a 的取值范围为(1,e)∪(e ,+∞).课时精练1.(2023·济南质检)已知函数f (x )=ln x +axx ,a ∈R . (1)若a =0,求f (x )的最大值;(2)若0<a <1,求证:f (x )有且只有一个零点.(1)解 若a =0,则f (x )=ln x x ,其定义域为(0,+∞),∴f ′(x )=1-ln xx 2,由f ′(x )=0,得x =e ,∴当0<x <e 时,f ′(x )>0;当x >e 时,f ′(x )<0,∴f (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,∴f (x )max =f (e)=1e .(2)证明 f ′(x )=⎝ ⎛⎭⎪⎫1x +a x -ln x -ax x 2=1-ln x x 2, 由(1)知,f (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,∵0<a <1,∴当x >e 时,f (x )=ln x +ax x =a +ln x x>0, 故f (x )在(e ,+∞)上无零点;当0<x <e 时,f (x )=ln x +ax x ,∵f ⎝ ⎛⎭⎪⎫1e =a -e<0,f (e)=a +1e >0, 且f (x )在(0,e)上单调递增,∴f (x )在(0,e)上有且只有一个零点,综上,f (x )有且只有一个零点.2.函数f (x )=ax +x ln x 在x =1处取得极值.(1)求f (x )的单调区间;(2)若y =f (x )-m -1在定义域内有两个不同的零点,求实数m 的取值范围.解(1)f(x)的定义域为(0,+∞),f′(x)=a+ln x+1,由f′(1)=a+1=0,解得a=-1.则f(x)=-x+x ln x,∴f′(x)=ln x,令f′(x)>0,解得x>1;令f′(x)<0,解得0<x<1.∴f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)y=f(x)-m-1在(0,+∞)内有两个不同的零点,则函数y=f(x)与y=m+1的图象在(0,+∞)内有两个不同的交点.由(1)知,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)min=f(1)=-1,f(e)=0,作出f(x)图象如图.由图可知,当-1<m+1<0,即-2<m<-1时,y=f(x)与y=m+1的图象有两个不同的交点.因此实数m的取值范围是(-2,-1).3.(2022·河南名校联盟模拟)已知f(x)=(x-1)e x-13ax3+13a(a∈R).(1)若函数f(x)在[0,+∞)上单调递增,求a的取值范围;(2)当a≤e时,讨论函数f(x)零点的个数.解(1)f(x)=(x-1)e x-13ax3+13a,则f′(x)=x(e x-ax).∵函数f(x)在[0,+∞)上单调递增,∴f′(x)=x(e x-ax)≥0在[0,+∞)上恒成立,则e x-ax≥0,x≥0.当x=0时,则1≥0,即a∈R;当x>0时,则a≤e x x,构建g(x)=e xx(x>0),则g′(x)=(x-1)e xx2(x>0),令g′(x)>0,则x>1,令g′(x)<0,则0<x<1,∴g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,则g(x)≥g(1)=e,∴a≤e,综上所述,a≤e.(2)f(x)=(x-1)e x-13ax3+13a=(x-1)⎣⎢⎡⎦⎥⎤e x-13a(x2+x+1),令f(x)=0,则x=1或e x-13a(x2+x+1)=0,对于e x-13a(x2+x+1)=0,即e xx2+x+1=13a,构建h(x)=e xx2+x+1,则h′(x)=x(x-1)e x (x2+x+1)2,令h′(x)>0,则x>1或x<0,令h′(x)<0,则0<x<1,∴h(x)在(-∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,h(0)=1,h(1)=e3且h(x)>0,当x∈R时恒成立,则当a=e时,e xx2+x+1=13a有两个根x1=1,x2<0;当0<a<e时,e xx2+x+1=13a只有一个根x3<0;当a≤0时,e xx2+x+1=13a无根.综上所述,当a≤0时,f(x)只有一个零点;当0<a≤e时,f(x)有两个零点.4.(2022·全国乙卷)已知函数f(x)=ax-1x-(a+1)ln x.(1)当a=0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a的取值范围.解(1)当a=0时,f(x)=-1x-ln x(x>0),所以f′(x)=1x2-1x=1-xx2.当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,+∞)时,f′(x)<0,f(x)单调递减,所以f(x)max=f(1)=-1.(2)由f (x )=ax -1x -(a +1)ln x (x >0),得f ′(x )=a +1x 2-a +1x =(ax -1)(x -1)x 2(x >0). 