最新大学高等数学上考试题库及答案
- 格式:doc
- 大小:1.42 MB
- 文档页数:14
大学数学试题题库及答案# 大学数学试题题库及答案一、选择题1. 极限的定义中,\( \lim_{x \to c} f(x) = L \) 表示:A. 当 \( x \) 无限接近 \( c \) 时,\( f(x) \) 无限接近\( L \)B. \( f(c) = L \)C. \( x = c \) 时,\( f(x) = L \)D. 以上都不是答案:A2. 以下哪个函数是周期函数?A. \( f(x) = x^2 \)B. \( f(x) = e^x \)C. \( f(x) = \sin x \)D. \( f(x) = \ln x \)答案:C3. 微分方程 \( y'' - y' - 6y = 0 \) 的特征方程为:A. \( r^2 - r - 6 = 0 \)B. \( r^2 + r + 6 = 0 \)C. \( r^2 - r + 6 = 0 \)D. \( r^2 + r - 6 = 0 \)答案:A二、填空题1. 若 \( \lim_{x \to 2} \frac{x^2 - 4}{x - 2} = a \),则 \( a \) 的值为 __________。
答案:82. 函数 \( f(x) = \ln(x + 1) \) 的导数是 __________。
答案:\( \frac{1}{x + 1} \)3. 曲线 \( y = x^3 - 6x^2 + 9x \) 在 \( x = 3 \) 处的切线斜率为 __________。
答案:0三、简答题1. 请解释什么是连续函数,并给出一个例子。
答案:连续函数是指在其定义域内,函数值无限接近于极限值的函数。
例如,函数 \( f(x) = x^2 \) 是一个连续函数,因为它在任意点 \( x \) 处的极限值都等于其函数值。
2. 解释什么是泰勒级数,并给出 \( e^x \) 的泰勒级数展开。
完整)高等数学考试题库(附答案)高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分)。
1.下列各组函数中,是相同的函数的是()。
A)f(x)=ln(x^2)和g(x)=2lnxB)f(x)=|x|和g(x)=x^2C)f(x)=x和g(x)=x^2/xD)f(x)=2|x|和g(x)=1/x答案:A2.函数f(x)=ln(1+x)在x=0处连续,则a=()。
A)1B)0C)-1D)2答案:A3.曲线y=xlnx的平行于直线x-y+1=0的切线方程为()。
A)y=x-1B)y=-(x+1)C)y=(lnx-1)(x-1)D)y=x答案:C4.设函数f(x)=|x|,则函数在点x=0处()。
A)连续且可导B)连续且可微C)连续不可导D)不连续不可微答案:A5.点x=0是函数y=x的()。
A)驻点但非极值点B)拐点C)驻点且是拐点D)驻点且是极值点答案:A6.曲线y=4|x|/x的渐近线情况是()。
A)只有水平渐近线B)只有垂直渐近线C)既有水平渐近线又有垂直渐近线D)既无水平渐近线又无垂直渐近线答案:B7.∫f'(1/x^2)dx的结果是()。
A)f(1/x)+CB)-f(x)+CC)f(-1/x)+CD)-f(-x)+C答案:C8.∫ex+e^(-x)dx的结果是()。
A)arctan(e^x)+CB)arctan(e^(-x))+CC)ex-e^(-x)+CD)ln(ex+e^(-x))+C答案:D9.下列定积分为零的是()。
A)∫π/4^π/2 sinxdxB)∫0^π/2 xarcsinxdxC)∫-2^1 (4x+1)/(x^2+x+1)dxD)∫0^π (x^2+x)/(e^x+e^(-x))dx答案:A10.设f(x)为连续函数,则∫f'(2x)dx等于()。
A)f(1)-f(0)B)f(2)-f(0)C)f(1)-f(2)D)f(2)-f(1)答案:B二.填空题(每题4分,共20分)。
《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dx x x ++⎰②()0a > ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2-2.33-3.24.arctan ln x c+5.2三.计算题1①2e②162.11xyx y'=+-3. ①11ln||23xCx+++②22ln||x a x C-++③()1xe x C--++四.应用题1.略2.18S=《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121xx e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰②)0a > ③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π 三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc + ②()22ln x a x c +++ ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1. 函数29y x=-的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120xedx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解.八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d = 6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ).A 、2sinxB 、 2sin x -C 、 C x +2sinD 、2sin 2x -7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C x x++-2ln 18、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ;4、C x x +++-+)11ln(212;5、)12(2e- ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2YB 、 ()),0(0,1+∞-YC 、),0()0,1(+∞-ID 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a xx ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0 D 、241a π 10、方程( )是一阶线性微分方程.A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)(φx b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxeC e C 221+.三、1、31 ; 2、1arccos 12---x x x ; 3、dx xx 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略。
高等数学试题库及答案doc一、选择题1. 下列函数中,哪一个是偶函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = |x|D. f(x) = sin(x)答案:A2. 曲线 y = x^2 在点 (1,1) 处的切线斜率是多少?A. 0B. 1C. 2D. -2答案:C二、填空题1. 极限lim(x→0) (sin(x)/x) 的值是 __________。
答案:12. 函数 f(x) = x + 1 在 x = 2 处的导数是 __________。
答案:1三、计算题1. 求函数 f(x) = x^3 - 2x^2 + 3x 的导数。
解:f'(x) = 3x^2 - 4x + 32. 计算定积分∫(0 到 1) x^2 dx。
解:∫(0 到 1) x^2 dx = [1/3 * x^3] (从0到1) = 1/3四、证明题1. 证明函数 f(x) = e^x 是严格单调递增的。
证明:设任意 x1 < x2,则 f(x1) - f(x2) = e^x1 - e^x2。
由于e^x 是严格单调递增的,所以当 x1 < x2 时,e^x1 < e^x2,从而f(x1) < f(x2)。
因此,函数 f(x) 是严格单调递增的。
五、应用题1. 一个物体从静止开始,以初速度为零的匀加速直线运动,其加速度为 2 m/s²。
求物体在前 3 秒内的位移。
解:根据匀加速直线运动的位移公式 s = 1/2 * a * t²,代入 a = 2 m/s²和 t = 3 s,得到 s = 1/2 * 2 * 3² = 9 m。
六、论述题1. 论述微积分在物理学中的应用。
答案:微积分在物理学中有广泛的应用,例如在力学中计算物体的运动轨迹、在电磁学中分析电场和磁场的变化、在热力学中研究温度分布等。
微积分的基本原理—极限和导数,为物理学家提供了一种强大的工具,用以描述和预测物理现象的变化趋势。
《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分)。
1.下列各组函数中,是相同的函数的是( )。
(A )()()2ln 2ln f x x g x x == 和 (B)()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D)23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( )。
(A )连续且可导 (B )连续且可微 (C )连续不可导 (D)不连续不可微5.点0x =是函数4y x =的( )。
(A)驻点但非极值点 (B )拐点 (C)驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B)只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D)既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B)1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( )。
(A)arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( )。
高等数学试题及答案解析一、选择题1. 函数f(x) = x^2 - 4x + 3在区间[0, 5]上的最大值是:A. 3B. 5C. 7D. 9答案:D解析:首先求导f'(x) = 2x - 4,令f'(x) = 0得到x = 2,这是函数的极值点。
计算f(2) = 2^2 - 4*2 + 3 = -1。
接下来检查区间端点,f(0) = 3,f(5) = 5^2 - 4*5 + 3 = 9。
因此,最大值为f(5) = 9。
2. 若f(x) = sin(x) + cos(x),则f'(x)等于:A. cos(x) - sin(x)B. cos(x) + sin(x)C. -sin(x) + cos(x)D. -sin(x) - cos(x)答案:A解析:根据导数的基本公式,sin(x)的导数是cos(x),cos(x)的导数是-sin(x)。
