第三单元四边形
- 格式:doc
- 大小:150.00 KB
- 文档页数:7
小学三年级上册数学第三单元知识点、教案及练习题【篇一】小学三年级上册数学第三单元学问点四边形:1、有4条直的边和4个角封闭图形我们叫它四边形。
2、四边形的特点:有四条直的边,有四个角。
3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。
4、正方形的特点:有4个直角,4条边相等。
5、长方形和正方形是特别的平行四边形。
6、平行四边形的特点:①对边相等、对角相等。
②平行四边形简单变形。
(三角形不简单变形)7、封闭图形一周的长度,就是它的周长。
8、公式。
长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的长=周长÷2-宽正方形的边长=周长÷4长方形的宽=周长÷2-长【篇二】小学三年级上册数学第三单元教案【教学内容】义务训练课程标准试验教科书三年级上册第三单元四边形p34——-p48【教材分析】1、本单元教材包括五局部内容:四边形、平行四边形、周长、长方形和正方形的周长、估量。
在本单元之前,学生已经学习了空间与图形,对长方形、正方形、平行四边形已经有了初步的熟悉。
它为后面学习长方形、正方形和平行四边形的面积打下根底。
2、本单元内容编写编写特点之一是加强了图形的特征、周长的概念等几何初步的教学。
特点之二是既留意挖掘几何学问之间的内在联系,有供应了大量与空间观念亲密相关的素材,从儿童学习数学的客观规律动身,选择了活动化的呈现方式,使学生在活泼的课堂气氛中开心的学习。
特点之三是充分运用了直观手段来教学,特备注中学生的动手力量的培育,让学生的手、脑、眼等多种感官协调参加活动,积存感性熟悉,进展看空间观念。
【教学目标】一、根底性目标:1、进一步把握长方形和正方形的特征,初步熟悉平行四边形,能在方格纸上画长方形、正方形和平行四边形。
2、通过学生实际动手摸一摸、量一量理解周长的含义,把握长方形和正方形的周长计算公式,通过这些公式进展正方形和长方形周长的计算。
(完整)三年级数学图形习题第三单元:《四边形》练习题一、判断题(1)四边形一定有四条边,四个角。
()(2)四边形只有长方形和正方形。
()(3)四个角都是直角的四边形一定是长方形。
()(4)两组对边相等的四边形一定是长方形。
()(5)长方形、正方形、平行四边形的对边都平行且相等。
()(6)四条边相等,四个角都是直角的图形一定是平行四边形。
()(7)平行四边形必有两个角是钝角。
()(8)四边形的特点是有四条边和四个角。
()(9)平行四边形属于四边形。
()(10)四条边相等的四边形都是正方形。
()(11)有直角的图形都是长方形。
()(12)长方形的四个角都相等,四条边也相等。
()(13)长方形比正方形的周长长。
()(14)平行四边形容易变形。
三角形不易变形。
()(15)长方形和正方形也是平行四边形。
()(16)平行四边形就是长方形和正方形。
()(17)一个正方形的边长是8厘米,它的周长是8x8=64厘米()二、填空题(1)我们学过的四边形有()、()、()。
(2)一个四边形的四条边长度相等,四个角都是直角。
那么它是()(3)正方形是特殊的()形(4)()是一个特殊的长方形。
(5)四边形的特点是有()条()的边,有()个角。
(6)我们学过的()和()都是四边形。
(7)封闭图形()的长度,是它的周长。
(8)长方形的周长是()的长度和。
(9)一个平行四边形的周长是()边线段的长度的和。
(10)计算长方形的周长必须要知道长方形的()和()。
(11)正方形周长的计算方法可以简单地理解为:边长x()。
(12)一个正方形的边长是5厘米,宽是3厘米。
这个长方形的周长是()。
(13)一个正方形边长8厘米,把它分成4个相等的小正方形,每个小正方形的周长是()。
(14)用3个边长为1厘米的正方形拼成一个长方形,这个长方形的周长是()厘米。
(15)一个平行四边形两条邻边分别是10厘米和8厘米,它的周长是()(16)已知长方形的长和宽的和是8米,这个长方形的周长是()厘米。
《四边形的认识》说课稿《四边形的认识》说课稿1《四边形的认识》是人教版义务教育课程标准实验教科书小学数学三年级上册第三章第一节的教学内容。
教材通过一幅教学场景图,图上有许多关于“图形与几何”的信息。
要求从主题图中找出四边形,进而探讨四边形和长方形正方形的特点。
学生已经会认识一些图形。
进入三年级后,他们的求知欲增强了,动手能力也有所提高,思考问题的方式方法也逐步呈现多样化,但是,对四边形和长方形正方形的特点在理解上还有一定的难度。
因此,我根据:小学数学课程标准中“图形与几何”的要求,帮助学生建立空间观念,根据物体的特征,抽象出几何图形,和教材的特色,结合学生的实际情况,制定了以下教学目标:1、直观感知四边形,能区分和辨认四边形。
进一步认识长方形和正方形,知道它们的角都是直角。
2、通过围一围,找一找,涂一涂,折一折,摆一摆,画一画等活动,培养学生的观察比较和概括抽象的能力。
3、通过情境图和生活中的事物进入课堂,感受生活中的四边形无处不在,进一步激发学生的学习兴趣。
这节课要求学生能够从众多的图形中找出四边形,并能感悟到四边形有四条边和四个角,特别是加深对长方形和正方形的认识,这是本课的教学重点,也是本课的教学难点。
根据三年级学生的年龄特点以及学生的知识面,这一堂课我创设自主学习合作探究的方法,相应地在教学中采用了许多活动化的呈现方式,调动各种感官,合作中探讨学习内容。
贯彻“以教师为主导、学生为主体、训练为主线”的三主模式,培养学生的学习能力,合作探究能力。
教学过程是否部署得科学合理,关系着教学的成败。
因此,为了圆满地完成教学目标,我设计了下面三个教学环节:(一)创设情境,引入新课。
上课前,先和学生交流:你们喜欢哪些体育运动?好,下面我们就到运动场上去,利用课件出示主题图,形象地再现主题图中的各种图形,其中四边形是用得最多的图形,今天我们就来认识四边形。
这样导入,不但使学生在轻松愉快的气氛中进入新课,还激发了学生的学习兴趣。
第三单元四边形一、教学内容1.四边形、平行四边形的认识2.周长的概念,长方形、正方形的周长计算3.长度的估计二、知识间的联系(1)先整体认识4种常见的立体图形和4种常见的平面图形,初次感受实物与图形之间的关系,感受立体图形与平面图形之间的关系。
(2)接着认识上述八种图形中最常见的两种简单平面图形:长方形和正方形。
认识构成这两种图形的基本元素“边”之间的关系。
掌握这两种图形的边的特征,以及长方形、正方形之间的关系。
以上内容在第一学年完成。
(3)接下来认识构成图形的另一基本元素“角”,知道构成长方形、正方形的角都是直角,知道角有大小之分,从而认识锐角和钝角。
(4)学习从不同的方位(前面、后面、侧面)去观察物体,感受看到的形状是不一样的。
又一次感受立体图形与平面图形之间的关系,感受二维与三维空间之间的转换。
以上内容在第二学年完成。
(5)认识另一种常见四边形:平行四边形。
理解长方形与平行四边形之间的联系,掌握平行四边形边和角的特征。
这部分内容正是三年级上学期要教学的内容。
理解了“图形的认识”在第一学段的整体结构,知道各部分图形之间的逻辑关系,那么在教学认识平行四边形时,就会考虑平行四边形与长方形之间的联系,并从学生已掌握的基本图形出发,引入平行四边形的学习。
使新知识自然地纳入到学生已有的认知系统中三、教学目标1.使学生认识四边形的特征,初步认识平行四边形,会用不同的方式表示平行四边形。
2.使学生了解周长的概念,会计算长方形、正方形的周长。
3.通过对长度和周长的估计,培养学生的长度观念。
四、编排特点1.从日常生活中引入几何概念,使学生在熟悉的情境中学习几何知识。
利用校园的情境让学生认识四边形和平行四边形。
利用学生熟悉的事物(树叶、教科书、小国旗、钟面)来认识和计算周长。
2.利用活动巩固对几何概念的认识。
这也是由几何知识的直观操作性决定的。
教材中设计了各种形式的活动:涂色、分类、拉一拉平行四边形、在钉子板上围平行四边形、在方格纸上画平行四边形、用长方形纸剪平行四边形、用七巧板拼图、实际测量一个物体的周长,等等。
第三单元平行四边形、梯形和三角形板块一平行四边形的面积【例题】例1.一个平行四边形的面积是48平方厘米,其中一组底是高的3倍,这组底和高各是多少?例2.下图是一个平行四边形,一条边上的高是5厘米,它的面积是多少?46厘米例3.将平行四边形用两条相交线分成4个小平行四边形,已知底和高如下图。
(1)请你比较一下ac与bd的大小。
(a,c,b,d均指图形的面积)(2)底和高换成其他数,这样的大小关系还成立吗?通过比较你有什么发现?(3)根据上面的结论,可知下图中a的面积为()平方厘米。
1.一个平行四边形,底增加4厘米后,面积增加40平方厘米;高增加1厘米后,面积增加15平方厘米,求原平行四边形的面积是多少平方厘米?2.一个大长方形被分成8个小长方形,其中有5个小长方形的面积如图中的数字所示,填上表中所缺的数,则这个大长方形的面积为_______。
板块二 三角形的面积【例题】例1.如下图,已知三角形ABC 的面积是32.4平方厘米,是三角形EFB 面积的3倍。
平行四边形EFCD 的面积是多少?例2.三角形EFD 的面积比三角形ABF 的面积多5平方厘米,求ED 的长。
4厘米例3.右图是由两个正方形拼成的图形,其中小正方形的边长是4厘米,求阴影部分的面积。
1.如图,两个正方形的边长分别是8厘米和4厘米,求阴影部分的面积是多少平方厘米?2.如图,把一个组合图形分成三块,分别用A、B、C代表,求A块比B块大多少平方米?(单位:厘米)板块三梯形的面积【例题】例1. 如下图,AE=5cm,BD=9cm。
左边梯形和右边三角形的面积相等,求三角形的底是多少?例2.将一个底边BC长16厘米的直角三角形ABC向右平移6厘米,再向下平移1.5厘米,得到一个图形(如下图),求阴影部分的面积。
例3. 如图,已知在梯形中,a ,b 的面积分别为4厘米和8厘米,则梯形的面积是多少平方厘米?【练习】1.如下图AD=7cm ,BC=13cm ,右边三角形和左边梯形的面积相等,求三角形的底BE 是多少?板块四 组合图形的面积【例题】例1.一个等腰直角三角形,最长的边是10厘米,这个三角形的面积是多少平方厘米?例2.求图中阴影部分面积。
《四边形》三年级数学教案范文五篇“四边形”是人教版三年级上册第三单元的教学内容,由不在同一直线上的四条线段依次首尾相接围成的封闭的平面图形或立体图形叫四边形,下面就是小编整理的《四边形》三年级数学教案,希望大家喜欢。
《四边形》三年级数学教案1一、教学内容:义务教育课程标准实验教科书(人教版)三年级上册第35页。
二、教学目标:1、能从各种图形中区分出四边形,认识四边形的特征。
2、通过对四边形进行分类,对不同的四边形各自的特征有所了解,特别是长方形、正方形的特征。
3、通过实践操作活动,培养学生的空间观念。
三、教学准备:课件。
每人准备水彩笔一支。
四人小组:一袋四边形的图片。
四、教学过程:(一)主题图引入。
1、同学们,你们喜欢参加体育活动吗?你喜欢什么体育运动?2、光明小学校园里,同学们也正在进行各种活动,我们一起去看看。
(课件出示主题图)(1)仔细观察,在这美丽的校园里你发现了什么图形?(先自己找一找,再同桌交流)(2)交流汇报,学生可能找到的图形有:(指名回答,课件单一闪动)3、导入课题。
在美丽的校园里有许多的图形,像长方形、正方形、平行四边形、菱形、梯形(同时闪动这些图形)这些都是平面图形,都叫四边形。
今天这节课我们就一起来研究四边形。
板书:四边形的认识。
4、初步感知:你认为怎样的图形是四边形?(二)探索交流、概括特征。
1、动手操作。
(1)涂一涂(让学生感知面)同学们,数学书第35也有许多的图形,你能从中找出四边形吗?并涂上你自己喜欢的颜色。
比一比,看谁涂得又快又好看。
(2)涂完后,同桌交流,说说理由。
(3)集体反馈,为什么这些是四边形,而那些却不是?2、讨论,概括四边形的特征。
(1)仔细观察一下,这些四边形有什么特点?(先小组,再反馈)(2)根据学生的反馈,板书。
3、判断四边形。
老师这里还有一些图形请你判断一下他们是四边形吗?(集体用手势判断,并说明理由)如果不是,你能把他变成四边形吗?(课件演示)4、我们知道了四边形的特征,你能说说我们生活中哪些物体的。