当a =0时,由(1)可知,f (x )不存在零点;当a <0时,f ′(x )=a ⎝ ⎛⎭⎪⎫x -1a (x -1)x 2, 当x ∈(0,1)时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减,所以f (x )max =f (1)=a -1<0,所以f (x )不存在零点;当a >0时,f ′(x )=a ⎝ ⎛⎭⎪⎫x -1a (x -1)x 2, 当a =1时,f ′(x )≥0,f (x )在(0,+∞)上单调递增,因为f (1)=a -1=0, 所以函数f (x )恰有一个零点;当a >1时,0<1a <1,故f (x )在⎝ ⎛⎭⎪⎫0,1a ,(1,+∞)上单调递增,在⎝ ⎛⎭⎪⎫1a ,1上单调递减. 因为f (1)=a -1>0,所以f ⎝ ⎛⎭⎪⎫1a >f (1)>0, 当x →0+时,f (x )→-∞,由零点存在定理可知f (x )在⎝ ⎛⎭⎪⎫0,1a 上必有一个零点,所以a >1满足条件,当0<a <1时,1a >1,故f (x )在(0,1),⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫1,1a 上单调递减. 因为f (1)=a -1<0,所以f ⎝ ⎛⎭⎪⎫1a <f (1)<0,当x →+∞时,f (x )→+∞,由零点存在定理可知f (x )在⎝ ⎛⎭⎪⎫1a ,+∞上必有一个零点,即0<a <1满足条件.综上,若f (x )恰有一个零点,则a 的取值范围为(0,+∞).。
函数零点的题型总结例题及解析考点一函数零点存在性定理的应用【例1】已知函数f(x)=(12)x-13x,那么在下列区间中含有函数f(x)零点的是( )(A)(0,13) (B)(13,12)(C)(12,23) (D)(23,1)解析:f(0)=1>0,f(13)=(12)13-(13)13>0,F(12)=(12)12-(12)13<0,f(13)f(12)<0,所以函数f(x)在区间(13,12)内必有零点,选B.【跟踪训练1】已知函数f(x)=2x-log3x,在下列区间中包含f(x)零点的是( )(A)(0,1) (B)(1,2) (C)(2,3) (D)(3,4)解析:由题意,函数f(x)=2x-log3x为单调递减函数,且f(2)= 22-log32=1-log32>0,f(3)= 23-log33=-13<0,所以f(2)·f(3)<0,所以函数f(x)=2x-log3x在区间(2,3)上存在零点,故选C.【教师备用巩固训练1】设函数f(x)=ln (x+1)+a(x2-x),若f(x)在区间(0,+∞)上无零点,则实数a的取值范围是( )(A)[0,1] (B)[-1,0](C)[0,2] (D)[-1,1]解析:f(1)=ln 2>0,当a=-1时,f(2)=ln 3-2<0,所以f(x)在(1,2)上至少有一个零点,舍去B,D;当a=2时,f(12)=ln 32-12<0,所以f(x)在(12,1)上至少有一个零点,舍去C.因此选A.考点二函数零点的个数考查角度1:由函数解析式确定零点个数【例2】 (1)函数f(x)=xcos(x2-2x-3)在区间[-1,4]上的零点个数为( )(A)5 (B)4 (C)3 (D)2(2)已知f(x)=2xx +x-2x,则y=f(x)的零点个数是( )(A)4 (B)3 (C)2 (D)1解析:(1)由题意可知x=0或cos(x2-2x-3)=0,又x∈[-1,4],所以x2-2x-3=(x-1)2-4∈[-4,5],当cos(x2-2x-3)=0时,x2-2x-3=kπ+π2,k ∈Z,在相应的范围内,k只有-1,0,1三个值可取,所以总共有4个零点,故选B.解析:(2)令2xx +x-2x=0,化简得2|x|=2-x2,画出y=2|x|,y=2-x2的图象,由图可知,图象有两个交点,即函数 f(x)有两个零点.故选C.考查角度2:根据函数零点个数确定参数范围 【例3】 (1)已知函数f(x)= 24,1,ln 1,1,x x a x x x ⎧-+⎪⎨+≥⎪⎩<若方程f(x)=2有两个解,则实数a 的取值范围是( ) (A)(-∞,2) (B)(-∞,2] (C)(-∞,5) (D)(-∞,5] (2)已知函数f(x)= 3,2,1e ,20x xa x x a x x ⎧--≤-⎪⎪+⎨⎪--⎪⎩<<恰有3个零点,则实数a 的取值范围为( )(A)(-1e ,-13) (B)(-1e ,-21e) (C)[-23,-21e ) (D)[-23,-13)解析:(1)可知x ≥1时,f(x)=2必有一解,x=e,所以只需x<1时f(x)=2有一解即可,即x 2-4x+a=2有解,设g(x)=x 2-4x+a-2,由于该函数的对称轴为直线x=2,故只需g(1)=-3+a-2<0,即a<5,故实数a 的取值范围是(-∞,5).选C. 解析:(2)-1x x +-3a=-111x x +-+-3a=1x x +-1-3a,在(-∞,-2]上单调递减.若a≥0,则e x -a x在(-2,0)上递增,那么零点个数至多有一个,不符合题意,故a<0.故需f(x)当x ≤-2时,-1-3a>0,a<-13,且121-+-1-3a ≤0,a ≥-23,使得第一段有一个零点,故a ∈[-23,-13).对于第二段,e x -a x=e xx a x -,故需g(x)=xe x -a 在区间(-2,0)有两个零点,g ′(x)=(x+1)e x ,故g(x)在(-2,-1)上递减,在(-1,0)上递增,所以(2)0,(1)0,(0)0,g g g -⎧⎪-⎨⎪⎩><>解得-22e >a>-1e.综上所述,a ∈(-1e ,-13).故选A.【题组通关】1.