因此,f'(x) = cos(x) - sin(x)。
二、填空题1. 求不定积分∫(2x + 1)dx = __________。
答案:x^2 + x + C解析:根据不定积分的基本公式,∫x^n dx = (x^(n+1))/(n+1) + C,其中n ≠ -1。
将n = 1代入公式,得到∫(2x + 1)dx = ∫2x dx + ∫1 dx = x^2 + x + C。
2. 若y = ln(x),则dy/dx = __________。
答案:1/x解析:对自然对数函数求导,根据对数函数的导数公式,ln(x)的导数是1/x。
三、解答题1. 求函数f(x) = x^3 - 6x^2 + 9x - 2的极值点。
答案:极值点为x = 3。
解析:首先求导f'(x) = 3x^2 - 12x + 9。
令f'(x) = 0,解得x = 1 和 x = 3。
计算二阶导数f''(x) = 6x - 12,代入x = 1得到f''(1) = -6 < 0,说明x = 1是极大值点;代入x = 3得到f''(3) = 18 > 0,说明x = 3是极小值点。
高等数学上册试题及参考答案高等数学上册试题及参考答案第一篇:微积分1.已知函数$f(x)=\ln{(\sqrt{(1+x^2)}+x)}$,求$f'(x)$和$f''(x)$。
参考答案:首先,根据对数函数的导数公式$[\lnf(x)]'=\frac{f'(x)}{f(x)}$,我们可以得到$f'(x)$的计算式为:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}+x}\cdot\frac{\fra c{1}{2}\cdot2x}{\sqrt{(1+x^2)}}+\frac{1}{\sqrt{(1+x^2)}+x}$$ 将上式整理化简,得到:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}\cdot(\sqrt{(1+x^2 )}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}$$接下来,我们需要求$f''(x)$。
由于$f'(x)$是由$f(x)$求导得到的,因此$f''(x)$可以通过对$f'(x)$求导得到,即:$$f''(x)=\frac{d}{dx}\left[\frac{1}{\sqrt{(1+x^2) }\cdot(\sqrt{(1+x^2)}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}\r ight]$$通过链式法则和乘法法则,我们得到:$$f''(x)=\frac{-(1+x^2)^{-\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)-\frac{1}{2}(1+x^2)^{-\frac{1}{2}}\cdot\frac{2x}{\sqrt{(1+x^2)}}\cdot(\sqrt{ (1+x^2)}+x)^2}{(\sqrt{(1+x^2)}+x)^2}$$将上式整理化简,得到:$$f''(x)=\frac{-1-2x^2}{(1+x^2)^{\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)^2}$ $因此,函数$f(x)=\ln{(\sqrt{(1+x^2)}+x)}$的导数$f'(x)$和二阶导数$f''(x)$分别为:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}\cdot(\sqrt{(1+x^2 )}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}$$$$f''(x)=\frac{-1-2x^2}{(1+x^2)^{\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)^2}$ $2.计算二重积分$\iint_D(x^2+y^2)*e^{-x^2-y^2}d\sigma$,其中$D$是圆域$x^2+y^2\leqslant 1$。
高等数学试题及答案大全一、选择题1. 下列函数中,不是周期函数的是()。
A. y = sin(x)B. y = cos(x)C. y = e^xD. y = tan(x)2. 函数f(x) = x^2 + 3x - 2在区间[-5, 2]上的最大值是()。
A. 0B. 3C. 4D. 5二、填空题1. 若函数f(x) = 2x - 3在x = 1处的导数为5,则原函数在x = 1处的值为______。
2. 曲线y = x^3 - 2x^2 + x在x = 2处的切线斜率为______。
三、解答题1. 求函数f(x) = ln(x) + 1的导数,并说明其在x = e处的导数值。
2. 已知函数f(x) = x^3 - 6x^2 + 11x - 6,求其极值点。
四、证明题1. 证明函数f(x) = x^3在R上的单调性。
2. 证明等差数列的前n项和公式S_n = n(a_1 + a_n)/2。
五、应用题1. 某工厂生产一种产品,其成本函数为C(x) = 3x + 200,销售价格为P(x) = 50 - 0.05x,其中x表示产品数量。
求该工厂的盈利函数,并求出其盈利最大时的产品数量。
2. 一个圆的半径为r,求其面积与周长的比值。
答案:一、选择题1. C解析:函数y = e^x不是周期函数,其他选项都是周期函数。
2. D解析:函数f(x) = x^2 + 3x - 2的导数为f'(x) = 2x + 3,令其等于0,解得x = -3/2,但x = -3/2不在区间[-5, 2]内。
检查区间端点,f(-5) = -8,f(2) = 5,因此最大值为5。
二、填空题1. -1解析:由f'(x) = 2,且f'(1) = 5,可得f(1) = f'(1) * (1 - 0) + f(0) = 5 + f(0),又因为f(0) = -3,所以f(1) = 5 - 3 = 2。
2. -4解析:由y' = 3x^2 - 4x + 1,代入x = 2,得y' = 3 * 2^2 - 4 * 2 + 1 = 12 - 8 + 1 = 5。
大学高等数学上考试题库及答案一、选择题1. 若函数f(x) = x^2 - 2x - 3,则f(2)的值为:A) -3 B) -1 C) 1 D) 32. 设函数g(x) = (x + 3)^2 - 4,则g(-5)的值为:A) -7 B) -1 C) 3 D) 73. 已知直线L1的斜率为2,过点(3, 4),则直线L1的方程为:A) y = 2x + 4 B) y = 2x + 5 C) y = 3x + 1 D) y = 3x + 44. 若a·b = 0,且a ≠ 0,则b的值为:A) 0 B) 1 C) -1 D) 无法确定5. 设f(x) = 2x^2 - 3x + 1,g(x) = x - 2。
则f(g(2))的值为:A) -1 B) 1 C) 3 D) 7二、填空题1. 计算lim(x→2) [(x + 1)(x - 2)] / (x - 2)的值: ______2. 若h(x) = (x - 3)^2 - 4,则h(-1)的值为: ______3. 求方程x^2 + ax + b = 0的解,其中a = 2,b = -3。
解为 x = ______4. 设函数y = f(x)的反函数为y = f^(-1)(x),则f^(-1)(f(3))的值为:______5. 解方程3^x = 27的解为: ______三、解答题1. 计算lim(x→∞) (3x^2 - 2x + 1) / (4x^2 + 5x - 2)的值,并说明计算步骤。
2. 求函数f(x) = x^3 - 3x^2的导函数。
3. 求方程组:2x + 3y = 53x - 2y = -1的解,并验证解的正确性。
4. 求函数f(x) = x^3 - 6x^2 + 11x - 6的极值点,并判断其是极大值点还是极小值点。
5. 证明:若函数f(x) = a^x (a > 0, a ≠ 1)是增函数,则a的值范围为(______, ______)。
《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xe C -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰ ②()220dx a x a >-⎰ ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题 1.2- 2.- 3. 2 4.arctanln x c + 5.2 三.计算题 1①2e ②162.11xy x y '=+- 3. ①11ln ||23x C x +++②ln ||x C + ③()1x e x C --++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }.(A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫ ⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C) 1,ln 22⎛⎫ ⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ). (A) ()121x x e - (B)12x x e - (C) ()121x x e + (D) 12xxe8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '.3.求下列不定积分: ①3tan sec x xdx ⎰ ②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x td e dt dx -=⎰8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2. ln(1)x x dx +⎰.3.120xedx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==--四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y e e edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx =C 、)5(x d dx --=D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x- C 、 C x +2sin D 、2sin 2x -7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e - ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→B 、x x arctan lim ∞→C 、x x sin lim ∞→D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0D 、241a π 10、方程( )是一阶线性微分方程. A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxeC e C 221+.三、1、31 ; 2、1arccos 12---x xx ; 3、dx x x 221)1(1-- ;4、C x ++ln 22 ;5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略。