一、选择题1.如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5°,EF ⊥AB ,垂足为F ,则EF 的长为( )A .4﹣22B .32﹣4C .1D .22.如图,E 是直线CD 上的一点,且12CE CD =.已知ABCD 的面积为252cm ,则ACE △的面积为( )A .52B .26C .13D .39 3.在ABCD 中AB BC ≠.F 是BC 上一点,AE 平分FAD ∠,且E 是CD 的中点,则下列结论:①AB BF =;②AF CF CD =+;③AF CF AD =+;④AE EF ⊥,其中正确的是( )A .①②B .②④C .③④D .①②④ 4.如图,在ABCD 中,对角线AC ,BD 相交于点O ,E 、F 是对角线AC 上的两点,给出下列四个条件,其中不能判定四边形DEBF 是平行四边形的有( )A .AE CF =B .DE BF =C .ADE CBF ∠=∠D .ABE CDF ∠=∠ 5.顺次连接菱形四边中点得到的四边形一定是( )A .矩形B .平行四边形C .菱形D .正方形6.下列条件中不能判定一定是平行四边形的有( )A .一组对角相等,一组邻角互补B .一组对边平行,另一组对边相等C .两组对边相等D .一组对边平行,且另一组对边也平行7.如果平行四边形ABCD 的对角线相交于点O ,那么在下列条件中,能判断平行四边形ABCD 为菱形的是( )A .OAB OBA ∠=∠;B .OAB OBC ∠=∠; C .OAB OCD ∠=∠;D .OAB OAD ∠=∠. 8.如图,ABE 、BCF 、CDG 、DAH 是四个全等的直角三角形,其中,AE =5,AB =13,则EG 的长是( )A .72B .62C .7D .739.如图,在△ABC 中,AB=BC ,∠ABC=90°,BM 是AC 边的中线,点D ,E 分别在边AC 和BC 上,DB=DE ,EF ⊥AC 于点F ,则以下结论;①∠DBM=∠CDE ;②BN=DN ;③AC=2DF ;④S BDE ∆﹤S BMFE 四边形其中正确的结论是( )A .①②③B .②③④C .①②④D .①③10.如图,长方形纸片ABCD ,点E ,M ,N 分别在边AB ,BC ,AD 上,将纸片分别沿EN ,EM 对折,使点A 落在点'A 处,点B 落在点'B 处,若''30A EB ∠=︒,则NEM ∠的度数为( )A .70︒B .75︒C .80︒D .85︒11.如图,已知平行四边形ABCD 中,4B A ∠=∠,则C ∠=( )A .18°B .36°C .72°D .144°12.如图在ABCD 中,对角线,AC BD 相交于点O ,AOD △与AOB 的周长相差3,8AB =,那么AD 为( )A .5B .8C .11或5D .11或14二、填空题13.如图,在Rt ABC △中,90ACB ∠=︒,6AC =,8BC =,点E 、F 分别在AC 、BC 上,将CEF △沿EF 翻折,使C 与AB 的中点M 重合,则CF 的长为______.14.如图,在平行四边形ABCD 中,BE 平分ABC ∠,CF BE ⊥,连接AE ,G 是AB 的中点,连接GF ,若4AE =,则GF =_____.15.如图,点E 是长方形纸片DC 上的中点,将C ∠过E 点折起一个角,折痕为EF ,再将D ∠过点E 折起,折痕为GE ,且C ,D 均落在GF 上的一点H 处.若1649'∠=︒,则CEF ∠=_______.16.如图,在Rt ABC ∆中,90,6,10ACB AC AB ∠===,过点A 作//,AM CB CE 平分ACB ∠交AM 于点,E Q 是线段CE 上的点,连接BQ ,过点B 作BP BQ ⊥交AM 于点P ,当PBQ ∆为等腰三角形时,AP =________________________.17.如图,边长分别为4和2的两个正方形ABCD 和CEFG 并排放在一起,连结EG 并延长交BD 于点N ,交AD 于点M .则线段MN 的长是__________.18.如图,在平行四边形ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,AB =8,EF =1,则BC 长为__________.19.如图,矩形ABCD 全等于矩形BEFG ,点C 在BG 上,连接DF ,点H 为DF 的中点,若20AB =,12BC =,则CH 的长为__________.20.如图,正方形ABCD 中,点E ,F 分别在BC 和AB 上,BE=2,AF=2,BF=4,将△BEF 绕点E 顺时针旋转,得到△GEH ,当点H 落在CD 边上时,F ,H 两点之间的距离为______.三、解答题21.如图,过ABCD 对角线AC 与BD 的交点E 作两条互相垂直的直线,分别交边AB 、BC .CD 、DA 于点P 、M 、Q 、N .(1)求证:PBE QDE ≅△△;(2)顺次连接点P 、M 、Q 、N ,求证:四边形PMQN 是菱形.22.已知:平行四边形ABCD 中,点M 为边CD 的中点,点N 为边AB 的中点,联结AM 、CN .(1)求证:AM ∥CN ;(2)过点B 作BH AM ⊥,垂足为H ,联结CH .求证:△BCH 是等腰三角形.23.已知:AB ⊥CD 于点O ,AB=AC=CD ,点I 是∠BAC ,∠ACD 的平分线的交点,连接IB ,ID(1)求证:IA ID =且IA ID ⊥;(2)填空:①∠AIC+∠BID=_________度;②S IBD ∆______S AIC ∆(填“﹥”“﹤”“=”)(3)将(2)小题中的第②结论加以证明.24.已知:如图,在ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得到GFC .(1)求证:BE DG =(2)若四边形ABFG 是菱形,且60B ︒∠=,求:AB BC 的值.25.如图,将矩形ABCD 沿DE 折叠,连接CE 使得点A 的对应点F 落在CE 上.(1)求证:CEB DCF ≅;(2)若2AB BC =,求CDE ∠的度数.26.如图,四边形ABCD 是平行四边形,∠BAD 的角平分线AE 交CD 于点F ,交BC 的延长线于点E .(1)求证:BE =CD ;(2)若BF 恰好平分∠ABE ,连接AC 、DE ,求证:四边形ACED 是平行四边形.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠DAE的度数,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD =DE,然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于倍计算即可得解.斜边的2【详解】解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=∴BE=BD﹣DE=﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF×(﹣4)=4﹣.故选:A.【点睛】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD是解题的关键,也是本题的难点.2.C解析:C【分析】设平行四边形AB边上的高为h,分别表示出△ACE的面积和平行四边形ABCD的面积,从而求出结果.解:∵四边形ABCD 是平行四边形,12CE CD =, 设平行四边形AB 边上的高为h ,∴△ACE 的面积为:12CE h ⋅,平行四边形ABCD 的面积为2CE h ⋅, ∴△ACE 的面积为平行四边形ABCD 的面积的14, 又∵□ABCD 的面积为52cm 2,∴△ACE 的面积为13cm 2.故选C .【点睛】 本题考查平行四边形的性质,比较简单,解答本题的关键是根据图形的形状得出△ACE 的面积为平行四边形ABCD 的面积的14. 3.C解析:C【分析】首先延长AD ,交FE 的延长线于点M ,易证得△DEM ≌△CEF ,即可得EM =EF ,又由AE 平分∠FAD ,即可判定△AEM 是等腰三角形,由三线合一的知识,可得AE ⊥EF ,进而可对各选项进行判断.【详解】解:延长AD ,交FE 的延长线于点M ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠M =∠EFC ,∵E 是CD 的中点,∴DE =CE ,在△DEM 和△CEF 中,M EFC DEM CEF DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEM ≌△CEF (AAS ),∴EM =EF ,∵AE 平分∠FAD ,∴AM =AF ,AE ⊥EF .即AF =AD +DM =CF +AD ;故③,④正确,②错误.∵AF 不一定是∠BAD 的角平分线,∴AB 不一定等于BF ,故①错误.【点睛】此题考查了平行四边形的性质、等腰三角形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.4.B解析:B【分析】根据全等三角形的判定和性质以及平行四边形的判定定理分别判断即可.【详解】,解:A、∵AE CF∴AO=CO,由于四边形ABCD是平行四边形,则BO=DO,∴四边形DEBF是平行四边形;B、不能证明四边形DEBF是平行四边形;C、∵四边形ABCD是平行四边形,∴AD=BC,∠DAE=∠BCF,又∠ADE=∠CBF,∴△DAE≌△BCF(ASA),∴AE=CF,同A可证四边形DEBF是平行四边形;D、同C可证:△ABE≌△CDF(ASA),∴AE=CF,同A可证四边形DEBF是平行四边形;故选:B.【点睛】本题考查了平行四边形的判定定理,对角线互相平分的四边形是平行四边形,熟练掌握平行四边形的判定定理是解题的关键.5.A解析:A【分析】画出图形,根据菱形的性质得到AC⊥BD,根据三角形中位线定理、矩形的判定定理证明结论.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,∵E,F,G,H是菱形各边的中点,∴EF∥BD,FG∥AC,∴EF⊥FG,同理:FG⊥HG,GH⊥EH,HE⊥EF,∴四边形EFGH是矩形.故选:A.【点睛】本题考查的是中点四边形,掌握菱形的性质定理、矩形的判定定理以及三角形的中位线定理是解题的关键.6.B解析:B【分析】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定逐一验证.【详解】A、能用两组对角相等的四边形是平行四边形判定平行四边形;B、不能判定平行四边形,如等腰梯形;C、能用两组对边相等的四边形是平行四边形判定平行四边形;D、能用两组对边分别平行的四边形是平行四边形判定平行四边形;故选:B.【点睛】本题考查平行四边形的判定,解题的关键是掌握平行四边形的判定定理.7.D解析:D【分析】根据菱形的判定方法判断即可.【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠OAB=∠ACD,∵∠OAB=∠OAD,∴∠DAC=∠DCA,∴AD=CD,∴四边形ABCD是菱形(邻边相等的平行四边形是菱形)故选:D.【点睛】本题考查菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.8.A解析:A【分析】根据勾股定理求出BE ,证明四边形EFGH 为正方形,根据正方形的性质、勾股定理计算,得到答案.【详解】解:在Rt △ABE 中,AE =5,AB =13,由勾股定理得,BE 22AB AE -22135-12,∵△ABE 、△BCF 、△CDG 、△DAH 是四个全等的直角三角形,∴∠AEB =∠BFC =∠CGD =90°,BF =CG =DH =AE =5,∴∠FEB =∠EFC =∠FGD =90°,EF =EH =12﹣5=7,∴四边形EFGH 为正方形,∴EG 2277+2,故选:A .【点睛】本题考查的是全等三角形的应用,掌握全等三角形的对应边相等、对应角相等是解题的关键.9.D解析:D【分析】①设∠EDC=x ,则∠DEF=90°-x 从而可得到∠DBE=∠DEB=180°-(90°-x )-45°=45°+x ,∠DBM=∠DBE-∠MBE=45°+x-45°=x ,从而可得到∠DBM=∠CDE ;③由△BDM ≌△DEF ,可知DF=BM ,由直角三角形斜边上的中线的性质可知BM=12AC ; ④可证明△BDM ≌△DEF ,然后可证明:△DNB 的面积=四边形NMFE 的面积,所以△DNB 的面积+△BNE 的面积=四边形NMFE 的面积+△BNE 的面积;【详解】解:①设∠EDC=x ,则∠DEF=90°-x ,∵BD=DE ,∴∠DBE=∠DEB=∠EDC+∠C=x+45°,∴∠DBM=∠DBE-∠MBE=45°+x-45°=x .∴∠DBM=∠CDE ,故①正确;②由①得∠DBM=∠CDE ,如果BN=DN ,则∠DBM=∠BDN ,∴∠BDN=∠CDE ,∴DE 为∠BDC 的平分线,∴△BDE ≌△FDE ,∴EB ⊥DB ,已知条件∠ABC=90°,∴②错误的;③在△BDM 和△DEF 中,DBM CDE DMB DFE BD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDM ≌△DEF (AAS ),∴BM=DF ,∵∠ABC=90°,M 是AC 的中点,∴BM=12AC , ∴DF=12AC , 即AC=2DF ;故③正确.④由③知△BDM ≌△DEF (AAS )∴S △BDM =S △DEF ,∴S △BDM -S △DMN =S △DEF -S △DMN ,即S △DBN =S 四边形MNEF .∴S △DBN +S △BNE =S 四边形MNEF +S △BNE ,∴S △BDE =S 四边形BMFE ,故④错误;故选D .【点睛】本题主要考查了全等三角形的判定与性质、角平分线的性质,利用面积法证明S △BDE =S 四边形BMFE 是解题的关键.10.B解析:B【分析】先由翻折的性质得到'AEN A EN ∠=∠,'BEM B EM ∠=∠,由图可得''''A EN B EM NEM A EB ∠+∠=∠+∠,然后根据180AEN NEM MEB ∠+∠+∠=︒,得到2''180NEM A EB ∠+∠=︒,进而可求出NEM ∠的度数.【详解】由翻折的性质可知:'AEN A EN ∠=∠,'BEM B EM ∠=∠,由图知:''''A EN B EM NEM A EB ∠+∠=∠+∠,又∵180AEN NEM MEB ∠+∠+∠=︒,∴''180A EN B EM NEM ∠+∠+∠=︒,∴2''180NEM A EB ∠+∠=︒,又∵''30A EB ∠=︒,∴75NEM ∠=︒.故选:B .【点睛】本题主要考查的是翻折的性质,掌握翻折的性质是解题的关键.11.B解析:B【分析】利用平行四边形的性质解决问题即可【详解】解:在平行四边形ABCD 中,∵BC ∥AD ,∴∠A+∠B=180°,∵∠B=4∠A ,∴∠A=36°,∴∠C=∠A=36°,故选:B .【点睛】本题考查平行四边形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型. 12.C解析:C【分析】根据平行四边形的性质可得BO=DO ,再根据AOD △与AOB 的周长相差3,可分情况得出结果.【详解】解:∵四边形ABCD 是平行四边形,∴BO=DO ,AO=AO ,∵AOD △与AOB 的周长相差3,∴AB-AD=3,或AD-AB=3,∵AB=8,∴AD 的长为5或11,故选C .