若函数f(x)=|2x -4|-a 存在两个零点,且一个为正数,另一个为负数,则a 的取值范围为( C ) (A)(0,4) (B)(0,+∞)(C)(3,4) (D)(3,+∞)解析:如图,若f(x)=|2x -4|-a 存在两个零点,且一个为正数,另一个为负数,则a ∈(3,4),故选C.2.已知偶函数f(x)= 4log,04,(8),48,x x f x x ⎧≤⎪⎨-⎪⎩<<<且f(x-8)=f(x),则函数F(x)=f(x)-12x在区间[-2 018,2 018]的零点个数为( A )(A)2 020 (B)2 016 (C)1 010 (D)1 008解析:依题意,当4<x<8时,f(x)=f(8-x)对称轴为直线x=4,由f(x-8)=f(x)可知,函数f(x)的周期T=8. 令F(x)=0,可得f(x)=12x,求函数F(x)=f(x)-12x的零点个数,即求偶函数f(x)与函数y=12x图象交点个数,当0<x<8时,函数f(x)与函数y=12x图象有4个交点,2 018=252×8+2由f(2)=|log 42|=12>212=14知, 当0<x<2时函数f(x)与函数y=12x图象有2个交点.故函数F(x)的零点个数为(252×4+2)×2=2 020, 故选A.3.已知函数f(x)= 31,1,,1,x xx x ⎧≥⎪⎨⎪⎩<若关于x 的方程f(x)=k 有两个不同零点,则k 的取值范围是 . 解析:作出f(x)=31,1,,1x xx x ⎧≥⎪⎨⎪⎩<的函数图象如图所示.方程f(x)=k 有两个不同零点,即y=k 和f(x)= 31,1,1x x x x ⎧≥⎪⎨⎪⎩<的图象有两个交点,由图可得k 的取值范围是(0,1). 答案:(0,1)【教师备用 巩固训练2】 已知函数f(x)=32233,2,4(56),2,x x x x x x ⎧-+⎪⎨--+≥⎪⎩<则函数f(f(x))的零点个数为( ) (A)6 (B)7 (C)8 (D)9 解析:画出函数的图象,如图所示,令f(x)=t,因为f(f(x))=0则f(t)=0,由图象可知,f(t)=0有四个解,分别为t 1=2,t 2=3,-1<t 3<0,1<t 4<2, 由图象可知,当t 1=2时,f(x)=2有两个根,即函数f(f(x))有2个零点; 由图象可知,当t 2=3时,f(x)=3有一个根,即函数f(f(x))有1个零点;由图象可知,当-1<t 3<0时,f(x)=t 有三个根,即函数f(f(x))有3个零点;由图象可知,当1<t 4<2时,f(x)=t 有两个根,即函数f(f(x))有2个零点;综上所述,函数f(f(x))有8个零点. 考点三 函数零点的性质考查角度1:求零点的代数式的取值或取值范围 【例4】 (1)已知函数f(x)=122log ,022,0,x x x x x ⎧⎪⎨⎪++≤⎩>函数F(x)=f(x)-b 有四个不同的零点x 1,x 2,x 3,x 4,且满足:x 1<x 2<x 3<x 4,则43x x -2213232x x x x +的取值范围是( )(A)(2,+∞) (B)(174,25716] (C)[2,174) (D)[2,+∞) (2)已知函数f(x)是定义域为R 的偶函数,且满足f(12+x)=f(32-x),当x ∈[-1,0]时,f(x)=-x.若函数F(x)=f(x)+412x x +-,则在区间[-9,10]上的所有零点之和为 . 解析:(1)f(x)=122log ,0,22,0x x x x x ⎧⎪⎨⎪++≤⎩>=122log ,0,(11,0x x x x ⎧⎪⎨⎪++≤⎩>), 由二次函数的对称性可得x 1+x 2=-2,由12log x 3=-12log x 4可得x 3x 4=1,函数F(x)=f(x)-b 有四个不同的零点,等价于y=f(x)的图象与y=b 的图象有四个不同的交点,画出y=f(x)的图象与y=b 的图象,由图可得1<b ≤2,所以1<12log x 3≤2⇒x 3∈[14,12),所以43x x -2123()2x x x +=43x x +23x =231x+23x , 令t=23x ∈[116,14), 所以1t +t ∈(174,25716],故选B. 解析:(2)因为满足f(12+x)=f(32-x), 所以f(x)=f(2-x), 又因函数f(x)为偶函数,所以f(x)=f(-x)=f(2+x),即f(x)=f(2+x),所以T=2,令F(x)=0,f(x)=421x x +-,即求f(x)与y=421x x +-交点横坐标之和.y=421x x +-=12+9221x -, 作出图象如图所示.由图象可知有10个交点,并且关于(12,12)中心对称, 所以其和为102=5. 答案:(1)B (2)5考查角度2:隐性零点的性质 【例5】已知函数f(x)= ln(1),0,11,0,2x x x x +⎧⎪⎨+≤⎪⎩>若m<n,且f(m)=f(n),则n-m 的取值范围为( )(A)[3-2ln 2,2) (B)[3-2ln 2,2] (C)[e-1,2) (D)[e-1,2]解析:作出函数f(x)的图象,如图所示,若m<n,且f(m)=f(n),则当ln(x+1)=1时,得x+1=e,即x=e-1, 则满足0<n ≤e-1, -2<m ≤0,则ln(n+1)=12m+1,即m=2ln(n+1)-2,则n-m=n+2-2ln(n+1), 设h(n)=n+2-2ln(n+1),0<n ≤e-1,则h ′(n)=1-21n +=11n n -+, 当h ′(n)>0,解得1<n ≤e-1,当h ′(n)<0,解得0<n<1,当n=1时,函数h(n)取得最小值h(1)=1+2-2ln(1+1)=3-2ln 2,当n=0时,h(0)=2-2ln 1=2;当n=e-1时,h(e-1)=e-1+2-2ln(e-1+1)=e-1<2,所以3-2ln 2≤h(n)<2,即n-m的取值范围是[3-2ln 2,2),故选A.