.《高数》试卷 1(上)一.选择题(将答案代号填入括号内,每题3 分,共 30 分).1.下列各组函数中,是相同的函数的是() .(A ) f xln x2和 g x2ln x(B ) f x| x | 和 g x x22| x |(C ) f x x 和 g x x( D ) f x和 g x1xsin x 42x 02.函数 fxln 1 x在 x 0 处连续,则 a() .ax 0(A )0(B )1(C )1(D )243.曲线 y x ln x 的平行于直线 x y 1 0 的切线方程为() .(A ) y x 1 (B ) y( x 1) ( C ) yln x 1x 1( D ) y x4.设函数f x | x |,则函数在点 x 0 处() .(A )连续且可导 ( B )连续且可微( C )连续不可导 ( D )不连续不可微5.点 x 0 是函数 y x 4的() .(A )驻点但非极值点( B )拐点( C )驻点且是拐点( D )驻点且是极值点6.曲线 y1) .的渐近线情况是(| x |(A )只有水平渐近线 ( B )只有垂直渐近线 ( C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线7.1 1的结果是() .fxx 2dx(A ) f1 C(B ) f1 C( C ) f1 C(D )f1 Cxxxx8.dx 的结果是() .ex e x(A ) arctan exC ( B ) arctan exC( C ) exexC( D ) ln( exe x)C9.下列定积分为零的是( ) .(A )4arctan x dx ( B ) 4x arcsin x dx (C ) 1exe xdx ( D )1x 2 x sin x dx1x2121 4410 .设f x1) .为连续函数,则 f 2x dx 等于((A )f2 f 0(B)1f 11 f 0(C)1f 2 f 0( D)f 1 f 0 22二.填空题(每题 4 分,共 20 分).f x e 2x 1x0x0 处连续,则 a1x..设函数在a x02.已知曲线 y f x 在 x 2 处的切线的倾斜角为5.,则 f 2x 63. y的垂直渐近线有条.2x14.dx.ln 2 xx 15.2x4 sin x cosx dx.2三.计算(每小题 5 分,共 30分)1.求极限12 xx sin x①limx② limxx2x0x e1x2.求曲线y ln x y 所确定的隐函数的导数y x. 3.求不定积分①xdx②dx a0③ xe x dx 1x 3x2a2四.应用题(每题10 分,共 20 分)1.作出函数y x33x2的图像.2.求曲线y22x 和直线 y x 4 所围图形的面积..《高数》试卷 1 参考答案一.选择题1.B 2.B 3. A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2 2 .33.24.arctanln x c5.23三.计算题1① e2② 12. y xx16y 13. ① 1 ln |x 1| C② ln | x2a2x | C③ exx 1 C2x3四.应用题1.略2. S 18.《高数》试卷 2(上)一. 选择题 (将答案代号填入括号内 ,每题 3 分,共 30 分)1.下列各组函数中 ,是相同函数的是 ().(A)f xx 和 g xx2(B)f xx 21和 y x 1x 1(C)f xx 和 g xx(sin 2 x cos 2x)(D)f xln x 2和 g x2ln xsin 2 x 1x 1x 12.设函数 fx2 x 1,则 limf x() .x2x11 x 1(A) 0(B)1 (C)2(D) 不存在3.设函数 y f x 在点 x 0 处可导,且 fx >0, 曲线则 yf x 在点 x 0 , f x 0处的切线的倾斜角为 {}.(A)0 (B)2(C)锐角(D)钝角4.曲线 y ln x 上某点的切线平行于直线 y2x3 ,则该点坐标是 ().(A)2,ln1(B)2, ln1(C)1,ln 2(D)1 , ln 222225.函数 y x 2e x及图象在 1,2 内是 ().(A) 单调减少且是凸的 (B)单调增加且是凸的(C) 单调减少且是凹的(D) 单调增加且是凹的6.以下结论正确的是 ().(A)若 x0为函数y f x的驻点 ,则x0必为函数y f x的极值点 .(B)函数 y f x导数不存在的点 ,一定不是函数y f x 的极值点.(C)若函数 y f x在 x0处取得极值,且f x0存在 ,则必有f x0=0.(D)若函数 y f x在 x0处连续,则f x一定存在 .17.设函数y f x的一个原函数为x2e x,则f x=()..1111 (A)2x 1 e x(B)2x e x(C)2x 1 e x(D)2xe x8.若(A)f x dx F x c ,则 sin xf cosx dx().F sin x c(B) F sin x c (C) F cosx c (D) F cos x c9.设F1xdx =(). x 为连续函数,则f02(A) f1f0(B)2 f1 f 0(C) 2 f 2f0(D) 2 f1f02 bdx a b 在几何上的表示(10. 定积分).a(A) 线段长b a (B)线段长 a b (C)矩形面积a b1(D) 矩形面积b a1二.填空题 (每题 4分,共 20分)ln1x2x 0, 在x1.设 f x1cos x0 连续,则a=________.a x02.设 y sin 2x ,则 dy_________________ d sin x .3.函数 y x1的水平和垂直渐近线共有 _______条 .21x4.不定积分x ln xdx______________________.5.1x2 sin x1___________.定积分1x 2dx1三.计算题 (每小题 5 分 ,共 30 分)1.求下列极限 :①lim 1 2xx0 1arctanx x② lim2x1x2.求由方程y 1 xe y所确定的隐函数的导数y x.3.求下列不定积分:①tan x sec3xdx②dxa 0③x2e x dx x2a2四.应用题 (每题 10 分,共 20 分)1.作出函数y 1 x3x 的图象.(要求列出表格)32.计算由两条抛物线:y2x, y x2所围成的图形的面积..《高数》试卷 2 参考答案一.选择题: CDCDB CADDD二填空题: 1. -2 2. 2sin x 3.3 4.1x2 ln x 1 x2c 5. 242三. 计算题: 1.2②1 2.y xe y① e y23.① sec3 x c② ln x2a2x c ③x22x 2 e x c3四.应用题: 1.略 2.S 13《高数》试卷3(上)一、填空题 (每小题 3分,共24分)1.函数 y1的定义域为 ________________________. 9x22.设函数 f x sin 4x , x0f x 在 x0处连续 .x, 则当 a=_________时,a,x03. 函数f (x)x21的无穷型间断点为 ________________.23xx24.设 f ( x) 可导,y f ( e x ) ,则 y ____________.5.limx21_________________. 2x2x 5x.6.1 x3sin 2xdx =______________.1x4x217. d x 2e tdt _______________________.dx 08. yyy30 是_______阶微分方程 .二、 求下列极限 (每小题 5 分,共15分)xx1x31 1. lim e;2. lim ;3. lim21.x 0sin xx 3x9x 2x三、求下列导数或微分 (每小题 5 分, 共 15 分)1. yx x, 求 y (0) .2. yecos x, 求 dy .2y ,求 dy .3. 设 xyexdx四、求下列积分 (每小题 5 分, 共15 分)1. 12sin x dx .2.x ln(1x)dx .x3.1e2xdxx t在 t处的切线与法线方程 .五、 (8 分)求曲线1 cost 2y六、 (8 分 )求由曲线 y x 21, 直线 y 0, x 0 和 x 1 所围成的平面图形的面积 , 以及此图形绕 y 轴旋转所得旋转体的体积 .七、 (8 分 )求微分方程 y 6 y13 y0的通解.八、 (7 分 )求微分方程 yy e x满足初始条件 y 10的特解 .x《高数》试卷 3 参考答案一. 1. x 32. a 43. x 24. e x f '(e x )5.16.07. 2 xex 28. 二阶2二 .1.原式 = limx1x 0x112. lim6x 3x33.原式 = lim[(1111)2 x] 2e 2x2x三 .1.2.y' 2 12 , y '(0)2(x2)dysin xecos xdx3.两边对 x 求写: yxy ' ex y(1 y ')x ye y xy y四.1.原式 = lim x2cos x C2.原式 = lim(1x)d (x2x 21) lim(1 x) x 2d[lim(1x)]22 x221( x1)dx= x lim(1 x) 11 xdx xlim(1 x)122x221 x22= xlim(1 x) 1 [ xx lim(1x)] C22 23.原式 = 11 2x12 x 1122 0 ed (2 x) 2e 02 (e1) 五. dysin t dy t 1且 t2, y 1dxdx 2.切线: y1 x,即 y x 1 22法线: y1( x ),即 y x 1 022六. S11)dx ( 1x2x) 103 ( x222V1 (x21)2dx12x21)dx0 ( x4( x52 x 2 x) 10 28 53 15r 2 6r13 0r 3 2i七.特征方程 : ye 3 x (C 1 cos2 x C 2 sin 2 x)1dx1dx八. y e x( e x e x dx C )1 [ (x 1e x)C ]x由 y x1 0, C 0x 1 x ye x《高数》试卷 4(上)一、选择题(每小题 3 分)1、函数 y ln(1 x)x 2 的定义域是( ) .A2,1B2,1C 2,1 D2,12、极限 lim e x的值是() .xA 、B 、C 、D 、不存在3、 limsin(x 1) ( ) .x 11 x 21 1A 、 1B 、 0C 、2 D 、24、曲线 y x3x 2 在点 (1,0) 处的切线方程是()A 、 y2( x 1)B 、 y 4( x 1)C 、 y 4x 1D 、 y 3( x 1)5、下列各微分式正确的是( ) .A 、xdx( x 2 )、 cos2xdx d(sin 2x)dBC 、 dx d (5 x)D 、 d (x 2 ) (dx)26、设f (x)dx2 cosxC ,则f ( x) () .2A 、 sinxB 、27、2 ln xdx() .xsinxC 、sinxCD 、2 sinx22 2A 、2 1 ln 2x C B 、 1(2 ln x)2Cx 222.C 、 ln 2ln x C1 ln xCD 、x28、曲线 yx2, x1 , y0 所围成的图形绕 y 轴旋转所得旋转体体积 V() .1x 4dx1 ydyA 、B 、1(1 y)dy1(1 x4)dxC 、D 、1exdx() .9、e x1A 、 ln1 eB 、 ln2 eC 、 ln1 eD 、 ln1 2e223210 、微分方程 yyy 2e2 x的一个特解为() .A 、 y3 e 2x B 、 y3 e x C 、 y2 xe 2x D 、 y2 e 2 x7777二、填空题(每小题 4 分)1、设函数 yxe x,则 y; 3sin mx2 则 m.2、如果 lim,x 02x313、 x 3cos xdx;14、微分方程 y4 y 4 y 0 的通解是.5、函数 f ( x)x2 x 在区间0,4 上的最大值是,最小值是;三、计算题(每小题5 分)1、求极限 lim1 x1 x ;2 、求 y1cot 2x ln sin x 的导数;x 0x23、求函数x 31 4 、求不定积分dx ;y的微分;xx31115、求定积分e ln x dx ;dyx 6、解方程1;edxy 1 x2四、应用题(每小题 10 分)1、求抛物线y x 2与y 2 x 2所围成的平面图形的面积.2、利用导数作出函数y 3x2x3的图象.