【点睛】本题考查平行四边形的性质,解题的关键是掌握平行四边形对角线互相平分.二、填空题13.【分析】过点M 作于N 则可得MN 是的中位线利用三角形中位线定理可得MN=AC=3BN=CN=BC=4设CF=x 则NF=4-x 由折叠的性质可得MF=CF 在中利用勾股定理即可求解【详解】解:过点M 作于N ∵ 解析:258 【分析】过点M 作MN BC ⊥于N ,则//MN AC ,可得MN 是Rt ABC △的中位线,利用三角形中位线定理可得MN=12AC=3,BN=CN=12BC=4,设CF=x ,则NF=4-x ,由折叠的性质可得MF=CF ,在Rt MNF △中,利用勾股定理即可求解.【详解】解:过点M 作MN BC ⊥于N ,∵90ACB ∠=︒,MN BC ⊥,∴//MN AC ,∵M 是AB 的中点,∴MN 是Rt ABC △的中位线,∴MN=12AC=3,BN=CN=12BC=4, 设CF=x ,则NF=4-x ,∵将CEF △沿EF 翻折,使C 与AB 的中点M 重合,∴MF=CF=x ,在Rt MNF △中,222MN NF MF +=,∴()22234x x +-=,解得258x =,∴CF=258. 故答案为:258. 【点睛】本题考查折叠的性质,三角形的中位线定理,勾股定理等知识,熟练掌握三角形的中位线定理,利用勾股定理建立方程求解是解题的关键.14.2【分析】根据平行四边形的性质结合角平分线的定义可求解即可得利用等腰三角形的性质得到进而可得是的中位线根据三角形的中位线的性质可求解【详解】解:在平行四边形中∴∵平分∴∴∴∵∴∵是的中点∴是的中位线 解析:2【分析】根据平行四边形的性质结合角平分线的定义可求解CBE BEC ∠=∠,即可得CB CE =,利用等腰三角形的性质得到BF EF =,进而可得GF 是ABE △的中位线,根据三角形的中位线的性质可求解.【详解】解:在平行四边形ABCD 中,//AB CD ,∴ABE BEC ∠=∠,∵BE 平分ABC ∠,∴ABE CBE ∠=∠,∴CBE BEC ∠=∠,∴CB CE =,∵CF BE ⊥,∴BF EF =,∵G 是AB 的中点,∴GF 是ABE △的中位线, ∴12GF AE =∵4AE =, ∴2GF =;故答案为:2.【点睛】本题主要考查了平行四边形的性质,等腰三角形的性质与判定,三角形中位线的性质,证明GF 是ABE △的中位线是解题的关键.15.【分析】根据翻折的性质可得∠GEH=∠1∠HEF=∠CEF 从而可求出∠DEH ∠CEF 的度数【详解】解:∵∠GEH=∠1∴∠GEH=∴∠DEH=+=∴∠HEF=∠CEF=×(180°-)=故答案为:【 解析:2551'︒【分析】根据翻折的性质可得∠GEH=∠1,∠HEF=∠CEF,从而可求出∠DEH,∠CEF的度数.【详解】解:∵1649'∠=︒,∠GEH=∠1,∴∠GEH=649'︒,∴∠DEH =649'︒+649'︒=12818'︒,∴∠HEF=∠CEF=12×(180°-12818'︒)=2551'︒,故答案为:2551'︒.【点睛】本题考查了翻折变换的性质,熟练掌握折叠的性质找出相等的角是解题的关键.16.【分析】过点P作PG⊥CB交CB的延长线于点G过点Q作QF⊥CB运用AAS定理证明△QBF≌△BPG根据平行线的性质和角平分线的定义求得△AEC为等腰直角三角形利用勾股定理求得线段BC的长然后结合全解析:10【分析】过点P作PG⊥CB,交CB的延长线于点G,过点Q作QF⊥CB,运用AAS定理证明△QBF≌△BPG,根据平行线的性质和角平分线的定义求得△AEC为等腰直角三角形,利用勾股定理求得线段BC的长,然后结合全等三角形和矩形的性质求解.【详解】解:过点P作PG⊥CB,交CB的延长线于点G,过点Q作QF⊥CB∵BP BQ⊥,PG⊥CB∴∠1+∠2=90°,∠2+∠3=90°∴∠1=∠3∵QF⊥CB,BP BQ⊥∴∠QFB=∠PGB=90°又∵PBQ∆为等腰三角形∴QB=PB在△QBF和△BPG中1=3QFB PGB QB PB∠∠⎧⎪∠=∠⎨⎪=⎩∴△QBF≌△BPG∴PG=BF,BG=QF∵∠ACB=90°,CE平分ACB∠∴∠ACE=∠ECB=45°又∵AM∥CB,∴∠AEC=∠ECB=45°∴∠AEC=∠ACE=45°∴△AEC 为等腰直角三角形∵AM ∥BC ,∠ACB=90°∴∠CAM+∠ACB=180°,即∠CAM=90°∴∠CAM=∠ACB=∠PGB=90°∴四边形ACGP 为矩形,∴PG=AC=6,AP=CG在Rt △ABC 中,BC=228AB AC -=∴CF=BC-BF=BC-PG=8-6=2∵QF ⊥BC ,∠ECB=45°∴△CQF 是等腰直角三角形,即CF=QF=2∴AP=CG=BC+BG=BC+QF=8+2=10【点睛】本题考查矩形的判定和性质、全等三角形的判定和性质以及勾股定理,掌握相关性质定理正确推理论证是解题关键17.【分析】根据题意易证明和是等腰直角三角形再根据勾股定理即可求出MN 【详解】∵四边形ABCD 和CEFG 为正方形∴∴和是等腰直角三角形∴∴在中故答案为:【点睛】本题考查正方形和平行线的性质等腰直角三角形 2【分析】根据题意易证明MND 和MDG 是等腰直角三角形,2DM DC GC =-=.再根据勾股定理即可求出MN .【详解】∵四边形ABCD 和CEFG 为正方形,//AD BE .∴45DMG BEM MDN DGM ∠=∠=∠=∠=︒,∴MND 和MDG 是等腰直角三角形,∴422DG DM DC GC ==-=-=. ∴在Rt MND △中,2222MN MD === 2【点睛】本题考查正方形和平行线的性质,等腰直角三角形的判定和性质以及勾股定理.根据题意证明MND 是等腰直角三角形在结合勾股定理求解是解答本题的关键.18.15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB 得出AF=AB=8同理可得DE=DC=8再由EF 的长即可求出BC 的长【详解】解:∵四边形ABCD 是平行四边形∴AD ∥BCDC=AB=8A解析:15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB ,得出AF=AB=8,同理可得DE=DC=8,再由EF 的长,即可求出BC 的长.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,DC=AB=8,AD=BC ,∴∠AFB=∠FBC ,∵BF 平分∠ABC ,∴∠ABF=∠FBC ,则∠ABF=∠AFB ,∴AF=AB=8,同理可证:DE=DC=8,∵EF=AF+DE-AD=1,即8+8-AD=1,解得:AD=15;故答案为:15.【点睛】本题主要考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出AF=AB 是解决问题的关键.19.【分析】连接并延长交于Q 由矩形的性质得出由平行线的性质得出由证得得出则是等腰直角三角形得出由直角三角形斜边上的中线性质即可得出结果【详解】如图所示:连接并延长交于Q ∵矩形全等于矩形∴∴∵点H 为的中点解析:【分析】连接GH 并延长GH 交CD 于Q ,由矩形的性质得出20AB CD BG ===,12BC FG ==,////,90FG AE CD GCQ ∠=,由平行线的性质得出HFG HDQ ∠=∠,由ASA 证得HFG HDQ ≌,得出12DQ FG ==,HG HQ =,8CG BG BC =-=,8CQ CD DQ =-=,则GCQ 是等腰直角三角形,得出GQ ==,由直角三角形斜边上的中线性质即可得出结果.【详解】如图所示:连接GH 并延长GH 交CD 于Q ,∵矩形ABCD 全等于矩形BEFG ,∴20AB CD BG ===,12BC FG ==,////FG AE CD ,90GCQ ∠=, ∴HFG HDQ ∠=∠,∵点H 为DF 的中点,∴HF HD =,在HFG 和HDQ 中,HFG HDQ HF HD GHF QHD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()HFG HDQ ASA ≌,∴12DQ FG ==,HG HQ =,20128CG BG BC =-=-=,20128CQ CD DQ =-=-=,∴GCQ 是等腰直角三角形, ∴282GQ CQ == 在Rt GCQ 中,HG HQ =, ∴11824222CH GQ ==⨯= 故答案为:2【点睛】本题考查了矩形的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质等知识;熟练掌握矩形的性质,通过作辅助线构建全等三角形是解题的关键.20.【分析】根据旋转的可证明△BEF ≌△CHE 作FM ⊥CD 于M 分别求出FMMH 的长利用勾股定理即可求解【详解】∵将△BEF 绕点E 顺时针旋转得到△GEH 点H 落在CD 边上∵BE=2AF=2BF=4∴GH=B 解析:10【分析】根据旋转的可证明△BEF ≌△CHE ,作FM ⊥CD 于M ,分别求出FM,MH 的长,利用勾股定理即可求解.【详解】∵将△BEF 绕点E 顺时针旋转,得到△GEH ,点H 落在CD 边上,∵BE=2,AF=2,BF=4∴GH=BF=EC=4,EH=EF=222425+=∴在Rt △HEC 中,CH=()222542-=∴BE=CH又∵∠B=∠C=90°,BF=CE=4∴△BEF ≌△CHE作FM ⊥CD 于M ,故四边形AFMD 是矩形,∴DM=AF=2,MH=CM-CH=2,FM=AD=6∴FH=2226210+=故答案为:210.【点睛】此题主要考查正方形的性质与全等三角形的判定与性质,解题的关键是熟知勾股定理、正方形的性质、矩形的性质及全等三角形的判定定理.三、解答题21.(1)见解析;(2)见解析.【分析】(1)由ASA 证PBE QDE ≅△△即可;(2)由全等三角形的性质得出EP EQ =,同理可得EM EN =,根据对角线互相平分的四边形是平行四边形得四边形PMQN 是平行四边形,再由对角线互相垂直的平行四边形是菱形,即可得出结论.【详解】(1)证明:四边形ABCD 是平行四边形,EB ED ∴=,//AB CD ,EBP EDQ ∴∠=∠,在PBE △和QDE △中,EBP EDQ EB ED BEP DEQ ∠=∠⎧⎪=⎨⎪∠=∠⎩,()PBE QDE ASA ∴≅△△;(2)证明:如图所示:PBE QDE ≅△△,EP EQ ∴=,同理可得EM EN =,∴四边形PMQN 是平行四边形,PQ MN ⊥,∴四边形PMQN 是菱形.【点睛】本题考查了平行四边形的判定与性质,菱形的判定,全等三角形的判定与性质;熟练掌握菱形的判定和平行四边形的判定与性质,证明三角形全等是解题的关键.22.(1)见解析;(2)见解析【分析】(1)由四边形ABCD 是平行四边形,根据平行四边形的性质,可得AB ∥CD ,AB=CD ,又由点M 为边CD 的中点,点N 为边AB 的中点,即可得CM=AN ,继而可判定四边形ANCM 是平行四边形,则可证得AM ∥CN .(2)由AM ∥CN ,BH ⊥AM ,点N 为边AB 的中点,可证得BH ⊥CN ,ME 是△BAH 的中位线,则可得CN 是BH 的垂直平分线,继而证得△BCH 是等腰三角形.【详解】解:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD 且AB CD =.∵点M 、N 分别是边CD 、AB 的中点, ∴12CM CD =,1AN AB 2=. ∴CM AN =.又∵AB ∥CD ,∴四边形ANCM 是平行四边形∴AM ∥CN .(2)设BH 与CN 交于点E ,∵AM ∥CN ,BH ⊥AM ,∴BH ⊥CN ,∵N 是AB 的中点,∴EN 是△BAH 的中位线,∴BE=EH ,∴CN 是BH 的垂直平分线,∴CH=CB ,∴△BCH 是等腰三角形.【点睛】此题考查了平行四边形的判定与性质、线段垂直平分线的性质以及等腰三角形的判定.此题难度适中,注意掌握数形结合思想的应用.23.(1)证明见解析;(2)①180;②=;(3)证明见解析.【分析】(1)由角平分线的性质,解得ACI DCI ∠=∠,继而证明△ACI ≌△DCI(SAS),再根据全等三角形的性质可得IA=ID ,AIC DIC ∠=∠,由角平分线性质结合三角形内角和定理可得11=()904522CAI ACI CAO ACO ∠+∠∠+∠=⨯︒=︒,故135AIC DIC ∠=∠=︒,继而可证90AID ∠=︒据此解题;(2)①根据题意,由三线合一的性质可证,45AI ID AIH =∠=︒、CI IB =、45BIG CIG ∠=∠=︒,最后再计算+AIC BID ∠∠的值即可;②将ID 平移至BG ,连接DG IG ,交BD 于点F ,继而证明四边形DIBG 是平行四边形,即可得到+180BID IBG ∠∠=︒,结合①中结论,可得AIC IBG ∠=∠,据此证明()AIC GBI SAS ≅,可得12AIC GBI DIBG S S S ==,再结合12BDI DIBG S S =即可解题; (3)将ID 平移至BG ,连接DG IG ,交BD 于点F ,继而证明四边形DIBG 是平行四边形,即可得到+180BID IBG ∠∠=︒,结合①中结论,可得AIC IBG ∠=∠,据此证明()AIC GBI SAS ≅,可得12AIC GBI DIBG SS S ==,再结合12BDI DIBG S S =即可解题. 