【题组通关】1.已知a>1,方程12e x+x-a=0与ln 2x+x-a=0的根分别为x1,x2,则21x+22x+2x1x2的取值范围为( A ) (A)(1,+∞) (B)(0,+∞)(C)(12,+∞) (D)(12,1)解析:方程12e x+x-a=0的根,即y=12e x与y=a-x图象交点的横坐标,方程ln 2x+x-a=0的根,即y=ln 2x与y=a-x图象交点的横坐标, 而y=12e x与y=ln 2x的图象关于直线y=x对称,如图所示.所以x1+x2=a,所以21x +22x +2x 1x 2=(x 1+x 2)2=a 2,又a>1,所以21x +22x +2x 1x 2>1,故选A2.已知函数f(x)= 42log ,04,1025,4,x x x x x ⎧≤⎪⎨-+⎪⎩<>若a,b,c,d 是互不相同的正数,且f(a)=f(b)=f(c)=f(d),则abcd 的取值范围是( A ) (A)(24,25) (B)(18,24) (C)(21,24) (D)(18,25)解析:由题意可知,ab=1,c+d=10,所以abcd=cd=c(10-c),4<c<5,所以取值范围是(24,25),故选A.考点四 函数零点的应用【例6】 (1)已知α,β分别满足α·e α=e 2,β(ln β-2)=e 4,则αβ的值为( )(A)e (B)e 2 (C)e 3 (D)e 4 (2)已知f(x)=9x-t ·3x,g(x)=2121x x -+,若存在实数a,b 同时满足g(a)+g(b)=0和f(a)+f(b)=0,则实数t 的取值范围是 . 解析:(1)因为α·e α=e 2,所以e α=2e α, 因为β(ln β-2)=e 4,所以ln β-2=4e β,所以ln β-ln e 2=4e β,所以ln 2e β=4e β=22e e β. 所以α,2e β分别是方程ex=2e x ,ln x=2e x的根,因为点(α,2e α)与点(2e β,4e β)关于直线y=x 对称, 所以α=4e β,所以αβ=e 4.故选D.解析:(2)因为g(-x)=2121x x ---+=1212xx-+=-2121x x -+=-g(x),所以函数g(x)为奇函数, 又g(a)+g(b)=0,所以a=-b. 所以f(a)+f(b)=f(a)+f(-a)=0有解, 即9a -t ·3a +9-a -t ·3-a =0有解, 即t=9933a a aa--++有解.令m=3a+3-a(m ≥2),则9933a aa a--++=22m m-=m-2m ,因为ϕ(m)=m-2m 在[2,+∞)上单调递增,所以ϕ(m)≥ϕ(2)=1.所以t ≥1.故实数t 的取值范围是[1,+∞). 答案:(1)D 答案:(2)[1,+∞)【跟踪训练2】函数f(x)的定义域为D,若满足:①f(x)在D 内是单调函数;②存在[a,b]⊆D 使得f(x)在[a,b]上的值域为[2a ,2b ],则称函数f(x)为“成功函数”.若函数f(x)=log m (m x +2t)(其中m>0,且m ≠1)是“成功函数”,则实数t 的取值范围为( ) (A)(0,+∞) (B)(-∞,18] (C)[18,14) (D)(0,18] 解析:无论m>1还是0<m<1,f(x)=log m (m x +2t)都是R 上的单调增函数,故应有(),2(),2a f a b f b ⎧=⎪⎪⎨⎪=⎪⎩则问题可转化为求f(x)=2x ,即f(x)=log m (m x +2t)=2x,即m x+2t=12x m在R上有两个不相等的实数根的问题,令λ=12x m (λ>0),则m x+2t=12x m可化为2t=λ-λ2=-(λ-12)2+14,结合图形可得t∈(0,18].故选D.。
第三章:函数的基本性质第三节:函数的基本性质(零点)【知识讲解】函数零点1. 函数的零点:对于函数)(x f y =)(D x ∈,如果存在实数c )(D c ∈,当c x =0)(=c f 那么就把c x =叫做函数)(x f y =)(D x ∈的零点。
函数)(x f y =的零点就是方程0)(=x f 的解,也就是函数)(x f y =的图像与x 轴的交点的横坐标。
2. 函数零点的求法:求函数零点一般采取二分法。
所谓二分法即通过每次把)(x f y =的零点所在的小区间收缩一半,使区间的两个端点逐步逼近函数的零点,以求得零点的近似值的方法。
二分法的理论依据是:如果函数)(x f 在闭区间[]b a ,上满足0)()(<⋅b f a f ,那么一定存在()b a c ,∈,使0)(=c f方法:求函数)(x f 的零点就是求方程0)(=x f 的根例1.求函数2111322--+--=xx x x y 的零点例2.对于函数13)12()(+-+=k x k x g(1) 若1=x 是其零点,求k 的值(2) 若在区间[]0,1-上存在零点,求k 的取值范围例3.用二分法求函数281832)(23+--=x x x x f 在区间()2,1内的零点(精确到0.1)巩固练习:1.已知函数19)13(22-+--=m x m mx y ,若它在区间()2,1中仅有一个零点,求实数m 的取值范围2.已知a 是实数,函数a x ax x f --+=322)(2,如果函数)(x f y =在区间[]1,1-上有零根,求实数a 的取值范围。