参考答案.一、 1、C ;2、D ;3、C ;4、B ;5、 C ;6、 B ;7、B ;8、A ;9、A ; 10、D ;二、 1、 (x2)e x;2 、4;3、0 ;4 、 y(C 1 C 2 x)e 2 x; 5、 8,09三、1、1 ;2、cot 3x ;3、6 x 2dx ;4 、 2 x 1 2 ln(1x 1) C ;5、2(21) ; 6 、 y22 1 x2C ;( x 3 1) 2e四、1、 8;32、图略《高数》试卷 5(上)一、选择题(每小题3 分)1 、函数 y2x1 的定义域是() .lg( x 1)A 、2, 1 0,B 、 1,0(0,)C 、 ( 1,0) (0,)D 、( 1, )2 、下列各式中,极限存在的是( ) .A 、lim c o sxB 、 lim arctanxC 、 lim sin xD 、 lim 2xxxxx3 、 lim (x )x() .x1 xA 、 eB 、 e 2C 、 1D 、1e4、曲线 yx ln x 的平行于直线 x y 1 0 的切线方程是() .A 、 yxB 、C 、yx 1D 、 y (ln x 1)( x 1) y ( x 1)5、已知 yxsin 3x ,则 dy() .A、( cos3x3sin 3x)dxB、C、(cos 3x sin 3x) dx D 、6、下列等式成立的是() .(sin 3x3x cos3x) dx (sin 3x x cos3x)dxA、C、x dx1x 1C B 、a x dx a x ln x C11 cosxdx sin x C D 、tan xdx Cx 21.7、计算e sin x sin xcos xdx 的结果中正确的是() .A、e sin x CB、e sin x cos x CC、e sin x sin x CD、e sin x(sin x 1)C8、曲线y x2, x 1, y0 所围成的图形绕x 轴旋转所得旋转体体积V() .1x 4dx B 、1A、ydy001(1y)dy1(1 x 4 )dxC、 D 、009、设 a ﹥,则a22) .a dx(A、a2 B 、a2C、1a20D、1a2244 10 、方程()是一阶线性微分方程 .A、x2y ln y0B、y e x y 0 xC、(1x2 ) y y sin y0D、xy dx ( y26x)dy 0二、填空题(每小题 4 分)1、设f ( x)e x1, x0, lim f ( x);,则有 lim f (x)ax b, x0x 0x 02、设y xe x,则y;3、函数f ( x)ln(1x2 ) 在区间1,2 的最大值是,最小值是;14、x3cos xdx;15、微分方程y 3 y 2 y 0的通解是.三、计算题(每小题 5 分)1、求极限lim (11 x 23) ;x 1x x2 2、求y 1 x2 arccosx 的导数;3、求函数yx的微分;1x24、求不定积分1;dxx 2ln x.5、求定积分eln x dx ;1e6、求方程x2y xy y 满足初始条件y(1) 4 的特解.2四、应用题(每小题10 分)1、求由曲线y 2 x2和直线x y 0 所围成的平面图形的面积.2、利用导数作出函数y x 36x 29x 4的图象.参考答案( B 卷)一、 1、B;2、A;3、D;4、C;5、 B;6、C;7、 D;8、A;9、D;10 、B.二、 1、 2 , b ; 2 、( x2)e x; 3 、ln 5 , 0 ;4、 0 ;5、C1e x C 2 e2x.三、1、1; 2 、x arccosx 1 ; 3 、1dx ;3 1 x2(1 x2 ) 1 x 24、2 2ln x C ;5、2(21) ; 6 、y 2 e e x四、 1、9 ;2、图略21x;2。
最新大学高等数学上考试题库及答案最新大学高等数学上考试题库及答案《高数》试卷1( 上)一. 选择题(将答案代号填入括号内,每题3分,共30分).1. 卜冽各组函数中,是相同的函数的是().(A) ()()21 n21 nfxxgxx==和(B ) ()||fxx =和()2gxx =(C) 0fxx"l()02gxx =(D) Oilxfxx=和Ogx=12.函数()()sin42OlnilOxxfxxax f+-* IJ I=1 在0 乂=处连续,则。
=().(A) 0 (B ) 14(C ) 1 (D ) 23.曲线Inyxx=的平行于直线1 Oxy-+=的切线方程为().(A ) lyx=- (B)(l)yx=-+ (C ) OQln llyxx=- (D ) yx = 4. 设函数()||fxx =,则函数在点Ox =处().(A)连续且可导(B)连续且可微(C)连续不可导(D)不连续不可微5. 点Ox = 是函数4yx=A J ().(A)驻点但非极值点(B)拐点(C)驻点且是拐点(D)驻点且是极值点6. 曲线1IIy x =的渐近线情况是().(A)只有水平渐近线(B)只有垂直渐近线(C)既有水平渐近线又冇垂直渐近线( D )既无水平渐近线又无垂直渐近线7.齣/的犁是()?( A) IfCxI 1-+\\)((B \ IfCxI 1(G) IfCx A + I\J ((Di) IfCxI 1-+\\)8.xxdxee-+J■的结果是().(A ) arcta n x e C + (B ) arcta n xC -+ (C) xxeeC-+ (D ) ln() xxeeC-++ 9.下列定积分为零的是().(A ) 424arctan lxdxx nTT-+J (B ) 44arcsin x x dx TUT J (C ) 112xx eedx-+J (D ) 121sinxxxdx-+J 10.设()fx 为连续函数, 2fxdx'J 等于().(A) Q020ff- (B )00iuo2ff JU (c)001 202ff.flJ (D ) ()()10ff ?。
.《高数》试卷 1(上)一.选择题(将答案代号填入括号内,每题3 分,共 30 分).1.下列各组函数中,是相同的函数的是() .(A ) f xln x2和 g x2ln x(B ) f x| x | 和 g x x22| x |(C ) f x x 和 g x x( D ) f x和 g x1xsin x 42x 02.函数 fxln 1 x在 x 0 处连续,则 a() .ax 0(A )0(B )1(C )1(D )243.曲线 y x ln x 的平行于直线 x y 1 0 的切线方程为() .(A ) y x 1 (B ) y( x 1) ( C ) yln x 1x 1( D ) y x4.设函数f x | x |,则函数在点 x 0 处() .(A )连续且可导 ( B )连续且可微( C )连续不可导 ( D )不连续不可微5.点 x 0 是函数 y x 4的() .(A )驻点但非极值点( B )拐点( C )驻点且是拐点( D )驻点且是极值点6.曲线 y1) .的渐近线情况是(| x |(A )只有水平渐近线 ( B )只有垂直渐近线 ( C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线7.1 1的结果是() .fxx 2dx(A ) f1 C(B ) f1 C( C ) f1 C(D )f1 Cxxxx8.dx 的结果是() .ex e x(A ) arctan exC ( B ) arctan exC( C ) exexC( D ) ln( exe x)C9.下列定积分为零的是( ) .(A )4arctan x dx ( B ) 4x arcsin x dx (C ) 1exe xdx ( D )1x 2 x sin x dx1x2121 4410 .设f x1) .为连续函数,则 f 2x dx 等于((A )f2 f 0(B)1f 11 f 0(C)1f 2 f 0( D)f 1 f 0 22二.填空题(每题 4 分,共 20 分).f x e 2x 1x0x0 处连续,则 a1x..设函数在a x02.已知曲线 y f x 在 x 2 处的切线的倾斜角为5.,则 f 2x 63. y的垂直渐近线有条.2x14.dx.ln 2 xx 15.2x4 sin x cosx dx.2三.计算(每小题 5 分,共 30分)1.求极限12 xx sin x①limx② limxx2x0x e1x2.求曲线y ln x y 所确定的隐函数的导数y x. 3.求不定积分①xdx②dx a0③ xe x dx 1x 3x2a2四.应用题(每题10 分,共 20 分)1.作出函数y x33x2的图像.2.求曲线y22x 和直线 y x 4 所围图形的面积..《高数》试卷 1 参考答案一.选择题1.B 2.B 3. A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2 2 .33.24.arctanln x c5.23三.计算题1① e2② 12. y xx16y 13. ① 1 ln |x 1| C② ln | x2a2x | C③ exx 1 C2x3四.应用题1.略2. S 18.《高数》试卷 2(上)一. 选择题 (将答案代号填入括号内 ,每题 3 分,共 30 分)1.下列各组函数中 ,是相同函数的是 ().(A)f xx 和 g xx2(B)f xx 21和 y x 1x 1(C)f xx 和 g xx(sin 2 x cos 2x)(D)f xln x 2和 g x2ln xsin 2 x 1x 1x 12.设函数 fx2 x 1,则 limf x() .x2x11 x 1(A) 0(B)1 (C)2(D) 不存在3.设函数 y f x 在点 x 0 处可导,且 fx >0, 曲线则 yf x 在点 x 0 , f x 0处的切线的倾斜角为 {}.(A)0 (B)2(C)锐角(D)钝角4.曲线 y ln x 上某点的切线平行于直线 y2x3 ,则该点坐标是 ().(A)2,ln1(B)2, ln1(C)1,ln 2(D)1 , ln 222225.函数 y x 2e x及图象在 1,2 内是 ().(A) 单调减少且是凸的 (B)单调增加且是凸的(C) 单调减少且是凹的(D) 单调增加且是凹的6.以下结论正确的是 ().(A)若 x0为函数y f x的驻点 ,则x0必为函数y f x的极值点 .(B)函数 y f x导数不存在的点 ,一定不是函数y f x 的极值点.(C)若函数 y f x在 x0处取得极值,且f x0存在 ,则必有f x0=0.