【详解】证明:(1)由点I 是∠BAC ,∠ACD 的平分线的交点ACI DCI ∴∠=∠在△ACI 和△DCI 中CI CI ACI DCI CA CD =⎧⎪∠=∠⎨⎪=⎩∴ △ACI ≌△DCI(SAS)IA ID ∴=由点I 是∠BAC ,∠ACD 的平分线的交点 11=()904522CAI ACI CAO ACO ∴∠+∠∠+∠=⨯︒=︒ 18045135=AIC DIC ∴∠=︒-︒=︒∠36013513590AID ∴∠=︒-︒-︒=︒即IA ID ⊥;(2)①如图,延长CI 交AD 于点H ,延长AI 交BC 于点GAI ID ⊥90AID DIG ∴∠=∠=︒AC CD CI =,平分ACD ∠,,CH AD AH DH ∴⊥=,45AI ID AIH ∴=∠=︒45CIG ∴∠=︒AC AB AI =,平分BAC ∠,,AG BC CG BG ∴⊥=CI IB ∴=45BIG CIG ∴∠=∠=︒13545180AIC BID ∴∠+∠=︒+︒=︒故答案为:180︒,=;②将ID 平移至BG ,连接DG IG ,交BD 于点F ,如图,//=ID BG ID BG ,∴四边形DIBG 是平行四边形+180BID IBG ∴∠∠=︒180AIC BID ∠+∠=︒AIC IBG ∴∠=∠又,AI ID BG IC IB ===()AIC GBI SAS ∴≅ 12AIC GBI DIBG S S S ∴== 12BDI DIBG SS = AIC BDI S S ∴=故答案为:=;(3)将ID 平移至BG ,连接DG IG ,交BD 于点F ,如图,//=ID BG ID BG ,∴四边形DIBG 是平行四边形+180BID IBG ∴∠∠=︒180AIC BID ∠+∠=︒AIC IBG ∴∠=∠又,AI ID BG IC IB ===()AIC GBI SAS ∴≅ 12AIC GBI DIBG SS S ∴== 12BDI DIBG SS = AIC BDI S S ∴=.【点睛】本题考查全等三角形的判定与性质、等腰三角形三线合一的性质、角平分线的性质等知识,是重要考点,作出正确的辅助线、掌握相关知识是解题关键.24.(1)见详解;(2)AB :BC=2:3.【分析】(1)根据平移的性质,可得:AE=CG ,再证明Rt △ABE ≌Rt △CDG 即可得到BE=DG ; (2)根据四边形ABFG 是菱形,得出AB=BF ;根据条件找到满足AB=BF 的AB 与BC 满足的数量关系即可.【详解】证明:(1)∵四边形ABCD 是平行四边形,∴AB=CD .∵AE 是BC 边上的高,且CG 是由AE 沿BC 方向平移而成.∴CG ⊥AD .∴∠AEB=∠CGD=90°.∵AE=CG ,AB=CD ,∴Rt △ABE ≌Rt △CDG (HL ).∴BE=DG ;(2)∵四边形ABFG 是菱形∴AB ∥GF ,AG ∥BF ,∵Rt △ABE 中,∠B=60°,∴∠BAE=30°,∴BE=12AB .(直角三角形中30°所对直角边等于斜边的一半) ∵四边形ABFG 是菱形,∴AB=BF .∴BE=CF ,∴EF=12AB ,∴BC=3AB,2∴AB:BC=2:3.【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等和平行四边形的性质以及菱形的性质.25.(1)见解析;(2)75°【分析】(1)由矩形的性质可得AD=BC,∠A=∠B=90°,CD∥AB,由折叠的性质可得AD=DF,∠A=∠DFE=90°,由“AAS”可证△CEB≌△DCF;(2)由直角三角形的性质可求∠DCF=30°,∠CDF=60°,由折叠的性质可得∠ADE=∠EDF=15°,即可求∠CDE的度数.【详解】解:(1)证明:∵四边形ABCD是矩形∴AD=BC,∠A=∠B=90°,CD∥AB,CD=AB,∴∠DCF=∠CEB,∵将矩形ABCD沿DE折叠,连接CE使得点A的对应点F落在CE上,∴AD=DF,∠A=∠DFE=90°,∴∠DFC=∠B=90°,DF=BC,∠DCE=∠CEB,∴△CEB≌△DCF(AAS).(2)∵AB=2BC,∴CD=2DF,且∠DFC=90°,∴∠DCF=30°,∴∠CDF=60°,∵∠ADF=∠ADC-∠CDF=30°,∵将矩形ABCD沿DE折叠,连接CE使得点A的对应点F落在CE上.∴∠ADE=∠EDF=15°,∴∠CDE=∠CDF+∠EDF=75°.【点睛】本题考查了翻折变换,矩形的性质,全等三角形的判定和性质,熟练运用折叠的性质是本题的关键.26.(1)见解析;(2)见解析【分析】(1)根据平行四边形的性质得到AB=CD,∠DAE=∠AEB,利用AE平分∠BAD,推出∠BAE=∠AEB,得到BE=AB,即可得到结论;(2)根据BE=AB,BF平分∠ABE,得到AF=EF,证明△ADF≌△ECF,推出DF=CF,即可得到结论.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB =CD ,∴∠DAE =∠AEB ,∵AE 平分∠BAD ,∴∠BAE =∠DAE ,∴∠BAE =∠AEB ,∴BE =AB ,∴BE=CD ;(2)∵BE =AB ,BF 平分∠ABE ,∴AF =EF ,在△ADF 和△ECF 中,DAE AEB AF EFAFD EFC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADF ≌△ECF ,∴DF =CF ,又∵AF =EF ,∴四边形ACED 是平行四边形.【点睛】此题考查平行四边形的判定及性质,全等三角形的判定及性质,等腰三角形三线合一的性质,熟记各知识点并应用解决问题是解题的关键.。
第三单元第一课时四边形的认识教学内容:本册教材第 34—36 页上的例 1、例 2,完成做“一做”中的题。
教学目的:1、使学生初步认识四边形,了解四边形的特点,并能根据四边形的特点对四边形进行分类。
2、通过学生动手操作、小组讨论,培养学生独立思量、合作交流的学习精神。
3、通过主题图的教学,对学生进行热爱运动、积极参加体育锻炼的思想教育。
教学重点:找出四边形的特点。
教学难点:根据四边形的特点对四边形进行分类。
教学过程一、主题图引入 1、同学们,你们喜欢参加体育活动吗?你喜欢什么运动?(对学生进行热爱运动、积极参加体育锻炼的思想教育。
) 2、这是什么地方?你看到了什么?(给充分的时间让学生同桌说或者小组说。
)3、子细观察,你会发现许多图形。
学生汇报、交流。
4、揭示课题。
今天我们就来学习有关“四边形”的知识。
——板书课题。
二、探索新知1 、教学例 1。
(认识四边形) ( 1 )下面的图形中,你认为是四边形的就把它剪下来。
(印发,每人一份)学生剪完后汇报,并说说理由。
( 2 )小组讨论。
你发现四边形有什么特点?学生汇报,教师根据回答板书:四条直的边四边形有四个角 ( 3 )联系生活实际,说说你身边哪些物体的表面是四边形的。
2、教学例 2。
(给四边形分类)( 1 )把你剪下的四边形进行分类。
(学生独立操作)( 2 )还有不同的分法吗?(小组交流)学生汇报,并说理由三、巩固应用。
教材第 36 页的做“一做”中的第 1、2 题。
四、全课小结。
1、通过今天的学习,你学会了哪些知识?(学生汇报)2、今天我们学习了四边形,掌握了四边形的特点;还能根据四边形的边和角的特点给四边形分出不同的类型。
教学反思:一、关注学生在生活经验和知识背景。
《国家教学课程标准》指出:“数学教学应该是从学生的生活经验和已有知识背景出发,向他们提供充分的从事数学活动和交流的机会。
”在本节课中我由光明小学校园场景图引入,即使学生感觉到数学来源于生活,又使他们对数学产生浓厚兴趣和亲切感。
人教版小学数学教材全套目录一年级上册第一单元数一数第二单元比一比:1.比多少2.比长短3.比高矮第三单元1-5的认识和加减法:1. 1-5的认识2.比大小3.几和第几4. 2-5的分与合5.加法6.减法7. 0的认识和加减法第四单元认识物体和图形:1.长方体、正方体、圆柱、球2.长方体、正方形、三角形、圆第五单元分类第六单元6-10的认识和加减法:1. 6和7的认识2. 6、7的分与合3.和是6、7的加法与6、7减几4.解决问题5. 8、9的知识6. 8、9的分与合7.和是8、9的加法和8、9减几8.解决问题9. 10的认识10.和是10的加法与10减几11.填12.连加连减13.加减混合14.整理和复习一15.整理和复习二第七单元11-20各数的认识:1.数数、读数2.写数3. 10或十几加几和相应的减法第八单元认识钟表第九单元20以内的进位加法:1. 9加几2.解决问题3. 8、7、6加几4.解决问题5. 5、4、3、2加几6.整理和复习第十单元总复习:1. 20以内的数 2. 20以内的加法、10以内的加减法 3.认识图形 4.认识钟表一年级下册第一单元位置:1.位置12.位置2第二单元20以内的退位减法:1.十几减92.十几减83.十几减74.十几减6、5、4、3、2第三单元图形的拼组:1.图形的拼组12.图形的拼组2第四单元100以内数的认识:1.数数、数的组成2.读数、写数3.数的顺序、比较数的大小4.整十数加一位数、相应的减法第五单元认识人民币:1.认识人民币2.简单的计算第六单元100以内的加法和减法一:1.整十数加和减整十数2.两位数加一位数和整十数3.两位数减一位数和整十数第七单元认识时间:1.认识时间12.认识时间23.单元测试题第八单元找规律:1.找规律12.找规律2第九单元统计:1.统计2.单元测试题第十单元总复习:1.总复习12.总复习2二年级上册第一单元长度单位:1.认识厘米和米2.认识线段第二单元100以内的加法和减法二:1.两位数加两位数不进位加2.两位数加两位数进位加3.两位数减两位数不退位减4.两位数减两位数退位减5.两位数加、减两位数的应用题6.连加7.连减8.加减混合9.加、减法估算第三单元角的初步认识:1.角的特点2.直角的认识3.单元测试题第四单元表内乘法一:1.乘法的初步认识2. 5的乘法口诀3. 1、3、4的乘法口诀4.乘加乘减5. 6的乘法口诀第五单元观察物体第六单元表内乘法二:1. 7的乘法口诀2.倍数3. 8的乘法口诀4. 9的乘法口诀第七单元统计第八单元数学广角:1.数的组合2.数的排除第九单元总复习:、00以内的加法和减法2.表内乘法3.米和厘米,角和直角4.观察物体5、统计6.综合练习一7.综合练习二二年级下册第一单元解决问题:1.解决问题12.解决问题23.解决问题3第二单元表内除法一:1.平均分2.除法3.用2-6的乘法口诀求商14.用2-6的乘法口诀求商2第三单元图形与变换:1.锐角和钝角2.平移和旋转第四单元表内除法二:1.用7、8、9的乘法口诀求商2.解决问题13.解决问题2第五单元万以内数的认识:1 .1000以内数的认识2. 10000以内数的认识3.近似数4.整百、整千数加减法第六单元克和千克第七单元万以内的加法和减法一:1.两位数加两位数2.两位数减两位数3.几百几十数的加减法4.估算第八单元统计:1.统计表2.统计图第九单元找规律第十单元总复习:1.总复习12.总复习2三年级上册第一单元测量:毫米、分米的认识2.千米的认识3.吨的认识第二单元万以内的加法和减法:1.加法2.减法3.加减法的验算第三单元四边形:1.四边形2.平行四边形3.周长4.长方形和正方形的周长5.估计第四单元有余数的除法第五单元时、分、秒:1.秒的认识2.时间的计算3.单元测试题第六单元多位数乘一位数:1.口算乘法2.笔算乘法第七单元分数的初步认识:1.几分之一2.几分之几3.分数的简单计算第八单元数学广角:1.搭配问题 2.可能性第九单元总复习三年级下册第一单元位置与方向第二单元除数是一位数的除法:1.口算除法2.笔算除法13.笔算除法24.笔算除法3第三单元统计:1.简单的数据统计2.平均数第四单元年、月、日:1.年、月、日2. 24小时计时法第五单元两位数乘两位数:1.口算乘法2.笔算乘法13.笔算乘法2第六单元面积:1.面积和面积单位2.长方形、正方形面积的计算3.面积单位间的进率4.公顷、平方千米第七单元小数的初步认识:1.认识小数2.简单的小数加减法第八单元解决问题第九单元数学广角第十单元总复习四年级上册第一单元大数的认识:1.亿以内数的认识一2.亿以内数的认识二3.亿以上数的认识一4.亿以上数的认识二5.用计算器计算6.亿以上数的认识综合练习题第二单元角的度量:1.直线射线和角一2.直线射线和角二第三单元三位数乘两位数:1.口算乘法2.笔算乘法一3.笔算乘法二4.笔算乘法三第四单元平行四边形和梯形:1.垂直与平行一2.垂直与平行二3.平行四边形第五单元除数是两位数的除法:1.除数是两位数的除法一2.除数是两位数的除法二3.除数是两位数的除法三4.整理和复习一5.整理和复习二第六单元统计:1.统计一2.统计二3.统计三第七单元数学广角:1.合理安排一2.合理安排二第八单元总复习:1.总复习——多位数的认识一2.总复习——多位数的认识二3.总复习——空间与图形一4.总复习——空间与图形二5.总复习——统计图一6.总复习——统计图二四年级下册第一单元四则运算:1.不含括号的四则运算12.不含括号的四则运算23.含括号的四则运算4.有关0的运算第二单元位置与方向:1.位置与方向12.位置与方向23.位置与方向3第三单元运算定律与简便计算:1.加法交换律2.加法结合律3.乘法交换律和结合律4.乘法分配律5.减法的运算性质6.除法的运算性质7.乘法的简便计算第四单元小数的意义和性质:1.小数的意义2.小数的读法3、小数的写法4.小数的性质5.小数的大小比较6.小数点移动7.生活中的小数8.求一个小数的近似数第五单元三角形:1.三角形的特性12.三角形的特性23.三角形的分类4.三角形的内角和5.图形的拼组第六单元小数的加法和减法:1.小数的加法和减法12.小数的加法和减法23.小数的加法和减法3 第七单元统计第八单元数学广角:1.数学广角12.数学广角23.数学广角3第九单元总复习五年级上册第一单元小数乘法:1.小数乘整数2.小数乘小数3.积的近似值4.连乘、乘加、乘减5.整数乘法运算定理推广到小数第二单元小数除法:1.小数以整数2.一个数除以小数3.商的近似值4.循环小数5.连除、除加、除减6.解决问题第三单元观察物体第四单元简易方程:1.用字母表示数2.解简易方程3.列方程解应用题4.列方程稍复杂应用题第五单元多边形的面积:1.平行四边行的面积2.三角形面积的计算3.梯形面积的计算4.组合图形的面积第六单元统计与可能性第七单元数学广角第八单元总复习:1.小数的乘除法2.简易方程3.多边形的面积4.观察物体5.可能性6.解决问题五年级下册第一单元图形的变换第二单元因数与倍数:1.因数与倍数、5、3的倍数的特征3.质数和合数第三单元长方体和正方体:1.长方体和正方体的认识2.长方体和正方体的表面积一3.长方体和正方体的表面积二4.长方体和正方体的体积一5.长方体和正方体的体积二6、长方体和正方体的体积三7.长方体和正方体的体积四8.长方体和正方体的体积五第四单元分数的意义和性质:1.分数的意义一2.分数的意义二3.真分数和假分数4.分数的基本性质5.约分一6.约分二7.通分一8.通分二9.分数和小数的互化10、整理和复习第五单元分数的加法和减法:1.同分母分数加、减法2.异分母分数加、减法一3.异分母分数加、减法二4.分数加减混合运算一5、分数加减混合运算二第六单元统计第七单元数学广角第八单元总复习:1.因数与倍数2.分数的意义和性质3.分数的加法和减法4.图形的变换六年级上册第一单元分数乘法:1.分数乘法的意义和计算法则2.分数乘法应用题3.倒数的认识第二单元分数除法:1.分数除法的意义和计算法则2.分数除法应用题3.比第三单元分数、小数四则混合运算和应用题:1.分数、小数四则混合运算2.分数应用题第四单元圆:1.圆的认识2.圆的周长和面积3.扇形4.轴对称图形第五单元百分数:1.百分数的意义和写法2.百分数和分数、小数的互化3.百分数应用题4.纳税5.利息六年级下册第一单元比例:1.比例的意义和基本性质2.正比例和反比例的意义3.比例的应用第二单元圆柱、圆锥和球:1.圆柱2.圆锥3.球第三单元简单的统计二:1.统计表2.统计图第四单元整理和复习:1、数和数的运算2.代数初步知识3.应用题4.量的计量5.几何初步知识6.简单的统计。