3.已知对于任意实数x ,函数)(x f 满足)()(x f x f =-. 若方程0)(=x f 有2009个实数解,则这2009个实数解之和为 .4.函数)(4)2(2)2()(2R a x a x a x f ∈--+-=(1) 是否存在实数a ,使[]3,1∈x 时,0)(<x f 恒成立?(2) 是否存在实数a ,使()3,1∈x 时,0)(<x f 恒成立?5.若在区间[]1,1-上,1)(2+-=x x x g 的图像恒在直线m x y +=2的上方,则实数m 的取值范围。
高考数学复习考点题型专题讲解题型: 函数的零点函数零点存在定理:若函数()y f x =在区间[],a b 上的图象是连续不断的一条曲线,并且有0)()(<⋅b f a f ,那么函数()y f x =在区间(),a b 内存在零点,即存在(),,c a b ∈使得()0f c =。
深层理解:1.若()f x 在(),a b 上内单调,且0)()(<⋅b f a f ,则()f x 在(),a b 上有且只有一个零点。
2.若0)()(>⋅b f a f ,则)(x f 在(),a b 上不一定有零点。
若()f x 在(),a b 上内单调,且0)()(>⋅b f a f ,则()f x 在(),a b 上一定没有零点。
【考点题型一】:函数零点所在区间确定(一般情况下只考查选择题)。
『解题策略』:一般情况下只需验证四个选项中给出区间两个端点函数值是否异号。
1.(高考题)函数()23x f x x =+的零点所在的一个区间是 ( )A.()2,1--B.()1,0-C.()0,1D.()1,2【解析】:)(x f 单调递增,且(1)(0)0f f -⋅<,选B 。
2.(高考题)函数()f x =2x e x +-的零点所在的一个区间是 ( )A.()2,1--B.()1,0-C.()0,1D.()1,2【解析】:)(x f 单调递增,且0)1()0(<⋅f f ,选C 。
【考点题型二】:函数零点个数确定。
【题型1】:单一函数分析法。
『解题策略』:若)(x f 在(),a b 上单调,且0)()(<⋅b f a f ,则)(x f 有且只有一个零点,若0)()(>⋅b f a f ,则)(x f 没有零点,逆过来亦成立。
1.(高考题)函数22)(3-+=x x f x 在区间()1,0内的零点个数是 ( )A.0B.1C.2D.3【解析】:)(x f 单调递增,且0)1()0(<⋅f f ,选B 。
考点34 零点定理一.函数的零点(1)零点的定义:对于函数y =f (x ),我们把使f (x )=0的,实数x 叫做函数y =f (x )的零点. 函数的零点不是函数y=f(x)与x 轴的交点,而是y=f(x)与x 轴交点的横坐标,也就是说函数的零点不是一个点,而是一个实数(2)零点的几个等价关系:方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点. 二.函数的零点存在性定理1.如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ⇔(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.2.函数零点的存在性定理只能判断函数在某个区间上的变号零点,而不能判断函数的不变号零点,而且连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分不必要条件考向一 求零点【例1】(2021·全国课时练习)函数()ln f x x x =的零点为( ) A .0或1 B .1C .()1,0D .()0,0或(()1,0【答案】B【解析】函数()ln f x x x =的定义域为()0,∞+,令()ln 0f x x x ==,得1x =,零点不是点,CD 错误,故选:B.知识理解考向分析【举一反三】1.(2021·上海市西南位育中学=)函数256y x x =-+的零点是___________. 【答案】2x =和3x =【解析】令y =0,即2560x x -+=,解得:2x =和3x =故答案为:2x =和3x =2.(2020·巴彦淖尔市临河区第三中学高三月考(理))函数256y x x =--的零点是__________. 【答案】6或-1【解析】解方程()()260561x x x x --=+=-得6x =或1x =-.所以函数256y x x =--的零点是6或-1.故答案为:6或-1.考向二 零点区间【例2】(2021·四川高一开学考试)函数()123xf x e x =+-的零点所在区间为( ) A .()1,0- B .()0,1 C .()1,2D .()2,3【答案】B【解析】由于函数xy e =、123y x =-均为R 上的增函数,所以,函数()f x 为R 上的增函数, 因为()010f =-<,()11203f e =+->,则()()010f f ⋅<.因此,函数()123xf x e x =+-的零点所在区间为()0,1.故选:B. 【举一反三】1.(2021·安徽省泗县第一中学)函数()123log 4xf x x =-++的零点所在的区间为( )A .()2,3B .