(D)若函数 y f x在 x0处连续,则f x一定存在 .17.设函数y f x的一个原函数为x2e x,则f x=()..1111 (A)2x 1 e x(B)2x e x(C)2x 1 e x(D)2xe x8.若(A)f x dx F x c ,则 sin xf cosx dx().F sin x c(B) F sin x c (C) F cosx c (D) F cos x c9.设F1xdx =(). x 为连续函数,则f02(A) f1f0(B)2 f1 f 0(C) 2 f 2f0(D) 2 f1f02 bdx a b 在几何上的表示(10. 定积分).a(A) 线段长b a (B)线段长 a b (C)矩形面积a b1(D) 矩形面积b a1二.填空题 (每题 4分,共 20分)ln1x2x 0, 在x1.设 f x1cos x0 连续,则a=________.a x02.设 y sin 2x ,则 dy_________________ d sin x .3.函数 y x1的水平和垂直渐近线共有 _______条 .21x4.不定积分x ln xdx______________________.5.1x2 sin x1___________.定积分1x 2dx1三.计算题 (每小题 5 分 ,共 30 分)1.求下列极限 :①lim 1 2xx0 1arctanx x② lim2x1x2.求由方程y 1 xe y所确定的隐函数的导数y x.3.求下列不定积分:①tan x sec3xdx②dxa 0③x2e x dx x2a2四.应用题 (每题 10 分,共 20 分)1.作出函数y 1 x3x 的图象.(要求列出表格)32.计算由两条抛物线:y2x, y x2所围成的图形的面积..《高数》试卷 2 参考答案一.选择题: CDCDB CADDD二填空题: 1. -2 2. 2sin x 3.3 4.1x2 ln x 1 x2c 5. 242三. 计算题: 1.2②1 2.y xe y① e y23.① sec3 x c② ln x2a2x c ③x22x 2 e x c3四.应用题: 1.略 2.S 13《高数》试卷3(上)一、填空题 (每小题 3分,共24分)1.函数 y1的定义域为 ________________________. 9x22.设函数 f x sin 4x , x0f x 在 x0处连续 .x, 则当 a=_________时,a,x03. 函数f (x)x21的无穷型间断点为 ________________.23xx24.设 f ( x) 可导,y f ( e x ) ,则 y ____________.5.limx21_________________. 2x2x 5x.6.1 x3sin 2xdx =______________.1x4x217. d x 2e tdt _______________________.dx 08. yyy30 是_______阶微分方程 .二、 求下列极限 (每小题 5 分,共15分)xx1x31 1. lim e;2. lim ;3. lim21.x 0sin xx 3x9x 2x三、求下列导数或微分 (每小题 5 分, 共 15 分)1. yx x, 求 y (0) .2. yecos x, 求 dy .2y ,求 dy .3. 设 xyexdx四、求下列积分 (每小题 5 分, 共15 分)1. 12sin x dx .2.x ln(1x)dx .x3.1e2xdxx t在 t处的切线与法线方程 .五、 (8 分)求曲线1 cost 2y六、 (8 分 )求由曲线 y x 21, 直线 y 0, x 0 和 x 1 所围成的平面图形的面积 , 以及此图形绕 y 轴旋转所得旋转体的体积 .七、 (8 分 )求微分方程 y 6 y13 y0的通解.八、 (7 分 )求微分方程 yy e x满足初始条件 y 10的特解 .x《高数》试卷 3 参考答案一. 1. x 32. a 43. x 24. e x f '(e x )5.16.07. 2 xex 28. 二阶2二 .1.原式 = limx1x 0x112. lim6x 3x33.原式 = lim[(1111)2 x] 2e 2x2x三 .1.2.y' 2 12 , y '(0)2(x2)dysin xecos xdx3.两边对 x 求写: yxy 'e x y(1 y ')e x yyxy yy 'exyxxyx四.1.原式 = lim x2cos x C2.原式 = lim(1x)d (x2x 21) lim(1 x)x 2d[lim(1x)]22 x221( x1)dx= x lim(1 x) 11xdx x lim(1 x)122 x 221 x22= xlim(1 x) 1 [ xx lim(1x)] C22 23.原式 = 11 2x12 x 1122 0 ed (2 x) 2e 02 (e1) 五. dysin t dy t1且 t2, y 1dxdx 2.切线: y1 x,即 y x 1 22法线: y1( x ),即 y x 1 022六. S11)dx ( 1x2x) 103 ( x222V1 (x21)2dx12x21)dx0 ( x4( x52 x 2 x) 10 28 53 15r 2 6r13 0r 3 2i七.特征方程 : ye 3 x (C 1 cos2 x C 2 sin 2 x)1dx1dx八. y e x( e x e x dx C )1 [ (x 1e x)C ]x由 y x1 0, C 0x 1 x ye x《高数》试卷 4(上)一、选择题(每小题 3 分)1、函数 y ln(1 x)x 2 的定义域是( ) .A2,1B2,1C 2,1 D2,12、极限 lim e x的值是() .xA 、B 、C 、D 、不存在3、 limsin(x 1) ( ) .x 11 x 21 1A 、 1B 、 0C 、2 D 、24、曲线 y x3x 2 在点 (1,0) 处的切线方程是()A 、 y2( x 1)B 、 y 4( x 1)C 、 y 4x 1D 、 y 3( x 1)5、下列各微分式正确的是( ) .A 、xdx( x 2 )、 cos2xdx d(sin 2x)dBC 、 dx d (5 x)D 、 d (x 2 ) (dx)26、设f (x)dx2 cosxC ,则f ( x) () .2A 、 sinxB 、27、2 ln xdx() .xsinxC 、sinxCD 、2 sinx22 2A 、2 1 ln 2x C B 、 1(2 ln x)2Cx 222.C 、 ln 2ln x C1 ln xCD 、x28、曲线 yx2, x1 , y0 所围成的图形绕 y 轴旋转所得旋转体体积 V() .1x 4dx1 ydyA 、B 、1(1 y)dy1(1 x4)dxC 、D 、1exdx() .9、e x1A 、 ln1 eB 、 ln2 eC 、 ln1 eD 、 ln1 2e223210 、微分方程 yyy 2e2 x的一个特解为() .A 、 y3 e 2x B 、 y3 e x C 、 y2 xe 2x D 、 y2 e 2 x7777二、填空题(每小题 4 分)1、设函数 yxe x,则 y; 3sin mx2 则 m.2、如果 lim,x 02x313、 x 3cos xdx;14、微分方程 y4 y 4 y 0 的通解是.5、函数 f ( x)x2 x 在区间0,4 上的最大值是,最小值是;三、计算题(每小题5 分)1、求极限 lim1 x1 x ;2 、求 y1cot 2x ln sin x 的导数;x 0x23、求函数x 31 4 、求不定积分dx ;y的微分;xx31115、求定积分e ln x dx ;dyx 6、解方程1;edxy 1 x2四、应用题(每小题 10 分)1、求抛物线y x 2与y 2 x 2所围成的平面图形的面积.2、利用导数作出函数y 3x2x3的图象.参考答案.一、 1、C ;2、D ;3、C ;4、B ;5、 C ;6、 B ;7、B ;8、A ;9、A ; 10、D ;二、 1、 (x2)e x;2 、4;3、0 ;4 、 y(C 1 C 2 x)e 2 x; 5、 8,09三、1、1 ;2、cot 3x ;3、6 x 2dx ;4 、 2 x 1 2 ln(1x 1) C ;5、2(21) ; 6 、 y22 1 x2C ;( x 3 1) 2e四、1、 8;32、图略《高数》试卷 5(上)一、选择题(每小题3 分)1 、函数 y2x1 的定义域是() .lg( x 1)A 、2, 1 0,B 、 1,0(0,)C 、 ( 1,0) (0,)D 、( 1, )2 、下列各式中,极限存在的是( ) .A 、lim c o sxB 、 lim arctanxC 、 lim sin xD 、 lim 2xxxxx3 、 lim (x )x() .x1 xA 、 eB 、 e 2C 、 1D 、1e4、曲线 yx ln x 的平行于直线 x y 1 0 的切线方程是() .A 、 yxB 、C 、yx 1D 、 y (ln x 1)( x 1) y ( x 1)5、已知 yxsin 3x ,则 dy() .A、( cos3x3sin 3x)dxB、C、(cos 3x sin 3x) dx D 、6、下列等式成立的是() .(sin 3x3x cos3x) dx (sin 3x x cos3x)dxA、C、x dx1x 1C B 、a x dx a x ln x C11 cosxdx sin x C D 、tan xdx Cx 21.7、计算e sin x sin xcos xdx 的结果中正确的是() .A、e sin x CB、e sin x cos x CC、e sin x sin x CD、e sin x(sin x 1)C8、曲线y x2, x 1, y0 所围成的图形绕x 轴旋转所得旋转体体积V() .1x 4dx B 、1A、ydy001(1y)dy1(1 x 4 )dxC、 D 、009、设 a ﹥,则a22) .a dx(A、a2 B 、a2C、1a20D、1a2244 10 、方程()是一阶线性微分方程 .A、x2y ln y0B、y e x y 0 xC、(1x2 ) y y sin y0D、xy dx ( y26x)dy 0二、填空题(每小题 4 分)1、设f ( x)e x1, x0, lim f ( x);,则有 lim f (x)ax b, x0x 0x 02、设y xe x,则y;3、函数f ( x)ln(1x2 ) 在区间1,2 的最大值是,最小值是;14、x3cos xdx;15、微分方程y 3 y 2 y 0的通解是.三、计算题(每小题 5 分)1、求极限lim (11 x 23) ;x 1x x2 2、求y 1 x2 arccosx 的导数;3、求函数yx的微分;1x24、求不定积分1;dxx 2ln x.5、求定积分eln x dx ;1e6、求方程x2y xy y 满足初始条件y(1) 4 的特解.2四、应用题(每小题10 分)1、求由曲线y 2 x2和直线x y 0 所围成的平面图形的面积.2、利用导数作出函数y x 36x 29x 4的图象.参考答案( B 卷)一、 1、B;2、A;3、D;4、C;5、 B;6、C;7、 D;8、A;9、D;10 、B.二、 1、 2 , b ; 2 、( x2)e x; 3 、ln 5 , 0 ;4、 0 ;5、C1e x C 2 e2x.三、1、1; 2 、x arccosx 1 ; 3 、1dx ;3 1 x2(1 x2 ) 1 x 24、2 2ln x C ;5、2(21) ; 6 、y 2 e e x四、 1、9 ;2、图略21x;2。