三平行四边形、梯形和三角形一、平行四边形1.平行四边形的定义。
两组对边分别平行的四边形叫作平行四边形。
2.平行四边形的基本特征。
平行四边形的两组对边分别平行且相等。
3.长方形、正方形和平行四边形之间的关系。
长方形和正方形同平行四边形一样,都是两组对边分别平行且相等,长方形和正方形具有平行四边形的一切特征,所以长方形和正方形都是特殊的平行四边形。
正方形不仅具备长方形的所有特征,并且四条边都相等,所以正方形是特殊的长方形。
4.平行四边形的特性。
平行四边形具有不稳定性,容易变形。
5.平行四边形的面积。
(1)认识平行四边形的底和高。
从平行四边形一条边上的任意一点向对边引垂线,这点到垂足间的线段叫作平行四边形的高,垂足所在的边叫作平行四边形的底。
平行四边形有无数条高,一般能画出两种长度的高。
(2)平行四边形的面积。
通过剪拼发现:长方形的面积与平行四边形的面积相等,平.重点提示:在拉动长方形的过程中,长方形的形状改变,但两组对边的长度不变。
易错题:平行四边形的对边一定相等,邻边一定不相等。
( )错解分析:此题错在对平行四边形的特征理解不准确,平行四边形一定具备对边相等的特征,但对邻边没有要求,所以平行四边形的邻边也可以相等。
正确答案:✕重点提示:平行四边形的底和高是一组相互依存且对应的概念(底边上的高,高所对应的底)。
易错题:周长相等的两行四边形的底等于长方形的长.............;.平行四边形的高等于长方形的.............宽.。
长方形的面积=长×宽平行四边形的面积=底×高如果用S表示平行四边形的面积,a和h分别表示平行四边形的底和高,那么平行四边形的面积的字母公式为S=ah。
二、梯形1.梯形的定义。
只有一组对边平行的四边形叫作梯形。
2.平行四边形和梯形的异同点。
相同点:都是四边形;都有平行的对边。
不同点:平行四边形的两组对边分别平行且相等;梯形只有一组对边平行,且平行的这组对边不相等。
小学数学三年级上册第三单元测试卷3、四边形亲爱的小朋友,欢迎你来到数学园地!相信你一一、玩一玩,吹泡泡。
二、找一找,涂一涂。
(给平行四边形涂上你喜欢的颜色)二、计算下面各图形的周长。
四、你认为下面的说法正确吗?1、这是一个四边形。
()2、长方形的对边相等。
()3、一个正方形的周长是12厘米,它的边长一定是6厘米。
()4、小冬冬家到学校最近的路是第③条。
()5、下面两个图形的周长相等。
()五、选一选,把你认为正确的答案圈起来。
1、边长1厘米的正方形的周长是()厘米。
A、1厘米B、2厘米C、4厘米2、用1张长10厘米,宽6厘米的长方形纸,折一个最大的正方形,正方形的边长是()厘米。
A、4B、6C、103、用2个边长1厘米的正方形拼成的长方形的周长是()厘米。
A、6B、7C、8六、做一做。
(请你在方格图上画一个平行四边形)七、解决问题,你能行!1、明明家有一块正方形桌布(如图),要在它四周绣上花边,花边的长是多少?2、王爷爷有一块长方形菜地,长6米,宽3米。
4、如果一个长方形的周长是18厘米,你认为它的长和宽可能分别是多少厘米?(请写出算式,至少写3种)八、实践活动。
先估一估,再量一量。
物品名称估计的周长实际测量的周长数学课本封面客厅门的面黑板面你的鞋底* 智慧屋。
你会求下面图形的周长吗?(单位:米)****************** 说说心里话******************小朋友,请你和老师说说心里话。
选择你所要的答案,在下面画上横线。
1、我()上数学课。
(1)喜欢(2)不喜欢2、我()举手发言。
(1)喜欢(2)不喜欢3、老师经常()。
(1)表扬我(2)批评我(3)不批评也不表扬第二学期数学考试一、冷静思考,正确填写(20分,其中2题4分,3题3分,7题2分,其它每空1分)1.由8个百分之一、4个百、9个一组成的数是()2. 20.45吨=()千克36米=()千米3.6平方分米=()平方分米()平方厘米5吨46千克=()吨3.在5.77、7.7、7.47、4.07、7.470中,最大的是(),最小数是(),相等的数是()和()。
一、选择题1.如图为某城市部分街道示意图,四边形ABCD 为正方形,点G 在对角线BD 上,GE CD ⊥,GF BC ⊥,1500m AD =,小敏行走的路线为B A G E →→→,小聪行走的路线为B A D E F →→→→.若小敏行走的路程为3100m ,则小聪行走的路程为( )A .3100mB .4600mC .5500mD .6100m 2.如图,在ABC 中,D ,E 分别是,AB AC 的中点,12BC =,F 是DE 的上任意一点,连接,AF CF ,3DE DF =,若90AFC ∠=︒,则AC 的长度为( )A .4B .5C .8D .103.在平面直角坐标系中,长方形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点,若E 为x 轴上的一个动点,当△CDE 的周长最小时,求点E 的坐标( )A .(一3,0)B .(3,0)C .(0,0)D .(1,0) 4.下列条件中不能判定一定是平行四边形的有( )A .一组对角相等,一组邻角互补B .一组对边平行,另一组对边相等C .两组对边相等D .一组对边平行,且另一组对边也平行5.下列命题中,错误的是 ( )A .有一个角是直角的平行四边形是正方形;B .对角线相等的菱形是正方形;C .对角线互相垂直的矩形是正方形;D .一组邻边相等的矩形是正方形. 6.如果平行四边形ABCD 的对角线相交于点O ,那么在下列条件中,能判断平行四边形ABCD 为菱形的是( )A .OAB OBA ∠=∠;B .OAB OBC ∠=∠; C .OAB OCD ∠=∠; D .OAB OAD ∠=∠.7.如图,在ABC 中,90A ∠=,D 是AB 的中点,过点D 作BC 的平行线,交AC 于点E ,作BC 的垂线交BC 于点F ,若AB CE =,且DFE △的面积为1,则BC 的长为( )A .25B .5C .45D .108.菱形的一个内角是60︒,边长是3cm ,则这个菱形的较短的对角线长是( ) A .3cm 2 B .33cm 2 C .3cm D .33cm 9.如图,在矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB ,CD 交于点E 、F ,连接BF 交AC 于点M ,连接DE ,BO .若60COB ∠=︒,FO FC =.则下列结论:①FB 垂直平分OC ;②四边形DEBF 为菱形;③OC FB =;④2AM BM =;⑤:3:2BOM AOE S S =.其中正确结论的个数是( )A .5个B .4个C .3个D .2个10.如图,把一张长方形纸片沿对角线折叠,若△EDF 是等腰三角形,则∠BDC ( )A .45ºB .60ºC .67.5ºD .75º11.如图,已知在正方形ABCD 中,E 是BC 上一点,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于点G ,连接DG .现有如下4个结论:①AG =GF ;②AG 与EC 一定不相等;③45GDE ∠=︒;④BGE △的周长是一个定值.其中正确的个数为( )A .1B .2C .3D .412.如图,菱形ABCD 中,4AB =,60A ∠=︒,点E 是线段AB 上一点(不与A ,B 重合),作EDF ∠交BC 于点F ,且60EDF ∠=︒,则BEF 周长的最小值是( )A .6B .43C .43+D .423+二、填空题13.如图,在菱形ABCD 中,13cm AB =,24cm AC =,E ,F 分别是CD 和BC 的中点,连接EF 并延长与AB 的延长线相交于点G ,则EG 的长度为________cm .14.如图,四边形ABCD 是长方形,F 是DA 延长线上一点,CF 交AB 于点E ,G 是CF 上一点,且∠ACG =∠AGC ,∠GAF =∠F .若∠ECB =20°,则∠ACD 的度数是______________.15.如图,,E F 分别是ABCD 的边,AD BC 上的点.8,60,EF DEF =∠=︒将EFCD 四边形沿EF 翻折,得到四边形',EFCD ED '交BC 于点,G 则GEF △的周长为________.16.己知菱形ABCD 的边长是3,点E 在直线AD 上,DE =1,联结BE 与对角线AC 相交于点M ,则AM MC的值是______. 17.在平面直角坐标系xOy 中,OABC 的三个顶点的坐标分别为()()()0,0,3,0,4,3O A B ,则其第四个顶点C 的坐标为______.18.已知Rt ABC ,90C ∠=︒,4cm AC =,3cm BC =,若PAB △与ABC 全等,PC ________.19.如图,矩形ABCD 中,2AB =,4=AD ,点E 是边AD 上的一个动点;把BAE △沿BE 折叠,点A 落在A '处,如果A '恰在矩形的对称轴上,则AE 的长为______.20.如图,长方形ABCD 中,4=AD ,3AB =,点P 是AB 上一点,1AP =,点E 是BC 上一动点,连接PE ,将BPE 沿PE 折叠,使点B 落在B ',连接DB ',则PB DB ''+的最小值是________.三、解答题21.如图,在ABCD 中,对角线AC 与BD 相交于点O ,点M ,N 分别为OB ,OD 的中点,连接AM 并延长至点E ,使EM AM =,连接CE ,CN .(1)求证:ABM CDN ≌;(2)当AB 与AC 满足什么数量关系时,四边形MECN 是矩形?请说明理由;(3)连接AN ,EN .当ANE 满足什么条件时,四边形MECN 是正方形?请说明理由.22.综合与实践——探究正方形旋转中的数学问题问程情境:已知正方形ABCD 中,点O 是线段BC 的中点,将将正方形ABCD 绕点O 顺时针旋转得到正方形A B C D ''''(点A ',B ',C ',D 分别是点A ,B ,C ,D 的对应点).同学们通过小组合作,提出下列数学问题,请你解答.特例分析:(1)“乐思”小组提出问题:如图1,在正方形绕点O 旋转过程中,顺次连接点B ,B ',C ,C '得到四边形''BB CC ,求证:四边形''BB CC 是矩形;(2)“善学”小组提出问题:如图2.在旋转过程中,当点B '落在对角线BD 上时,设A B ''与CD 交于点M .求证:四边形OB MC '是正方形.深入探究:(3)“好问”小组提出问题:如图3.若点O 是线段BC 的三等分点且2OB OC =,在正方形ABCD 旋转的过程中当线段A D ''经过点D 时,请直接写出''DD OC 的值. 23.如图,在四边形ABCD 中,,E F 分别是,AD BC 的中点,,G H 分别是对角线,BD AC 的中点,依次连接,,,E G F H 连接,EF GH .(1)求证:四边形EGFH 是平行四边形;(2)当AB CD =时,EF 与GH 有怎样的位置关系?请说明理由;(3)若,20,70AB CD ABD BDC =∠=︒∠=︒,则GEF ∠= ︒.24.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,∠ACB =∠ADB =90°,M 为边AB 的中点,连接MC ,MD .(1)求证:MC =MD :(2)若△MCD 是等边三角形,求∠AOB 的度数.25.如图,菱形EFGH 的三个顶点E 、G 、H 分别在正方形ABCD 的边AB 、CD 、DA 上,连接CF .(1)求证:∠HEA =∠CGF ;(2)当AH =DG 时,求证:菱形EFGH 为正方形.26.如图,已知四边形ABCD 是平行四边形,E 是AB 延长线上一点且BE AB =,连接CE ,BD .(1)求证:四边形BECD 是平行四边形(2)连接DE ,若4AB BD ==,22DE =,求BECD 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】连接CG ,由正方形的对称性,易知AG=CG ,由正方形的对角线互相平分一组对角,GE ⊥DC ,易得DE=GE .在矩形GECF 中,EF=CG .要计算小聪走的路程,只要得到小聪比小敏多走了多少就行.