()3,4C .()1,2D .()0,1【答案】C【解析】易知函数()123log 4xf x x =-++在()0,∞+上为减函数, ()110f =>,()260f =-<,则()()120f f ⋅<,因此,函数()f x 的零点所在的区间为()1,2.故选:C. 2.(2021·浙江开学考试)函数()26log f x x x=-的零点所在区间是( ) A .()0,1 B .()1,2C .()2,3D .()3,4【答案】D【解析】由题意,函数()26log f x x x=-,可函数()f x 为定义域上的单调递减函数, 又由()()22332log 30,4log 402f f =->=-<,即()()340f f ⋅<,根据零点的存在性定理,可得函数()f x 的零点所在的区间是()3,4.故选:D. 3.(2021·内蒙古包头市)函数()3xf x x e =+的零点所在区间为( )A .()2,1--B .()1,0-C .()0,1D .()1,2【答案】B【解析】函数()3xf x x e =+为R 上的增函数,且()2260f e--=-+<,()1130f e --=-+<,()010f =>,()()100f f ∴-⋅<,因此,函数()3x f x x e =+的零点所在区间为()1,0-.故选:B.考向三 零点的个数【例3】(2021·云南高三其他模拟)函数()13sin f x x =-在52,6ππ⎛⎫- ⎪⎝⎭上的零点个数为( ) A .2 B .3C .4D .5【答案】B【解析】由()0f x =,得1sin 3x =,作出函数sin y x =在52,6ππ⎛⎫- ⎪⎝⎭上的图象如图所示,因为511sin623π=>, 所以由图可知直线13y =与图象有3个交点,从而()f x 在52,6ππ⎛⎫- ⎪⎝⎭上有3个零点.故选:B【例3-2】(202112log x =的解的个数为( )A .0B .1C .2D .3【答案】B【解析】在同一坐标系内,作出y =12log y x =的图象,如图:由图象可知,方程只有一个解.故选:B 【举一反三】1.(2021·云南昆明市)已知()sin 23f x x π⎛⎫=+ ⎪⎝⎭,则()f x 在[0,]π上的零点个数为( ) A .0 B .1C .2D .3【答案】C 【解析】由23x k ππ+=得,26k x k Z ππ=-∈, 又[0,]x π∈,∴3x π=或56π,共2个.故选:C . 2.(2021·云南丽江市·丽江第一高级中学)函数21log 2xy x ⎛⎫=- ⎪⎝⎭的零点个数是( ) A .0 B .1C .2D .3【答案】C【解析】由21|log |02x x ⎛⎫-= ⎪⎝⎭,得21log 2xx ⎛⎫= ⎪⎝⎭, 作出函数2log y x =与12xy ⎛⎫= ⎪⎝⎭的图形如图,由图可知,函数21log 2xy x ⎛⎫=- ⎪⎝⎭的零点个数是2.故选:C .3(2021·江西吉安市)函数21()ln 20202f x x x =+-的零点个数是( ) A .3 B .2C .1D .0【答案】C【解析】函数21()ln 20202f x x x =+-的定义域为()0,∞+, 因为函数21ln 20,022y y x x ==-在()0,∞+上递增, 所以()f x 在()0,∞+上递增, 又1(1)20200,(2020)10092020ln 202002f f =-<=⨯+>, 由零点存在定理得:函数21()ln 20202f x x x =+-的零点个数是1个数,故选:C 4.(2021·北京高三期末)已知函数()2,0,0x x f x x x ≥⎧=⎨-<⎩,则函数()2xy f x =-的零点个数是( )A .0B .1C .2D .3【答案】C【解析】令()20xf x -=,得()2xf x =,则函数()2xy f x =-的零点个数等价于函数()f x 与函数2xy =的图象的交点个数,2,021,02x x x x y x ⎧≥⎪==⎨⎛⎫<⎪ ⎪⎝⎭⎩,作出函数()f x 与函数2xy =的图象如下图所示:由图象可知,两个函数图象的交点个数为2,故函数()2xy f x =-的零点个数为2.故选:C.1.(2021·陕西西安市·高三月考(文))函数21()12x f x x =--的零点的个数是( ) A .1 B .2C .3D .4【答案】B 【解析】21()012x f x x =-=-,2210x x --=,1x =1x =()0f x =的解,()f x 有两个零点.故选:B .2.(2021·湖北开学考试)函数()lg(1)3f x x x =+--零点所在的整区间是( ) A .(0,1) B .(1,2)C .(2,3)D .(3,4)【答案】C【解析】因为函数()f x 为单调递增函数,且()210f =-<,()3lg20f => 所以零点所在的区间是()2,3,故选:C .强化练习3.(2021·四川资阳市)方程24x x +=的根所在的区间为( ) A .()0,1 B .()1,2 C .()2,3 D .()3,4【答案】B【解析】构造函数()24xf x x =+-,则函数()f x 为R 上的增函数,()110f =-<,()220f =>,则()()120f f ⋅<,因此,方程24x x +=24x x +=的根所在的区间为()1,2.故选:B.4.(2020·全国课时练习)函数()()ln 11f x x x =+-+在下列区间内一定有零点的是( ) A .