.《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题 3 分,共30 分).1.下列各组函数中,是相同的函数的是().(A )2f x ln x 和g x 2ln x (B)f x| x|和2g xx(C) f x x 和2g x x(D)f x| x|x 和g x1sin x 4 2 f x ln 1 x x 0在x0处连续,则a (). 2.函数a x 0(A)0 (B)14(C)1(D)23.曲线y xln x 的平行于直线x y 1 0 的切线方程为() .(A)y x 1 (B)y (x1) (C)y ln x 1 x 1 (D)y x 4.设函数 f x | x |,则函数在点x 0处().(A)连续且可导(B)连续且可微(C)连续不可导(D)不连续不可微5.点x 0是函数 4y x 的().(A)驻点但非极值点(B)拐点(C)驻点且是拐点(D)驻点且是极值点6.曲线y1| x|的渐近线情况是().(A)只有水平渐近线(B)只有垂直渐近线(C)既有水平渐近线又有垂直渐近线(D)既无水平渐近线又无垂直渐近线7.1 1fdx2x x的结果是().(A )1f Cx(B)1f Cx(C)1f Cx(D)1fCx8.dxxx e e的结果是().x x(A)arctan e C (B)arctan e C (C)x x x xe e C (D)ln( e e ) C9.下列定积分为零的是().(A)44 arctan1 2 xxdx (B)44x arcsin x dx(C)xx ee112dx(D)112x x sin xdx10.设 f x 为连续函数,则1f 2x dx 等于() .(A)f 2 f 0 (B)12f11 f 0(C)12f 2 f 0 (D)f 1f 0二.填空题(每题 4 分,共20 分)2x1ef xx x在x 0处连续,则 a. 1.设函数ax 02.已知曲线 y f x 在 x 2处的切线的倾斜角为56 ,则 f2 .3. yx21x 的垂直渐近线有 条.4. dx 2x 1 ln x. 5.24x sin x cosxdx .2三.计算(每小题 5 分,共 30 分) 1.求极限 ①lim x1 x x2 x②lim x 0x sin x 2 xx e1 2.求曲线 y ln x y所确定的隐函数的导数y x .3.求不定积分 ①dxx 1 x 3② dx 22x aa 0③xxedx四.应用题(每题 10 分,共 20 分)1. 作出函数3 3 2 y x x 的图像 .2.求曲线2 2y x 和直线 y x 4所围图形的面积 .《高数》试卷 1 参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1. 2 2.33 3.24.a rctanln x c5.2三.计算题1①2e②162. yx1xy13. ①1x 1ln ||2 x 3C ② 2 2 xln | x a x | C ③ e x1 C四.应用题1.略2.S 18《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题 3 分,共30 分)4.下列各组函数中,是相同函数的是( ).(A) f x x 和2g x x (B) f x 2 1xx 1和y x1(C) f x x和2 2g x x(sin x cos x)(D)2f x ln x 和g x2ln xsin 2 x 1x 1x15.设函数f x 2 x12x 1 x 1 ,则l imx 1f x().(A) 0 (B) 1 (C) 2 (D) 不存在6.设函数y f x 在点x0 处可导,且 f x >0, 曲线则y f x 在点x0 , f x0 处的切线的倾斜角为{ }.(A) 0 (B) (C) 锐角(D) 钝角27.曲线y ln x 上某点的切线平行于直线y 2x 3,则该点坐标是( ).(A) 2,ln 12(B) 2,ln12(C)12,ln 2 (D)12,ln28.函数 2 xy x e 及图象在1,2 内是( ).(A) 单调减少且是凸的(B)单调增加且是凸的(C)单调减少且是凹的(D) 单调增加且是凹的9.以下结论正确的是( ).(A) 若x0 为函数y f x 的驻点,则x0 必为函数y f x 的极值点.(B) 函数y f x 导数不存在的点,一定不是函数y f x 的极值点.(C) 若函数y f x 在x0 处取得极值,且f x 存在,则必有f x=0.(D) 若函数y f x 在x0 处连续,则f x 一定存在.110.设函数y f x 的一个原函数为 2 xx e ,则f x=( ).1 1 1 1(A) 2x 1 e x (B) 2x e x (C) 2x 1 e x(D) 2 x e x11.若 f x dx F x c,则sin xf cosx dx ( ).(A) F sin x c (B) F sin x c (C) F cosx c (D) F cos x c12.设F x 为连续函数,则1 xf dx=( ).0 2(A) f 1 f 0 (B) 2 f 1 f 0 (C) 2 f 2 f 0 (D)12 f f 0213.定积分badx a b 在几何上的表示( ).(A) 线段长b a (B) 线段长a b (C) 矩形面积 a b 1 (D) 矩形面积 b a 1二.填空题(每题 4 分,共20 分)2ln 1x f xx1 cos x 01.设, 在x 0连续,则a =________.a x 02.设 2y sin x , 则dy _________________ dsin x .3.函数y x21x 1 的水平和垂直渐近线共有_______条.4.不定积分xln xdx ______________________.5. 定积分112x sin x 1dx21 x___________.三.计算题(每小题 5 分,共30 分)1.求下列极限:①1lim 1 2x x②x 0limx2arctanx1xy2.求由方程y 1 xe 所确定的隐函数的导数y x .3.求下列不定积分:① 3tan xsec xdx②dx2 2x aa0 ③ 2 xx edx四.应用题(每题10 分,共20 分)1.作出函数13y x x的图象.(要求列出表格)32.计算由两条抛物 2 , 2线:y x y x 所围成的图形的面积..《高数》试卷 2 参考答案一.选择题: CDCDB CADDD 二填空题: 1.-2 2. 2sin x3.34.1 12 2 x ln x xc5.242三.计算题: 1. ①2e ②12. yxyey 2 14.① 3 sec 3 x c ②22lnxaxc ③22 2 xx x ec四.应用题: 1.略2.S1 3《高数》试卷 3(上)一、 填空题(每小题 3 分, 共 24 分)6. 函数y 9 1 2 x 的定义域为________________________.sin4x f xx , x 0 7.设函数, 则当 a =_________时, f x 在 x 0处连续.a,x 08.函数 f (x) 2x1 2x3x2的无穷型间断点为________________. x9.设 f (x) 可导, yf (e ) , 则 y ____________.10.2x1lim_________________.2x2x x 5.15.113 2x sinx4 2x x1dx =______________.16.ddx2x te dt_______________________.17. 3 0y y y 是_______阶微分方程.二、求下列极限(每小题5 分, 共15 分)11.limx 0 xe si n 1x;2.limx 3x2x39;3.x1lim1 .x 2x三、求下列导数或微分(每小题 5 分, 共15 分)x4.y , 求y (0) . 2.x 2cos xy e , 求dy .3.设x yxy e ,求dydx.四、求下列积分(每小题 5 分, 共15 分)1. 1x2sin xdx. 2. x ln(1x)dx.3. 1 2xedx五、(8 分)求曲线x ty 1cost在t 处的切线与法线方程.2六、(8 分)求由曲线2 1,y x 直线y 0, x 0 和x 1所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.七、(8 分)求微分方程y 6y13 y 0的通解.八、(7 分)求微分方程yxyex满足初始条件y 1 0的特解.《高数》试卷 3 参考答案一.1.x 3 2.a 4 3. x 2 4. '( )x xe f e5. 12 6.07.2 x e x28.二阶二.1.原式=x lim 1x 0x2. limx 3x 1 1 3 63.原式=1112 22x lim[(1 ) ] ex 2x三.1 .21y' , y '(0)2(x 2)22. cosxdy sin xedx3.两边对x 求写:' (1 ')y xy e yx yy ' x ye yxy yx yx e xxy四.1.原式= lim x2cos x C2.原式=22x x 12lim(1 x)d ( ) lim(1 x) x d[lim(1 x)] 2 x 2= 2 2 x 1 x x 1 1lim(1 x) dx lim(1 x) (x 1 )dx 2 2 1 x 2 2 1 x= 2 2 x 1 x lim(1 x) [ x lim(1 x)] C 2 2 23.原式=1 12 1 2 1 12 xxe d(2 x) e (e 1)222dydy五.sin 1, 1tt ty且dxdx2 2. 切线: 1 , 1 0y x 即y x2 2法线: 1 ( ), 1 0y x 即y x2 2六.1 2 2 113S (x1)dx ( x x)221 12 2 4 2V (x 1) dx (x2x 1)dx0 05x 2 282 1( x x)5 3 15七.特征方程:2r 6r 13 0 r3 2i3 xy e (C cos 2x C sin 2x)1 2八.1 1dx dxxx xy e ( e e dx C)1xx[ (x1e)C ]由y x 1 0, C 0x 1 xy ex《高数》试卷4(上)一、选择题(每小题 3 分)1、函数y ln( 1x) x 2 的定义域是().A 2,1B 2,1C 2,1D 2,12、极限xlim e 的值是().xA、B、0 C、D、不存在3、sin(xlimxx1 121)().A、1B、0C、12D、123 x4、曲线y x 2 在点(1, 0) 处的切线方程是()A、y 2(x 1)B、y 4(x 1)C、y 4x 1D、y 3( x 1)5、下列各微分式正确的是().2A、xdx d(x )B、cos 2xdx d (sin 2x)C、dx d(5 x)D、d(xdx 2 )( )2 )( )2 x6、设 f (x)dx 2 cos C ,则 f (x) ().2A 、sinx2B、sinx2xC 、sin CD、22s inx2 2 ln x7、dxx ().2 12A、 2 ln x Cx 212 B、(2 ln x) C2.1 ln xC 、 ln 2 ln x CD 、C2x8、曲线2y x,x 1 , y 0所围成的图形绕 y 轴旋转所得旋转体体积 V().A 、 1 0x B 、 4dx 4dx1yd y C 、 10 (1 y) d y D 、10 (1 x dx 4 )4 ) 9、 1 0 1 x e x e dx ( ).A 、 ln 1 e 2 e 1 e 1ln lnlnB 、C 、D 、2232e210、微分方程 y yy 2 x2e的一个特解为() .A 、y3 7 2x eB 、y 3 7 xeC 、y2 7 2x xe D 、y2 7 2x e二、填空题(每小题 4 分) 1、设函数 xy xe ,则y ;2、如果3sin mx lim x 0 2x23 , 则 m.3、 1 x; 3 cos xdx 3 cos xdx14、微分方程 y 4y 4y 0 的通解是. 5、函数 f (x)x 2 x 在区间 0,4 上的最大值是,最小值是;三、计算题(每小题 5 分)1、求极限 lim x1 x 1 xx1 2;2、求 ycot x ln sin x2 的导数;3、求函数3x 1 y的微分;4、求不定积分3x1dx1x 1; 5、求定积分e 1 ln x dx ;6、解方程ed y dx yx21 x; 四、应用题(每小题 10 分)1、 求抛物线2y x 与2y 2 x 所围成的平面图形的面积 .2、利用导数作出函数2 3y 3x x 的图象.