2015年陕西省中考数学总复习课件:第23讲 矩形、菱形与正方形
- 格式:pptx
- 大小:987.46 KB
- 文档页数:43
第20课时矩形、菱形、正方形【课时目标】1.理解矩形、菱形、正方形与一般平行四边形之间的共性、特性和从属关系.2.探索并证明矩形、菱形、正方形的性质定理以及它们的判定定理,会利用这些性质定理与判定定理进行计算与推理.【知识梳理】1.矩形的概念、性质和判定:(1)定义:有一个内角为_______的平行四边形叫做矩形,矩形是特殊的平行四边形.(2)性质:由于矩形是特殊的平行四边形,所以它除了具有平行四边形的一切性质外,还具有以下性质:①矩形的四个角都是_______;②矩形的对角线________.(3)判定:①有一个角是_______的平行四边形是矩形;②四个角_______(或有三个角是_______)的四边形是矩形;③对角线_______的平行四边形是矩形.2.菱形的概念、性质和判定:(1)定义:一组邻边_______的平行四边形叫做菱形,菱形是特殊的平行四边形.(2)性质:由于菱形是特殊的平行四边形,所以菱形除了具有平行四边形的一切性质外,还具有以下性质:菱形的四条边________,两条对角线_______,每一条对角线________.(3)判定:①一组邻边_______的平行四边形是菱形;②四条边_______的四边形是菱形;③对角线_______的平行四边形是菱形.3.正方形的概念、性质和判定:(1)定义:一组邻边_______的矩形叫做正方形.(2)性质:具有平行四边形、矩形、菱形的一切性质,如:四个角都是_______;四条边都_______;两条对角线互相_______,每一条对角线_______等.(3)判定:①一组邻边_______且有一个角是_______的平行四边形是正方形;②有一个角是_______的菱形是正方形;③有一组邻边_______的矩形是正方形.【考点例析】考点一矩形的性质和判定例1如图,矩形ABCD的对角线AC=8 cm,∠A OD=120°,则AB的长为( )A .3cmB .2cmC .23cmD .4cm提示 由矩形的性质得OA =OB =OC =OD ,再由∠AOD =120°,得到∠AOB =60°,从而得△AOB 是等边三角形,求出AB =12AC . 例2 如图,O 是菱形ABCD 对角线AC 和BD 的交点,CD =5 cm ,OD =3 cm .过点C 作C ∥DB ,过点B 作BE ∥AC ,CE 与BE 相交于点F .(1)求OC 的长;(2)求证:四边形OBEC 为矩形:(3)求矩形OBEC 的面积.提示 (1)根据菱形的对角线互相垂直,得出BD ⊥AC ,再根据勾股定理求出OC 的长;(2)根据CE ∥OB ,OC ∥BE ,易得出四边形OBEC 是平行四边形,再由BD ⊥AC 可得出四边形OBEC 是矩形;(3)矩形的面积=长×宽,根据菱形的对角线互相平分可得出OB =OD ,OC 已求出,故易求得矩形的面积.考点二 菱形的性质和判定例3如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE ⊥AB ,垂足为E 若∠ADC =130°,则∠AOE 的度数为 ( )A .75°B .65°C .55°D .50°提示 由菱形的性质可以知道菱形的对角线互相垂直平分,得到∠AOB =90°.由AB ∥CD ,得到∠BAD =50°, 再由菱形的对角线平分每一组对角,得到∠OAB =25°,从而求出∠AOE 的度数.例4如图,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm.将△ABC沿射线BC方向平移10 cm,得到△DEF,A、B、C的对应点分别是D、E、F,连接AD.求证:四边形ACFD 是菱形.提示由题意,可知AD=10 cm,又由勾股定理,可得AC=10 cm.这样容易得到四边形ACFD的四边都等于10 cm,从而得证.考点三正方形的性质和判定例5如图,正方形ABCD的边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE=_______.提示过点E作EF⊥CD于F,设对角线交点为O,可得到OE=EF=DF.设EF=x,则DF=x,且DE=22-x,利用勾股定理列出方程求解即可.例6如图,在△ABC中,D是边BC的中点,DE⊥AC,DF⊥AB,垂足分别是E、F,且BF=CE.(1)求证:DE=DF;(2)当∠A=90°时,试判断四边形AF DE是怎样的四边形,并证明你的结论.提示(1)利用直角三角形特有的HL定理,判断出Rt△DBF和Rt△DCE全等,从而得出结论;(2)利用一组邻边相等的矩形是正方形来判断:首先通过∠A、∠AFD、∠AED为直角判定四边形AFDE是矩形,再通过DF=DE判定其为正方形.【反馈练习】1.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是( )A.4 B.6 C.8 D.102.如图,在菱形ABCD中.AB=5,∠BCD=120°,则△ABC的周长等于( ) A.20 B.15 C.10 D.53.如图,在□ABCD中,AE、CF分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AECF为菱形的是( )A.AE=AF B.EFL.ACC.∠B=60°D.AC是∠EAF的平分线4.如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使AIE=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为( )A.3-1 B.3-5C.5+1 D.5-15.如图,在矩形ABCD中,对角线AC、BD相交于O,DE⊥AC于E,∠EDC:∠EDA=1:2,且AC=10,则DE的长度是_______.6.如图,在矩形AB CD中,F是BC上一点,且AF=BC,DE⊥AF,垂足是E,连接DF.求证:(1) △ABF≌△DEA;(2) DF是∠EDC的平分线.7.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形;(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形?参考答案【考点例析】1.D2.12(cm2)3.B4.略5.2-1 6.四边形AFDE是正方形.【反馈练习】1.C 2.B 3.C 4.D 5.5326.略7.(1)略(2)当AF=75时,四边形BCEF是菱形。