【详解】解:连接GC ,∵四边形ABCD 为正方形,所以AD=DC ,∠ADB=∠CDB=45°,∵∠CDB=45°,GE ⊥DC ,∴△DEG 是等腰直角三角形,∴DE=GE .在△AGD 和△GDC 中,AD CD ADG CDG DG DG ⎧⎪∠∠⎨⎪⎩===,∴△AGD ≌△GDC (SAS )∴AG=CG ,在矩形GECF 中,EF=CG ,∴EF=AG .∵BA+AD+DE+EF-BA-AG-GE ,=AD=1500m .∵小敏共走了3100m ,∴小聪行走的路程为3100+1500=4600(m ),故选:B .【点睛】本题考查了正方形的性质、全等三角形的性质和判定、矩形的性质及等腰三角形的性质.解决本题的关键是证明AG=EF ,DE=GE .2.C解析:C【分析】根据三角形中位线定理求出DE ,根据题意求出EF ,根据直角三角形的性质计算即可.【详解】解:∵D 、E 分别是AB 、AC 的中点,∴DE 是△ABC 的中位线,∴DE=12BC=6, ∵DE=3DF ,∴EF=4,∵∠AFC=90°,E 是AC 的中点,∴AC=2EF=8,故选:C .【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.3.D解析:D【分析】由于C 、D 是定点,则CD 是定值,如果△CDE 的周长最小,即DE +CE 有最小值.为此,作点D 关于x 轴的对称点D′,当点E 在线段CD′上时,△CDE 的周长最小.【详解】如图,作点D 关于x 轴的对称点D′,连接CD′与x 轴交于点E ,连接DE .若在边OA 上任取点E′与点E 不重合,连接CE′、DE′、D′E′由DE′+CE′=D′E′+CE′>CD′=D′E +CE =DE +CE ,∴△CDE 的周长最小.∵OB =4,D 为边OB 的中点,∴OD =2,∴D (0,2),∵在长方形OACB 中,OA =3,OB =4,D 为OB 的中点,∴BC =3,D′O =DO =2,D′B =6,∵OE ∥BC ,∴Rt △D′OE ∽Rt △D′BC , ∴OE D O BC D B='', 即:623OE =,即:OE =1, ∴点E 的坐标为(1,0)故选:D .【点睛】此题主要考查轴对称−−最短路线问题,解决此类问题,一般都是运用轴对称的性质,将求折线问题转化为求线段问题,其说明最短的依据是:两点之间线段最短.4.B解析:B【分析】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定逐一验证.【详解】A、能用两组对角相等的四边形是平行四边形判定平行四边形;B、不能判定平行四边形,如等腰梯形;C、能用两组对边相等的四边形是平行四边形判定平行四边形;D、能用两组对边分别平行的四边形是平行四边形判定平行四边形;故选:B.【点睛】本题考查平行四边形的判定,解题的关键是掌握平行四边形的判定定理.5.A解析:A【分析】根据正方形的判定逐项作出判断即可求解.【详解】解:A. 有一个角是直角的平行四边形是正方形,判断错误,应该是矩形,符合题意;B. 对角线相等的菱形是正方形,判断正确,不合题意;C. 对角线互相垂直的矩形是正方形,判断正确,不合题意;D. 一组邻边相等的矩形是正方形,判断正确,不合题意.故选:A【点睛】本题考查了正方形的判定,熟练掌握正方形的判定方法是解题关键.6.D解析:D【分析】根据菱形的判定方法判断即可.【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠OAB=∠ACD,∵∠OAB=∠OAD,∴∠DAC=∠DCA,∴AD=CD,∴四边形ABCD是菱形(邻边相等的平行四边形是菱形)故选:D.【点睛】本题考查菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.7.A解析:A【分析】过A作AH⊥BC于H,根据已知条件得到AE=CE,求得DE=12BC,求得DF=12AH,根据三角形的面积公式得到DE•DF=2,得到AB•AC=8,求得AB=2(负值舍去),根据勾股定理即可得到结论.【详解】解:过A作AH⊥BC于H,∵D是AB的中点,∴AD=BD,∵DE∥BC,∴AE=CE,∴DE=12BC,∵DF⊥BC,∴DF∥AH,DF⊥DE,∴BF=HF,∴DF=12AH,∵△DFE的面积为1,∴12DE•DF=1,∴DE•DF=2,∴BC•AH=2DE•2DF=4×2=8,∴AB•AC=8,∵AB=CE,∴AB=AE=CE=1AC,2∴AB•2AB=8,∴AB=2(负值舍去),∴AC=4,∴==故选:A.【点睛】本题考查了三角形中位线定理,三角形的面积的计算,勾股定理,平行线的判定和性质,正确的识别图形是解题的关键.8.C解析:C【分析】根据菱形的四边相等和一个内角是60°,可判断较短对角线与两边组成等边三角形,根据等边三角形的性质可求较短的对角线长.【详解】解:因为菱形的四边相等,当一个内角是60°,则较短对角线与两边组成等边三角形.∵菱形的边长是3cm,∴这个菱形的较短的对角线长是3cm.故选:C.【点睛】此题考查了菱形四边都相等的性质及等边三角形的判定,解题关键是判断出较短对角线与两边构成等边三角形.9.C解析:C【分析】证明△OFB≌△CFB,可判断结论①正确;利用菱形的定义,可判断结论②正确;根据OC=OB,斜边大于直角边,可判断结论③错误;根据30度角的性质,可判断AB=2BM,故结论④是错误的;证NE∥BM,AN=NO=OM,所以BM=3NE,AO=2OM,利用三角形面积公式计算判断,结论⑤正确.【详解】连接BD,∵四边形ABCD是矩形,∴AC=BD,AC、BD互相平分,∵O为AC中点,∴BD也过O点,∴OB=OC,∵∠COB=60°,OB=OC,∴△OBC是等边三角形,∴OB=BC=OC,∠OBC=60°,∵FO=FC,BF=BF∴△OBF≌△CBF(SSS),∴△OBF与△CBF关于直线BF对称,∴FB⊥OC,OM=CM;∴①正确,∵AB∥CD,∴∠OCF=∠OAE,∵OA=OC,∴△AOE≌△COF,∴OE=OF,FC=AE,∴DF=BE,DF∥BE,∴四边形EBFD是平行四边形,∵OA=OB,∴∠OAB=∠OBA=30°,∵FO=OE=FC=AE,∴∠AOE=∠FOM=30°,∴∠BOF=90°,∴BE=BF,∴四边形EBFD是菱形,∴结论②正确;∵OA=OB,∴∠OAB=∠OBA=30°,∵FO=OE=FC=AE,∴∠AOE=∠FOM=30°,∴∠BOF=90°,∴FB>OB,∵OB=OC,∴FB>OC,∴③错误,在直角三角形AMB中,∵∠BAM=30°,∠AMB=90°,∴AB=2BM,∴④错误,设ED与AC的交点为N,设AE=OE=2x,则NE=x,BE=4x,∴AB=6x ,∴BM=3x , ∴11::22BOM AOE S SOM BM AO NE =⋅⋅ =3:2OM x OM x ⋅⋅=3:2,结论⑤正确.故选C .【点睛】本题考查了矩形的性质,等腰三角形三线合一性质,全等三角形,直角三角形30°角的性质,菱形的判定,熟练掌握,灵活运用是解题的关键.10.C解析:C【分析】由翻折可知:△BDF ≌△BCD ,所以∠EBD=∠CBD ,∠E=∠C=90°,由于△EDF 是等腰三角形,易证∠ABF=45°,所以∠CBD=12∠CBE=22.5°,从而可求出∠BDC=67.5°. 【详解】解:由翻折的性质得,∠DBC=∠EBD ,∵矩形的对边AD ∥BC ,∠E=∠C=90°,∴∠DBC=∠ADB ,∴∠EBD=∠ADB ,∵△EDF 是等腰三角形,∠E=90°,∴△EDF 是等腰直角三角形,∴∠DFE=45°,∵∠EBD+∠ADB=∠DFE ,∴∠DBF=12∠DFE=22.5°, ∴∠CBD =22.5°,∴∠BDC=67.5°,故选:C .【点睛】本题考查等腰三角形,涉及矩形的性质,全等三角形的判定与性质等知识,需要学生灵活运用所学知识.11.C解析:C【分析】根据HL 证明△ADG ≌△FDG ,根据角的平分线的意义求∠GDE ,根据GE=GF+EF=EC+AG ,确定△BGE 的周长为AB+AC.【详解】根据折叠的意义,得△DEC ≌△DEF ,∴EF=EC ,DF=DC ,∠CDE=∠FDE ,∵DA=DF ,DG=DG ,∴Rt △ADG ≌Rt △FDG ,∴AG=FG ,∠ADG=∠FDG ,∴∠GDE=∠FDG+∠FDE =12(∠ADF+∠CDF ) =45°,∵△BGE 的周长=BG+BE+GE ,GE=GF+EF=EC+AG ,∴△BGE 的周长=BG+BE+ EC+AG=AB+AC ,是定值,∴正确的结论有①③④,故选C.【点睛】本题考查了正方形中的折叠变化,直角三角形的全等及其性质,角的平分线,三角形的周长,熟练掌握折叠的全等性是解题的关键.12.D解析:D【分析】只要证明DBE DCF ∆≅∆得出DEF ∆是等边三角形,因为BEF ∆的周长4BE BF EF BF CF EF BC EF EF =++=++=+=+,所以等边三角形DEF ∆的边长最小时,BEF ∆的周长最小,只要求出DEF ∆的边长最小值即可.【详解】解:连接BD ,菱形ABCD 中,60A ∠=︒,ADB ∴∆与CDB ∆是等边三角形,60DBE C ∴∠=∠=∠︒,BD DC =,60EDF ∠=︒,BDE CDF ∴∠=∠,在BDE ∆和CDF ∆中,DBE C BDE CDF BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,DBE DCF ∴∆≅∆,DE DF ∴=,BDE CDF ∠=∠,BE CF =,60EDF BDC ∴∠=∠=︒,DEF ∴∆是等边三角形,BEF ∆的周长4BE BF EF BF CF EF BC EF EF =++=++=+=+,∴等边三角形DEF ∆的边长最小时,BEF ∆的周长最小,当DE AB ⊥时,DE 最小23=,BEF ∴∆的周长最小值为423+,故选:D .【点睛】本题考查菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质、最小值问题等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题,学会转化的思想解决问题,所以中考常考题型.二、填空题13.10【分析】连接对角线BD 交AC 于点O 证四边形BDEG 是平行四边形得EG =BD 利用勾股定理求出OD 的长BD =2OD 即可求出EG 【详解】解:连接BD 交AC 于点O 如图:∵菱形ABCD 的边长为13cm ∴A解析:10【分析】连接对角线BD ,交AC 于点O ,证四边形BDEG 是平行四边形,得EG =BD ,利用勾股定理求出OD 的长,BD =2OD ,即可求出EG .【详解】解:连接BD ,交AC 于点O ,如图:∵菱形ABCD 的边长为13cm ,∴AB//CD,AB=BC=CD=DA=13cm,∵点E、F分别是边CD、BC的中点,∴ EF//BD,∵AC、BD是菱形的对角线,AC=24cm,∴AC⊥BD,AO=CO=1AC=12cm,OB=OD,2又∵AB//CD,EF//BD,∴DE//BG,BD//EG,∴四边形BDEG是平行四边形,∴BD=EG,在△COD中,∵OC⊥OD,CD=13cm,CO=12cm,∴OB=OD5=cm,∴BD=2OD=10cm,∴EG=BD=10cm;故答案为:10.【点睛】本题主要考查了菱形的性质,平行四边形的判定与性质及勾股定理等知识;熟练掌握菱形、平行四边形的性质和勾股定理是解题的关键.14.30°【分析】根据矩形的性质得到AD∥BC∠DCB=90°根据平行线的性质得到∠F=∠ECB=20°根据三角形的外角的性质得到∠ACG=∠AGC=∠GAF+∠F=2∠F=40°于是得到结论【详解】解解析:30°【分析】根据矩形的性质得到AD∥BC,∠DCB=90°,根据平行线的性质得到∠F=∠ECB=20°,根据三角形的外角的性质得到∠ACG=∠AGC=∠GAF+∠F=2∠F=40°,于是得到结论.【详解】解:∵四边形ABCD是矩形,∴AD∥BC,∠DCB=90°,∴∠F=∠ECB∵∠ECB=20°,∴∠F=∠ECB=20°,∵∠GAF=∠F,∴∠GAF=∠F=20°,∴∠ACG=∠AGC=∠GAF+∠F=2∠F=40°,∴∠ACB=∠ACG+∠ECB=60°,∴∠ACD=90°﹣∠ACB=90°﹣60°=30°,故答案为:30°.【点睛】本题考查了矩形的性质,用到的知识点为:矩形的对边平行;两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和.15.24【分析】根据平行四边形的性质得到AD ∥BC 由平行线的性质得到∠AEG=∠EGF 根据折叠的性质得到推出△GEF 是等边三角形于是得到结论【详解】解:∵四边形ABCD 是平行四边形∴AD ∥BC ∴∠AEG解析:24【分析】根据平行四边形的性质得到AD ∥BC ,由平行线的性质得到∠AEG=∠EGF ,根据折叠的性质得到60GEF DEF ∠=∠=︒,推出△GEF 是等边三角形,于是得到结论.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AEG=∠EGF ,∵将四边形EFCD 沿EF 翻折,得到EFC D '',∴60GEF DEF ∠=∠=︒,∴∠AEG=60°,∴∠EGF=60°,∴△EGF 是等边三角形,∵EF=8,∴△GEF 的周长=24,故答案为:24.【点睛】此题考查平行四边形的性质,折叠的性质,等边三角形的判定及性质,熟练掌握基本性质是解题关键.16.或【分析】首先根据题意作图注意分为E 在线段AD 上与E 在AD 的延长线上然后由菱形的性质可得AD ∥BC 则可证得△MAE ∽△MCB 根据相似三角形的对应边成比例即可求得答案【详解】解:∵菱形ABCD 的边长是 解析:23或43【分析】 首先根据题意作图,注意分为E 在线段AD 上与E 在AD 的延长线上,然后由菱形的性质可得AD ∥BC ,则可证得△MAE ∽△MCB ,根据相似三角形的对应边成比例即可求得答案.