参考答案.一、1、C;2、D;3、C;4、B;5、C;6、B;7、B;8、A;9、A;10、D;二、1、x(x 2)e ;2、49;3、0;4、y 2x(C1 C x)e ;5、8,0226x3三、1、1;2、cot x ;3、dx3 2(x 1)1;4、2 x 1 2 ln(1 x 1) C ;5、2(2 )e2 2 12 ;;6、y x C四、1、8 3 ;2、图略《高数》试卷5(上)一、选择题(每小题 3 分)1、函数1y 2 x 的定义域是().lg( x 1)A、2, 1 0,B、1,0 (0, )C、( 1,0 )(0, )D、( 1, )2、下列各式中,极限存在的是().A、lim c osxx 0 B、l im arctanx C、l im sin xD、x xlimxx23、xx lim ( )(). x 1 xA、eB、2e C、1D、1e4、曲线y xln x 的平行于直线x y 1 0 的切线方程是().A、y xB、y (ln x 1)( x 1)C、y x 1D、y (x1)5、已知y x s in 3x ,则dy ().A、( cos 3x 3 s in 3x)dxB、(sin 3x 3x cos3x) dxC、(cos 3x sin 3x) dxD、(sin 3x x cos3 x)dx6、下列等式成立的是().11x x lnA、x dx x CB、 a dx a x C11C、cosxdx sin x CD、tan xdx C21 x.sinx sin cos 7、计算 e x xdx 的结果中正确的是() .sin B、e x Cx sin x cos A、e C sin x sin D、e sin x (sin x 1) C C、e x C8、曲线2y x ,x 1 ,y 0所围成的图形绕x 轴旋转所得旋转体体积V ().A、1xB 、4dx4dx1ydyC、1(1 y) d yD、1(1 xdx4 )4 )a2 29、设 a ﹥0,则 a x dx0 ().A 、2aB、22aC、142a 0D、142a10、方程()是一阶线性微分方程.y2 xA、x y ln 0B、y e y 0x2 y y y 2 x dyC、(1 x ) sin 0D、xy dx ( y 6 ) 0二、填空题(每小题 4 分)1、设f ( x)xeax1,b,xx0 ,则有lim f (x)x 0,lim f (x)x 0;2、设xy xe ,则y ;23、函数 f (x) ln( 1x ) 在区间1,2 的最大值是,最小值是;4、1x; 3 cos xdx 3 cos xdx 15、微分方程y 3y2y0 的通解是.三、计算题(每小题 5 分)1 31、求极限lim( )2x 1 x 1 x x2;2 2、求y 1 x arccosx 的导数;3、求函数xy 的微分;21 x14、求不定积分dxx 2 ln x;.5、求定积分e1 ln x dx ;e26、求方程x y xy y1满足初始条件y( ) 4 的特解.2四、应用题(每小题10 分)1、求由曲线 2y 2 x 和直线x y 0 所围成的平面图形的面积.3 x2 x2、利用导数作出函数y x 6 9 4 的图象.参考答案( B 卷)一、1、B;2、A;3、D;4、C;5、B;6、C;7、D;8、A;9、D;10 、B.二、1、2 ,b ;2、x( x 2)e ;3、ln 5 ,0;4、0;5、x C e2xC1e.2三、1、13x;2、arccosx 121 x1;3、dx(1 x x2 ) 12 ) 12;14、2 2 ln x C ;5、2(2 )e ;6、y2x2e1x;四、1、92;2、图略。
大学高数上试题及答案一、选择题(每题5分,共20分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^5答案:B2. 函数f(x) = 2x + 1在x=1处的导数是:A. 1B. 2C. 3D. 4答案:B3. 定积分∫(0到1) x dx的值是:A. 0B. 0.5C. 1D. 2答案:B4. 极限lim(x→0) (sin x)/x的值是:A. 0B. 1C. 2D. ∞答案:B二、填空题(每题5分,共20分)5. 如果函数f(x) = 3x^2 + 2x - 5,那么f'(x) = __________。
答案:6x + 26. 曲线y = x^3 - 2x + 1在点(1, 0)处的切线斜率是 __________。
答案:27. 函数y = ln(x)的不定积分是 __________。
答案:x ln(x) - x + C8. 级数∑(1到∞) (1/n^2)的和是 __________。
答案:π^2/6三、解答题(每题10分,共60分)9. 求函数f(x) = x^2 - 4x + 3的极值点。
答案:函数f(x)的导数为f'(x) = 2x - 4。
令f'(x) = 0,解得x = 2。
将x = 2代入原函数,得到f(2) = 3 - 8 + 3 = -2,所以x = 2是函数的极小值点。
10. 计算定积分∫(0到π/2) sin x dx。
答案:根据定积分的计算法则,∫(0到π/2) sin x dx = [-cos x](0到π/2) = 1。
11. 求极限lim(x→∞) (1 + 1/x)^x。
答案:lim(x→∞) (1 + 1/x)^x = e。
12. 求函数y = e^x - x^2的单调区间。
答案:函数y的导数为y' = e^x - 2x。
令y' = 0,解得x = ln(2)。
《高数》试卷1(上)一.选择题(将答案代号填入括号,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()()20ln 10x f x x a x -≠⎪=+⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xe C -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰②()220a x a >-⎰③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题 1.2- 2. 3. 2 4.arctanln x c + 5.2 三.计算题 1①2e ②162.11xy x y '=+- 3. ①11ln ||23x C x +++②ln |x C +③()1x e x C --++ 四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A)()f x x =和()g x = (B)()211x f x x -=-和1y x =+(C)()f x x =和()22(sin cos )g x x x x =+ (D)()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }.(A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121xx e - (B) 12xx e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C)()()220f f -⎡⎤⎣⎦ (D)()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '.3.求下列不定积分: ①3tan sec x xdx ⎰②()220a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc +②)ln x c +③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1.01lim sin xx e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx.四、求下列积分 (每小题5分, 共15分)1.12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x<2.4a =3.2x =4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==--四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx =C 、)5(x d dx --=D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x- C 、 C x +2sin D 、2sin 2x -7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分) 1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x;4、微分方程 044=+'+''y y y 的通解是.5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是,最小值是;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e - ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→B 、x x arctan lim ∞→C 、x x sin lim ∞→D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C e x+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则 =-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0D 、241a π 10、方程( )是一阶线性微分方程. A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是.三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxeC e C 221+.三、1、31 ; 2、1arccos 12---x xx ; 3、dx x x 221)1(1-- ;4、C x ++ln 22 ;5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略。