[]0,1 B .[]1,2 C .[]2,3 D .[]3,4【答案】C【解析】因为函数()()ln 11f x x x =+-+连续,且()()22ln31ln 10,3ln 42ln 20f e f e =->-==-<-=,所以在区间[]2,3内一定有零点,故选:C5.(2021·广西河池市=)函数()2ln 1xf x x =+-的零点所在的区间为( ).A .31,2⎛⎫ ⎪⎝⎭B .3,22⎛⎫ ⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】D【解析】函数()2ln 1xf x x =+-为()0,∞+上的增函数,由()110f =>,131111ln 21ln 21ln 2ln 0222222f ⎛⎫=-<--=-<-=-= ⎪⎝⎭,可得函数()f x 的零点所在的区间为1,12⎛⎫⎪⎝⎭.故选:D.6.(2021·全国高三开学考试(文))已知函数()()1,02ln ,0x x f x x x ⎧-≥⎪=⎨⎪-<⎩,则函数()()y f f x =的零点个数为( ) A .1 B .2 C .3 D .4【答案】 C【解析】令()f x t =,当()0f t =时,解得12t =或1t =-. 在同一直角坐标系中分别作出()y f x =,1y =-,12y =的图象如图所示,观察可知,()y f x =与1y =-有1个交点,()y f x =与12y =有2个交点,则()()y f f x =的零点个数为3. 故选:C.7.(2021·北京丰台区)已知函数()22,0,11,0,x x x f x x x⎧-≤⎪=⎨->⎪⎩则()f x 的零点个数为( )A .0B .1C .2D .3【答案】C【解析】()22,0,11,0,x x x f x x x⎧-≤⎪=⎨->⎪⎩,令()0f x =,当0x ≤时,220x x -=,解得:0x =或2x =(舍去); 当0x >时,110x-=,解得:1x = 所以()0f x =有2个实数解,即函数()f x 的零点个数为2个.故选:C. 8.(2021·山西吕梁市)函数()1542xf x x =+-的零点[]01,x a a ∈-,*a ∈N ,则a =( ) A .1 B .2C .3D .4【答案】C【解析】已知()115042=+-<f ,()124502=+-<f ;()338504=+->f ,所以()2(3)0⋅<f f ,可知函数零点所在区间为[]2,3,故3a =.故选:C.9.(2021·安徽高三期末(文))设函数3()sin log f x x x =-,0.5()3log xg x x =-,0.5()sin log h x x x=-的零点分别为a ,b ,c ,则( ) A .a c b >> B .c b a >> C .c a b >>D .a b c >>【答案】A【解析】设函数1()sin f x x =,23()log f x x =,30.5()log f x x =,4()3xf x =,则a 是1()f x 与2()f x 图象交点的横坐标,b 是3()f x 与4()f x 图象交点的横坐标,c 是1()f x 与3()f x 图象交点的横坐标.在同一坐标系中,作出1()f x ,2()f x ,3()f x ,4()f x 的图象,如图所示.由图可知a c b >>. 故选:A10.(2021·山东威海市·高三期末)若关于x 的方程2lnx ax x -=在0,上有两个不等的实数根,则实数a 的取值范围为( ) A .(],1-∞- B .(),1-∞- C .[)1,-+∞ D .()1,-+∞【答案】B【解析】2lnx ax x -=故ln xa x x=- 则()ln x f x xx=-()2'221ln 1ln 1x x x f x x x---=-= 设()21ln g x x x =--,0x >故()'120g x x x=--< ()21ln g x x x =--在0,上为减函数,10g .故()0,1∈x 时()'0f x >;()1,∈+∞x 时()'0f x <.故()ln x f x xx=-在0,1上为增函数,在1,上为减函数.()()max 11f x f ==-,且0,x →时()f x →-∞;,x →+∞时()f x →-∞y a =与()ln x f x x x=-的图象要有两个交点则a 的取值范围为(),1-∞-. 故选:B11.(2021·兴义市第二高级中学高三期末(文))已知函数()39xf x x =+-的零点为0x ,则0x 所在区间为( ) A .31,22⎡⎤--⎢⎥⎣⎦B .11,22⎡⎤-⎢⎥⎣⎦ C .13,22⎡⎤⎢⎥⎣⎦D .35,22⎡⎤⎢⎥⎣⎦【答案】D 【解析】()39x f x x =+-在R 上单调递增,323315390222f ⎛⎫=+-=< ⎪⎝⎭,525513390222f ⎛⎫=+-=> ⎪⎝⎭,∴由零点存在性定理可得()f x 在35,22⎡⎤⎢⎥⎣⎦有唯一零点,035,22x ⎡⎤∴∈⎢⎥⎣⎦.故选:D.12.(2021·广西南宁市·南宁三中高三开学考试(理))已知函数()241,11,12x x x x f x x ⎧---<-⎪=⎨⎛⎫≥-⎪ ⎪⎝⎭⎩若关于x 方程()f x m =恰有三个不同的实数解,则实数m 的取值范围是( ) A .()0,3 B .