【详解】解:∵菱形ABCD 的边长是3,∴AD=BC=3,AD ∥BC ,如图①:当E 在线段AD 上时,∴AE=AD -DE=3-1=2,∴△MAE ∽△MCB , ∴23MA AE MC BC ==; 如图②,当E 在AD 的延长线上时,∴AE=AD+DE=3+1=4,∴△MAE ∽△MCB ,∴43MA AE MC BC ==. ∴MA MC的值是23或43. 故答案为23或43.【点睛】此题考查了菱形的性质,相似三角形的判定与性质等知识.解题的关键是注意此题分为E 在线段AD 上与E 在AD 的延长线上两种情况,小心不要漏解.17.【分析】由题意得出OA=3由平行四边形的性质得出BC ∥OABC=OA=3即可得出结果【详解】解:∵O (00)A (30)∴OA=3∵四边形OABC 是平行四边形∴BC ∥OABC=OA=3∵B (43)∴点解析:()1,3【分析】由题意得出OA=3,由平行四边形的性质得出BC ∥OA ,BC=OA=3,即可得出结果.【详解】解:∵O (0,0)、A (3,0),∴OA=3,∵四边形OABC 是平行四边形,∴BC ∥OA ,BC=OA=3,∵B (4,3),∴点C 的坐标为(4-3,3),即C (1,3);故答案为:(1,3).【点睛】本题考查了平行四边形的性质、坐标与图形性质;熟练掌握平行四边形的性质是解题的关键.18.5cm 或cm 或cm 【分析】利用勾股定理列式求出AB 然后分①点P 与点C 在AB 的两侧时AP 与BC 是对应边时四边形ACBP 是矩形然后利用勾股定理列式计算即可得解;AP 与AC 是对应边时根据对称性可知AB ⊥P解析:5cm 或245cm 或75cm . 【分析】利用勾股定理列式求出AB ,然后分①点P 与点C 在AB 的两侧时,AP 与BC 是对应边时,四边形ACBP 是矩形,然后利用勾股定理列式计算即可得解;AP 与AC 是对应边时,根据对称性可知AB ⊥PC ,再利用三角形的面积列式计算即可得解;②点P 与点C 在AB 的同侧时,利用勾股定理求出BD ,再根据PC=AB-2BD 计算即可得解.【详解】解:在Rt ABC 中,90C ∠=︒,4cm AC =,3cm BC =,由勾股定理得,2222435AB AC BC cm =+=+=,如图,①点P 与点C 在AB 的两侧时,若AP 与BC 是对应边,则四边形ACBP 1是矩形, ∴P 1C=AB=5cm ,若AP 与AC 是对应边,则△ABC 和△ABP 关于直线AB 对称,∴AB ⊥PC设AB 与P 2C 相交于点D ,则S △ABC =12×5•CD=12×3×4, 解得CD=125, ∴P 2C=2CD=2×125=245, ②点P 3与点C 在AB 的同侧时,由勾股定理得,22221293()55BD BC CD =-=-=, 过点P 3作P 3E ⊥AB ,垂足E ,连接P 3C ,如图,则有12×5•P 3E=12×3×4, ∴P 3E=125∴P 3E=CD 又P 3E ⊥AB ,CD ⊥AB ,∴P 3E//CD ,∴四边形P 3CDE 是平行四边形,又∠CDE=90°∴四边形P 3CDE 是矩形,∴P 3C=DE∵3P AB △≌ABC∴P 3A=BC ,∠P 3AB=∠CBA又∠P 3EA=∠CDB=90°∴△P 3AE ≌△CBD∴AE=BD∴P 3C=AB-2BD=5-2×95=75, 综上所述,PC 的长为5cm 或245cm 或75cm . 故答案为:5cm 或245cm 或75cm . 【点睛】 本题考查了全等三角形的对应边相等的性质,勾股定理,轴对称性,难点在于分情况讨论,作出图形更形象直观.19.2或【分析】分两种情况:①过A′作MN ∥CD 交AD 于M 交BC 于N 则直线MN 是矩形ABCD 的对称轴得出AM=BN=AD=2由勾股定理得到A′N=0求得A′M=2再得到A′E 即可;②过A′作PQ ∥AD 交解析:2 【分析】分两种情况:①过A′作MN ∥CD 交AD 于M ,交BC 于N ,则直线MN 是矩形ABCD 的对称轴,得出AM=BN=12AD=2,由勾股定理得到A′N=0,求得A′M=2,再得到A′E 即可;②过A′作PQ ∥AD 交AB 于P ,交CD 于Q ;求出∠EBA′=30°,再利用勾股定理求出A′E ,即可得出结果.【详解】解:分两种情况:①如图1,过A′作MN ∥CD 交AD 于M ,交BC 于N ,则直线MN 是矩形ABCD 的对称轴,∴AM=BN=12AD=2, ∵△ABE 沿BE 折叠得到△A′BE , ∴A′E=AE ,A′B=AB=2,∴A′N=22A B BN '-=0,即A′与N 重合,∴A′M=2= A′E ,∴AE=2;②如图2,过A′作PQ ∥AD 交AB 于P ,交CD 于Q ,则直线PQ 是矩形ABCD 的对称轴,∴PQ ⊥AB ,AP=PB ,AD ∥PQ ∥BC ,∴A′B=2PB ,∴∠PA′B=30°,∴∠A′BC=30°,∴∠EBA′=30°,设A′E=x ,则BE=2x ,在△A′EB 中,()22222x x =+,解得:x=23, ∴AE=A′E=23;综上所述:AE 的长为223, 故答案为:2或33. 【点睛】 本题考查了翻折变换—折叠问题,矩形的性质,勾股定理;正确理解折叠的性质是解题的关键.20.【分析】根据题意可知最小时落在线段PD 上利用勾股定理求出PD 即可【详解】如图连接PD 根据题意可知当落在线段PD 上时最小且最小值为PD 长在中综上可知最小值为故答案为:【点睛】本题考查翻折的性质结合题意 解析:17 【分析】 根据题意可知PB DB ''+最小时,B '落在线段PD 上,利用勾股定理求出PD 即可.【详解】如图,连接PD ,根据题意可知当B '落在线段PD 上时,PB DB ''+最小,且最小值为PD 长.在Rt APD 中,2211617PD AP AD =+=+=.综上可知PB DB ''+最小值为17.17【点睛】本题考查翻折的性质,结合题意根据两点之间线段最短得出当B '落在线段PD 上时,PB DB ''+最小是解答本题的关键.三、解答题21.(1)见解析;(2)AC=2AB ,理由见解析;(3)当AN=EN 且∠ENA=90°时,四边形MECN 是正方形.【分析】(1)根据SAS 证明三角形全等即可.(2)先根据等腰三角形的性质可得∠NMA=90°,再根据有一个角是直角的平行四边形是矩形证明即可.(3)先根据直角三角形斜边上的中线等于斜边的一半得出MN=EM ,再根据有一个角是直角的菱形是正方形证明即可.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,OB=OD ,OA=OC ,∴∠ABM=∠CDN ,∵点M ,N 分别为OB ,OD 的中点,∴11,22==BM OB DN OD ∴BM=DN ,在△ABM 和△CDN 中, AB CD ABM CDN BM DN =⎧⎪∠=∠⎨⎪=⎩∴△ABM ≌△CDN .(2)当AC=2AB 时,四边形MECN 是矩形,理由如下:∵△ABM ≌△CDN ,∴AM=CN ,∠AMB=∠CND ,∴∠AMN=∠CNM ,∴AM ∥CN ,∵EM AM =,∴EM CN =,∴四边形EMNC 是平行四边形,∵四边形ABCD 是平行四边形,∴AC=2OA ,∵AC=2AB ,∴AB=OA ,∵M 是OB 的中点,∴AM ⊥OB ,∴∠NMA=90°,∴∠NME=90°,∴平行四边形MECN 是矩形.(3)当AN=EN 且∠ENA=90°时,四边形MECN 是正方形;理由如下:连接AN 、EN∵△ABM ≌△CDN ,∴AM=CN ,∠AMB=∠CND ,∴∠AMN=∠CNM ,∴AM ∥CN ,∵EM AM =,∴EM CN =,∴四边形EMNC 是平行四边形,∵EM AM =,∠ENA=90°∴MN=EM ,∴平行四边形EMNC 是菱形,∵AN=EN ,AM=EM∴∠NME=90°,∴四边形EMNC 是正方形.【点睛】本题考查了正方形的判定、平行四边形的性质和判定、全等三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(1)证明见解析;(2)证明见解析;(3)2'='DD OC . 【分析】(1)由旋转性质可得 OB=OB′ ,OC=OC′ ,得到四边形BB′CC′是平行四边形,又 BC=B′ C′ ,得到平行四边形BB′CC′是矩形.(2)先由∠C=∠OB′M=∠B′OC=90°,证明四边形 OB′MC 是矩形 ,再由OC=OB′ 得到四边形 OB′MC 是正方形.(3)过D 作DN ⊥B′C′,证Rt △DNO ≌Rt △DCO(HL),设OC=a ,得到OC′=a ,DD′=2a ,即可求解.【详解】解:(1)由旋转性质可得OB OB '=,OC OC '=.点O 是线段BC 的中点 OB OC ∴=,''∴=OB OC ,OB OC =.∴四边形''BB CC 是平行四边形.又BC B C ''=,∴平行四边形''BB CC 是矩形. (2)证明:四边形ABCD 是正方形,BC CD ∴=,90C ∠=︒.180180904522-∠︒-∴︒∠=∠===︒︒C CBD CDB 由旋转可知,OB OB '=,45''∴∠=∠=︒OB B OBB454590'''∴∠=∠+∠=︒+︒=︒B OC OB B OBB .四边形A B C D ''''是正方形,90'∴∠=︒OB M∴四边形OB MC '是矩形OB OC =,OC=OC′ ,OB′=OB ,∴OC=OB′∴矩形OB MC '是正方形,(3)2'='DD OC . 如图,过D 作DN ⊥B′C′可知,∠A′=∠B′=∠B′ND=90°,∠D′=∠C′=∠C′ND=90°,∴四边形DNC′D′为矩形,四边形DNB′A′为矩形,在Rt △DNO 与Rt △DCO 中,∵OD=OD ,DN=DC ,∴Rt △DNO ≌Rt △DCO(HL)设OC=a ,则OB=2OC=2a ,∴ON=OC=OC′=a∴BC=OB+OC=3a ,DD′=NC′=ON+OC′=2a ,∴2DD a OC a'='=2. 【点睛】 本题考查了特殊的四边形,平行四边形,矩形,正方形的性质和判定,解题的关键是熟练掌握特殊的四边形的性质和判定.23.(1)见解析;(2)GH EF ⊥,见解析;(3)25︒【分析】(1)利用中位线性质得//EG AB ,且12GE AB =,//HF AB ,且12HF AB =,可推出//EG HF ,且EG HF =,可证四边形EGFH 是平行四边形;(2由G F 、分别是BD BC 、的中点,可得12GF CD =,由(1)知12GE AB =,由AB CD =,可证GE GF =,由(1)知四边形EGFH 是平行四边形,可证四边形EGFH 是菱形即可;(3)先证四边形EGFH 是平行四边形;再证四边形EGFH 是菱形,由EG ∥AB ,GF ∥CD ,可求∠EGD=∠ABD=20°,∠BGF=∠BDC=70°利用平角可求∠DGF=180°-∠BGF=110°,利用两角和求∠EGF=130°利用菱形性质求∠GEH=180°-∠EGF=50º,由FE 平分∠GEH ,∠GEF=25︒即可.【详解】证明:(1)E G 、分别是AD BD 、的中点,//EG AB ∴,且12GE AB =, 同理可证://HF AB ,且12HF AB =, //EG HF ∴,且EG HF =,∴四边形EGFH 是平行四边形;(2)GH EF ⊥,理由:G F 、分别是BD BC 、的中点,12GF CD ∴=, 由(1)知12GE AB =, 又AB CD =,GE GF ∴=, 又四边形EGFH 是平行四边形,∴四边形EGFH 是菱形,GH EF ∴⊥;(3)E G 、分别是AD BD 、的中点,F H 、分别是BC AC 、的中点,//EG AB ∴,//HF AB ,12GE AB =, //EG HF ∴,同理可证//EH GF ,12GF CD =, ∴四边形EGFH 是平行四边形,∵AB CD =,GE GF ∴=,∴四边形EGFH 是菱形,20,70ABD BDC ∠=︒∠=︒,EG ∥AB ,GF ∥CD ,∴∠EGD=∠ABD=20°,∠BGF=∠BDC=70°,∴∠DGF=180°-∠BGF=110°,∴∠EGF=∠EGD+∠DGF=20°+110°=130°,∴∠GEH=180°-∠EGF=50º,∵FE 平分∠GEH ,∴∠GEF=11502522GEH ∠=⨯︒=︒.故答案为:25︒.【点睛】本题考查平行四边形,菱形判断与性质,求菱形内角,掌握平行四边形的判定方法,菱形的判定与性质,会利用菱形的性质求角度是解题关键.24.(1)见解析;(2)120°【分析】(1)根据直角三角形斜边上的中线等于斜边的一半求证;(2)根据补角定义和直角三角形性质可得∠MDA+∠MCB=120°,∠MDB+∠MCA=60°,再由等边三角形的性质得到∠BDC+∠ACD=60°,最后由对顶角相等和三角形内角和定理可得∠AOB=120°.【详解】(1)证明:由已知可得:1122MC AB MD AB ==,,∴MC=MD;(2)∵△MCD是等边三角形,∴∠DMC=60°,∴∠AMD+∠BMC=180°-60°=120°,与(1)同理有:MA=MD,MC=MB,∴∠MAD=∠MDA,∠MCB=∠MBC,∴2(∠MDA+∠MCB)=360°-(∠AMD+∠BMC)=360°-120°=240°,∴∠MDA+∠MCB=120°,∵∠ADB+∠BCA=180°,∴∠MDB+∠MCA=(∠ADB+∠BCA)-(∠MDA+∠MCB)=180°-120°=60°,∴∠BDC+∠ACD=(∠MDC+∠MCD)-(∠MDB+∠MCA)=120°-60°=60°,∴∠AOB=∠DOC=180°-(∠BDC+∠ACD)=180°-60°=120°.【点睛】本题考查等边三角形和直角三角形的综合应用,熟练掌握等边三角形和直角三角形的性质、补角定义、三角形内角和定理是解题关键.25.(1)见解析;(2)见解析.【分析】(1)连接GE,根据正方形对边平行,得∠AEG=∠CGE,根据菱形的对边平行,得∠HEG=∠FGE,利用两个角的差求解即可;(2)根据正方形的判定定理,证明∠GHE=90°即可.【详解】证明:(1)连接GE,∵AB∥CD,∴∠AEG=∠CGE,∵GF∥HE,∴∠HEG=∠FGE,∴∠HEA=∠CGF ;(2)∵四边形ABCD 是正方形,∴∠D=∠A=90°,∵四边形EFGH 是菱形,∴HG=HE ,在Rt △HAE 和Rt △GDH 中,AH DG HE HG=⎧⎨=⎩, ∴Rt △HAE ≌Rt △GDH ,∴∠AHE=∠DGH ,∵∠DHG+∠DGH=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴菱形EFGH 为正方形.【点睛】本题考查了正方形的性质和判定,菱形的性质,平行线的性质,熟记正方形的性质和判定是解题的关键.26.(1)见解析;(2)47BECD S =菱形【分析】(1)根据四边形ABCD 是平行四边形,得到AB CD =,//AB CD ,再根据BE AB =,得到BE CD =,利用一组对边平行且相等的四边形BECD 是平行四边形去判定.(2)先利用已知条件证四边形BECD 是菱形,再在Rt BOE △中,利用勾股定理求BO ,进而求BC ,则可求菱形面积.【详解】解:(1)∵四边形ABCD 是平行四边形,∴AB CD =,//AB CD ,又∵BE AB =,∴BE CD =,//BE CD ,∴四边形BECD 是平行四边形.(2)如图,连接DE ,交BC 于点O ,∵4AB BD ==,BE AB =,∴4BD BE ==,由(1)得四边形BECD 是平行四边形,∴BECD 是菱形,∴DE BC ⊥, ∵22DE = ∴122OE DE ==, 在Rt BOE △中,22224(2)14BO BE OE =-=-= ∴2214BC BO == ∴11214224722BECD S BC DE =⋅=⨯=菱形 【点睛】 本题考查了平行四边形、菱形性质和判定的综合应用,熟练掌握相关知识是解答此题的关键.。