最新《高数》题库一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x= 和 ()g x =1 2.函数()()20ln 10x f x x a x ≠=+⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dx x x ++⎰②()0a > ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.。
高等数学考试题库(附答案)1. 解析:求函数 f(x) = x^2 在区间 [0, 2] 上的定积分。
2. 解析:求函数 f(x) = e^x 在区间 [1, 1] 上的定积分。
3. 解析:求函数 f(x) = sin(x) 在区间[0, π] 上的定积分。
4. 解析:求函数 f(x) = cos(x) 在区间[0, π/2] 上的定积分。
5. 解析:求函数 f(x) = ln(x) 在区间 [1, e] 上的定积分。
6. 解析:求函数 f(x) = x^3 在区间 [1, 1] 上的定积分。
7. 解析:求函数f(x) = √x 在区间 [0, 4] 上的定积分。
8. 解析:求函数 f(x) = 1/x 在区间 [1, 2] 上的定积分。
9. 解析:求函数 f(x) = tan(x) 在区间[0, π/4] 上的定积分。
10. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [0, 1] 上的定积分。
11. 解析:求函数 f(x) = x^2 + 1 在区间 [0, 1] 上的定积分。
12. 解析:求函数 f(x) = e^(x) 在区间 [0, 2] 上的定积分。
13. 解析:求函数 f(x) = sin^2(x) 在区间[0, π] 上的定积分。
14. 解析:求函数 f(x) = cos^2(x) 在区间[0, π/2] 上的定积分。
15. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [1, 1] 上的定积分。
16. 解析:求函数f(x) = √(1 x^2) 在区间 [1, 1] 上的定积分。
17. 解析:求函数 f(x) = x^3 3x^2 + 2x 在区间 [0, 2] 上的定积分。
18. 解析:求函数 f(x) = e^(2x) 在区间 [1, 1] 上的定积分。
19. 解析:求函数 f(x) = ln(x) 在区间 [1, e^2] 上的定积分。
20. 解析:求函数 f(x) = sin(x)cos(x) 在区间[0, π/2] 上的定积分。
《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( B ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( B ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( A ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( C ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( D ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( C ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( C ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( A ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( A ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( C ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.-22.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.-3分之根号3 3.21xy x =-的垂直渐近线有条.2 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰②()0a > ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()2g x x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121xx e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x-+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰ ②()220a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格) 2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1. 函数29y x=-的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+-6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2. 233lim 9x x x →--;3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx.四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120xedx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解.. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x - C 、 C x +2sin D 、2sin 2x-7、⎰=+dx xxln 2( ). A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim; 2、求x x y sin ln cot 212+= 的导3、求函数 1133+-=x x y 的微分; 4、求不定积分⎰++11x dx ;5、求定积分⎰eedx x 1ln ; 6、解方程21x y xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积2、 利用导数作出函数323x x y -= 的图像.《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a xx ln C 、⎰+=C x xdx sin cos D 、⎰++=C x xdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0D 、241a π 10、方程( )是一阶线性微分方程. A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ; 2、求 x x y arccos 12-= 的导数; 3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分⎰e edx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积. 2、利用导数作出函数 49623-+-=x x x y 的图像.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C二.填空题1.2- 2. 3. 2 4.arctanln x c + 5.2 三.计算题1①2e ②162.11x y x y '=+-3. ①11ln ||23x C x +++ ②ln ||x C + ③()1x e x C --++四.应用题1.略 2.18S =《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π 三.计算题:1. ①2e ②1 2.2yx e y y '=-3.①3sec 3x c + ②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e 5.12 6.0 7.22x xe - 8.二阶二.1.原式=0lim 1x x x→= 2.311lim 36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求导:'(1')x y y xy e y +==+ 'x y x y e y xy y y x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰ =22111lim(1)lim(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰ =221lim(1)[lim(1)]222x x x x x C +--+++ 3.原式=1221200111(2)(1)222x x e d x e e ==-⎰ 五.sin 1,122dy dy t t t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即 六.12210013(1)()22S x dx x x =+=+=⎰ 112242005210(1)(21)228()5315V x dx x x dx x x x ππππ=+=++=++=⎰⎰ 七.特征方程:2312613032(cos 2sin 2)x r r r i y e C x C x -++=⇒=-±=+ 八.11()dx dx x x x y e e edx C -⎰⎰=+⎰ 1[(1)]x x e C x =-+ 由10,0y x C ==⇒=1x x y e x-∴=参考答案4一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ;10、D ;二、1、x e x )2(+; 2、94 ; 3、0 ; 4、x e x C C y 221)(-+= ; 5、8,0 三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e - ; 6、C x y =-+2212 ;四、1、38; 2、图略参考答案(B 卷)5一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、x e x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、x x e C e C 221+.三、1、31 ; 2、1arccos 12---x xx ; 3、dx x x 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e- ; 6、x e x y 122-= ; 5、四、1、29 ; 2、图略《汽车机械基础》复习题一、填空题1、力的三要素:力的大小、力的方向和力的作用点或作用线.2、力是物体间的相互作用,其效果是使物体的运动状态发生改变或物体发生变形。