[)2,3C .10,2⎛⎤ ⎥⎝⎦D .1,12⎡⎫⎪⎢⎣⎭【答案】D【解析】根据函数()241,11,12x x x x f x x ⎧---<-⎪=⎨⎛⎫≥-⎪ ⎪⎝⎭⎩,作出函数图象,如图.方程()f x m =恰有三个不同的实数解,即函数()f x 的图象与y m =的图象有三个交点 如图,()112f -=, 当112m ≤<时,函数()f x 的图象与y m =的图象有三个交点 故选:D13.(2020·重庆市凤鸣山中学高三月考)函数2()ln(1)f x x x=+-的零点所在的大致区间是( ) A .()3,4 B .()2,eC .()1,2D .()0,1【答案】C【解析】因为()21ln 201f =-<,()22ln 302f =->,且函数f (x )在(0,+∞)上单调递增,所以函数的零点所在区间为(1,2).故选:C14.(2021·兴宁市第一中学高三期末)若00cos x x =,则( ) A .0,32x ππ⎛⎫∈⎪⎝⎭B .0,43x ππ⎛⎫∈⎪⎝⎭C .0,64x ππ⎛⎫∈⎪⎝⎭ D .00,6x π⎛⎫∈ ⎪⎝⎭【答案】C【解析】设函数()cos f x x x =-,则()f x 在0,2π⎛⎫⎪⎝⎭上单调递增,又()010,0,066442f f f ππππ⎛⎫⎛⎫=-<=<=->⎪⎪⎝⎭⎝⎭, 10,033222f f ππππ⎛⎫⎛⎫=->=> ⎪ ⎪⎝⎭⎝⎭, 所以有064f f ππ⎛⎫⎛⎫⋅<⎪ ⎪⎝⎭⎝⎭,()00,0,064332f f f f f f πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⋅>⋅>⋅> ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 所以由零点存在性定理可知函数()f x 的一个零点位于,64ππ⎛⎫⎪⎝⎭. 故选:C15.(2021·上海)已知函数1()1f x a x =-+有两个零点,则实数a 的取值范围是___________. 【答案】01a <<【解析】画出函数11y x =+的图象如下:函数1()1f x a x =-+有两个零点等价于函数11y x =+的图象与直线y a =有两个交点 所以01a <<故答案为:01a <<16.(2021·全国=课时练习)函数()223,02ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩零点的个数为___________.【答案】2【解析】当0x ≤时,令()0f x =,即2230x x +-=,解得3x =-或1x =(舍去); 当0x >时,令()0f x =,即2ln 0x -+=,解得2x e =, 所以函数()f x 有两个零点. 故答案为:2.17.(2021·贵州毕节市)函数()23,0ln ,0x x f x x x ⎧-≤=⎨>⎩的零点个数是________.【答案】2【解析】当0x ≤时,由230x -=解得x = 当0x >时,由ln 0x =解得1x =,所以函数()23,0ln ,0x x f x x x ⎧-≤=⎨>⎩的零点个数是2故答案为:218.(2020·云南师大附中高三月考(文))函数()ln f x x =的零点个数为__________. 【答案】2【解析】令ln ||0x =,当且仅当1x =±,所以()ln ||f x x =有两个零点.故答案为:2.。
1函数零点问题及例题解析一、函数与方程基本知识点1、函数零点:(变号零点与不变号零点)(1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。
(2)方程0)(=x f 有实根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点。
若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(<b f a f 是()f x 在区间(),a b 内有零点的充分不必要条件。
2、二分法:二分法:对于在区间对于在区间[,]a b 上连续不断且()()0f a f b ⋅<的函数()y f x =,通过不断地把函数()y f x =的零点所在的区间一分为二的零点所在的区间一分为二,,使区间的两个端点逐步逼近零点使区间的两个端点逐步逼近零点,,进而得到零点的近似值的方法叫做二分法值的方法叫做二分法; ;二、函数与方程解题技巧零点是经常考察的重点,对此部分的做题方法总结如下:零点是经常考察的重点,对此部分的做题方法总结如下:(一)函数零点的存在性定理指出:“如果函数)(x f y =在区间在区间[a,b][a,b][a,b]上的图象是连续不断的一上的图象是连续不断的一条曲线,并且0)()(<b f a f ,那么,函数)(x f y =在区间(在区间(a,b a,b a,b)内有零点,即存在)内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c 也是方程0)(=x f 的根”。
根据函数零点的存在性定理判断函数在某个区间上是否有零点间上是否有零点(或方程在某个区间上是否有根)(或方程在某个区间上是否有根)(或方程在某个区间上是否有根)时,时,一定要注意该定理是函数存在零点的充分不必要条件:如分不必要条件:如例、函数x x x f 2)1ln()(-+=的零点所在的大致区间是(的零点所在的大致区间是() (A )(0,1); (B )(1,2); (C ) (2,e ); (D )(3,4)。