数学教案认识四边形【篇一:2015人教版四边形的认识教案】四边形的认识教学内容:新人教版三年级上册第79、80页例1、例2。
教学目标:1、观察四边形,能区分辨认四边形,进一步认识正方形和长方形,探究它们的特征。
2、通过画一画、找一找、量一量、比一比、圈一圈等活动,培养学生观察、比较和概括、抽象的能力。
3、通过情境图和生活中的事物进入课堂,感受四边形无处不在,激发学生的学习兴趣。
教学重点、难点:能区分和辨认四边形,进一步认识长方形和正方形的特征。
教具准备:图形、三角形、尺子、多媒体课件等。
教学过程:一、情境导入、激发兴趣1.情境导入:图形是一个美丽的世界,我们的生活中有许多漂亮的图案都是由图形组成的,今天我们就一起走进图形的世界。
(出示图形卡片)2.找一找:把你认为是四边形的图形圈出来。
(板书:四边形)二、自主探究,认识特征1、认识四边形。
师:刚才同学们都非常厉害,能找出所有的四边形,请仔细一看,这些图形都有共同的特点哦,同学们你们也看看这些图形,你发现都有什么特征了吗?1)自己先观察,再小组讨论。
预设1:四条边,四个角。
预设2:四条直的边,四个角。
(2)判断四边形。
师:老师这里还有一些图形,请你判断一下它们是四边形吗?说说为什么这几个图形不是四边形?怎样的四条边才行呢?(3)找生活中的四边形。
师:你们表现很出色,老师欣赏你们。
四边形是我们生活中不可缺少的组成部分,下面我们就认真想一想,你在哪些物体的表面还见过四边形的踪迹。
2、画一画师:看来在我们的生活中,四边形无处不在,那么现在就让我们动动手画一画自己喜欢的四边形。
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●展示活动成果:让上来展示的小朋友说一说自己画的是什么图形,并告诉大家画的时候要注意什么?小结:同学们真厉害,不但发现四边形的特征,还知道了什么样的图形才是四边形、还找出了我们生活中的四边形而且还会画很多的四边形,真特别棒,给自己鼓鼓掌!三、探究长方形和正方形师:老师发现刚刚这么多同学画的都是长方形和正方形,看来这两个图形很特殊哦,特殊在哪呢?1、小组合作、自主探究用三角板的直尺比一比它们的角,量一量它们的边,你发现了什么?预设:长方形和正方形的角都是直角,长方形的对边相等,正方形的四条边都想等。
导学案课题四边形的认识课型综合备课人班级三年姓名时间学习目标使学生认识四边形的特征 进一步掌握长方形和正方形的特征初步认识平行四边形。
会在方格纸上画长方形、正方形和平行四边形。
教学重点四边形的认识教学难点四边形周长的计算学法指导小组探究法知识链接四边形导学流程学案导案自主学习主题图引入。
1、同学们,你们喜欢参加体育活动吗?你喜欢什么运动?(对学生进行热爱运动、积极参加体育锻炼的思想教育。
)2、这是什么地方?你看到了什么?(给充分的时间让学生同桌说或小组说。
)独立思考,小组内交流巡视指导合作探究下面的图形中,你认为是四边形的就把它选出来。
学生剪完后汇报 并说说理由小组长组织完成,汇报交流,并适时点拨学案整理四边形的认识四条直的边四边形有四个角形成清晰的知识网络达标检测在下面的方格中画出一个平行四边形巩固知识、及时测评、小组汇报盘点收获通过今天的学习你有哪些收获:你的不足是:完成后小组交流回答导学案课题平行四边形的认识课型综合备课人班级三年姓名时间学习目标1、使学生初步认识平行四边形 了解平行四边形的特点。
2、通过学生手动、脑想、眼看 使学生在多种感官的协调活动中积累感性认识 发展空间观念教学重点探究平行四边形的特点。
教学难点让学生动手画、剪平行四边形学法指导小组探究法知识链接四边形导学流程学案导案自主学习认识平行四边形 1、出示主题图。
出从图中你看到了哪些图形 指给同桌看。
2、出示带有平行四边形的实物图片。
它们是正方形吗是长方形吗?独立思考,小组内交流巡视指导合作探究感受平行四边形的特点 1让学生拿出三条硬纸条 用图钉把它们钉成三角形 然后拉一拉。
学生一边拉一边说自己的感受 2让学生拿出教师给他们准备的四条硬纸条 用图钉把它们钉成一个平行四边形形 然后拉一拉。
学生一边拉一边说自己的感受 3小组讨论操作 怎样才能使平行四边形拉不动呢 学生汇报时 要说说理由小组长组织完成,汇报交流,并适时点拨学案整理平行四边形的特点:——————、——————、——————形成清晰的知识网络达标检测1、说一说,你身边哪些物体的表面是四边形2、做一做:(1)用一张正方形纸剪一个平行四边形(2)用火柴杆摆出大小不同的平行四边形3、说一说,生说中什么物体的表面是平行四边形?4、判断(1)、四边形一定有四条边,四个角。
()(2)、长方形和正方形是四边形。
()(3)、四边形只有长方形和正方形。
()(4)、对边相等的四边形不是长方形就是正方形。
()巩固知识、及时测评、小组汇报盘点收获通过今天的学习你有哪些收获:你的不足是:完成后小组交流回答导学案课题周长课型综合备课人班级三年姓名时间学习目标通过活动使学生理解、掌握周长的概念 2、培养学生动手操作及概括能力教学重点理解掌握周长的概念教学难点理解掌握周长的概念学法指导小组探究法知识链接四边形导学流程学案导案自主学习⑴摸一摸自己的腰在哪 你能用软尺量一量自己腰的长度吗 ⑵谁能说说你的腰的长度 ⑶你的腰一圈的长度我们叫做腰的周长。
⑷摸一摸你腰的周长在哪。
独立思考,小组内交流巡视指导合作探究⑴通过刚才我们量腰的周长,找数学书、国旗、叶子的周长,描这些图形的周长,你能用自己的话说说什么是周长吗?⑵学生说一说.⑶打开课本看看书什么叫做周长? 全班读一读。
⑷图形一周的长度就叫做周长 为什么要加上封闭两个字呢?小组长组织完成,汇报交流,并适时点拨学案整理周长定义:封闭图形一周的长度,就是这个图形的( ) 形成清晰的知识网络达标检测1、小冬沿着跑道跑一圈,他跑的总长度是不是运动场的周长,在长方形镜框的四周围上铁皮,铁皮的长度是不是这个长方形镜框的周长?2、一个正方形,周围栏杆长32米,求一边长多少米?3、一个长方形运动场,长100米,宽50米,小军绕运动场跑了3圈,一共要跑多少米?4、用铁丝围一个长6厘米,宽4厘米的长方形。
至少要用多长的铁丝?5、一个正方形水池,它的边长是9分米,周长是多少分米?6、一块长方形花圃,长8米、宽6米。
它的一条长边靠墙,其余3边围上篱笆,篱笆至少要多少米?(画一画再算)7、用两个长5厘米、宽2厘米的小长方形拼成一个大长方形,拼成的大长方形的周长是多少厘米?(画一画再算)巩固知识、及时测评、小组汇报盘点收获你有什么不足:完成后小组交流回答导学案课题长方形和正方形的周长课型综合备课人班级三年姓名时间学习目标使学生进一步理解周长的概念 通过探究理解、掌握长方形、正方形的周长计算方法 并获得学习成功的体验。
教学重点长方形和正方形的周长计算方法教学难点长方形和正方形的周长计算方法学法指导小组探究法知识链接四边形导学流程学案导案自主学习1.什么叫做周长?2同桌摸一摸课桌的周长。
3长方形和正方形的边分别叫做什么?有什么特点?独立思考,小组内交流巡视指导合作探究1、量一量,算一算下面图形的周长分别是多少?()毫米()毫米()毫米小组长组织完成,汇报交流,并适时点拨学案整理长方形和正方形的周长长方形:(1)6+4+6+4=20(厘米)长+宽+长+宽=周长(2)6×2+4×2=20(厘米)长×2+宽×2=周长正方形: (1)8+8+8+8=32(厘米)边长+边长+边长+边长=周长(2)8×4=32(厘米)边长×4=周长形成清晰的知识网络达标检测1、一块长方形的台布,长5分米,宽4分米, 在它的四周绣上花边。
花边长多少分米?2、一个正方形的镜框,四周钉上木条,镜框的边长是4分米。
至少需要木条多少分米?3、一个长方形花坛的长是5米,宽是3米,这个花坛的周长是多少米?4、一个长方形花坛的长是5米,宽是3米。
这个花坛的周长是多少米?5、右图是一块边长为2分米的手帕,用90厘米长的绸带能围一圈吗?6、用2个边长为1厘米的正方形拼成一个长方形。
这个长方形的周长是多少厘米?7、一块一边靠墙的正方形苗圃,边长是50米,要围上篱笆,篱笆长多少米巩固知识、及时测评、小组汇报盘点收获通过今天的学习你有哪些收获:你的不足是:完成后小组交流回答导学案学案整理长方形周长:正方形周长:形成清晰的知识网络达标检测解决问题1.一块长方形菜地,长18米,宽9米,一面靠墙(如下图),其它三面墙围上竹篱笆。
竹篱笆长多少米?2.用一根铁丝围成一个长为26厘米,宽为16厘米的长方形还多2厘米,将它围成一个边长为20厘米的正方形还多多少厘米?3.一个长方形操场,长是100米,宽40米,围着这个操场跑一圈,要跑多少米?4.长方形的长16分米,宽6分米,如果长增加15分米,周长增加多少分米?长方形操场长60米,是宽的3倍,沿操场走三圈是多少米?5、一个长方形的的菜园,宽为16米,面积为320平方米,这个菜园的周长是多少米?画图画出一个由两个长方形和一个正方形拼成的正方形。
巩固知识、及时测评、小组汇报盘点收获通过今天的学习你有哪些收获:你的不足是:完成后小组交流回答课题长方形和正方形周长计算的练习课课型综合备课人班级三年姓名时间学习目标使学生进一步熟练掌握长方形和正方形周长计算的方法 并能根据实际情况灵活运用教学重点长方形和正方形周长计算的方法教学难点长方形和正方形周长计算的方法学法指导小组探究法知识链接长方形和正方形的周长导学流程学案导案自主学习 1.长方形和正方形都是()条线段围成的图形。
四个角都是()。
2.正方形是()的长方形。
3.一个正方形的边长是8厘米,它的周长是()厘米,一个长方形的长为26分米,宽为11分米,它的周长是()厘米。
独立思考,小组内交流巡视指导合作探究1.用2个边长为1厘米的正方形拼成一个长方形。
这个长方形的周长是多少?2..一个正方形的游泳池,围着这个游泳池走一圈要走120米,这个游泳池的边长是()米3.判断题 1.长方形中的长通常比宽要长。
() 2.两个长方形能够拼成一个正方形。
() 3.正方形是特殊的长方形。
()小组长组织完成,汇报交流,并适时点拨导学案学案整理估计长宽周长形成清晰的知识网络达标检测1、计算下面各图形的周长。
2、这块菜地长5米,宽4米,问围菜园的篱笆长多少米?3、用56米长的栅栏围成长方形(长、宽都是整米数),其中一面利用围墙,怎样围才能使长方形的面积最大?最大的面积是多少平方米?4、把两个边长是4分米的正方形拼成一个长方形,这个长方形的周长和面积各是多少?5、用16根1厘米长的小棒围成一个长方形或正方形,可以有多少种不同的围法?它们的面积各是多少?你发现了什么?有一块长方形菜地,它较长的一条边靠着墙,长20米,用篱笆将这个菜地围起来要40米。
这个菜地的面积是多少?6、一个周长是24厘米的长方形,正好对折剪开成两个正方形,这两个正方形周长的和是32厘米,原来长方形的面积是多少?巩固知识、及时测评、小组汇报盘点收获通过今天的学习你有哪些收获:你的不足是:完成后小组交流回答课题估计课型综合备课人班级三年姓名时间学习目标通过活动使学生进一步获得对长度单位的感性认识 掌握对长度估计的方法 培养学生估计的意识和动手操作的能力教学重点较准确地估计出物品的长度教学难点较准确地估计出物品的长度学法指导小组探究法知识链接长度单位导学流程学案导案自主学习1、一根铁丝长80厘米,做成一个正方形的铁丝框,它的面积是多少厘米?2、一个长方形的周长是64米,宽为8米,求这个长方形的长?3、一个长方形的长是20厘米,宽是15厘米,如果长和宽各增加5厘米,面积增加多少平方厘米?独立思考,小组内交流巡视指导合作探究1、一根铁丝可以围成一个边长为20厘米的正方形,用这根铁丝围成一个宽为18厘米的长方形,这个长方形的长是多少?2、一张长30厘米、宽20厘米的长方形纸,可以剪成多少张边长为5厘米的正方形纸?3、人行道长180米,宽3米,要在上面铺石砖,如果每铺9平方米需要6元,铺完这条人行道一共需要多少钱? 4、一根铁丝可以围成一个长7厘米、宽3厘米的长方形,如果这根铁丝围成一个正方形,这个正方形的面积是多少?小组长组织完成,汇报交流,并适时点拨。