结构动力学-6z
- 格式:ppt
- 大小:409.50 KB
- 文档页数:25
前言结构动力学是比较难学的一门课程,但是你一旦学会并且融会贯通,你就会为成为结构院士、大师和总工垫定坚实的基础。
结构动力学学习的难点主要有以下两个方面。
1 概念难理解,主要表现在两个方面,一是表达清楚难,如果你对概念理解的很透彻,那么你写的书对概念的表述也会言简意赅,切中要害(克里夫的书就是这个特点),有的书会对一个概念用了很多文字进行解释,但是还是没有说清楚,也有的书受水平限制,本身表述就不清楚。
二是理解难,有点只可意会不可言传的味道,老师讲的头头是道,自己听得云山雾绕。
2 公式推导过程难,一是力学知识点密集,推导过程需要力学概念清析,并且需要每一步的力学公式熟悉;二是需要一定的数学基础,而且有的是在本科阶段并没有学习的数学知识。
克里夫《结构动力学》被称为经典的结构动力学教材,但是也很难看懂。
之所以被称为经典,主要就是对力学的概念表达的语言准确,概念清楚。
为什么难懂呢?是因为公式的推导过程比较简单,省略过多。
本来公式的推导过程既需要力学概念清楚也需要数学公式熟悉,但是一般人不是力学概念不清楚,就是数学公式不熟悉,更有两者都不熟悉者。
所以在学习过程中感觉很难,本学习详解是在该书概念清楚的基础上,对力学公式推导过程进行详细推导,并且有的加以解释,帮助你在学习过程中加深理解和记忆。
达到融会贯通,为你成为结构院士、大师和总工垫定坚实的基础。
以下黑体字是注释,其它为原书文字。
[美] R∙克里夫《结构动力学》辅导学习详解第1章结构动力学概述… …第Ⅰ篇单自由度体系第2章基本动力体系的组成… …§2-5 无阻尼自由振动分析如上一节所述,有阻尼的弹簧-质量体系的运动方程可表示为mv̈(t)+cv̇(t)+kν(t)=p(t)(2-19)其中ν(t)是相对于静力平衡位置的动力反应;p(t)是作用于体系的等效荷载,它可以是直接作用的或是支撑运动的结构。
为了获得方程(2-19)的解,首先考虑方程右边等于零的齐次方程,即mv̈(t)+cv̇(t)+kν(t)=0(2-20)mv(t)+kν(t)=0(2-20a)此处公式应该为mv(t)+kν(t)=0,因为该节是无阻尼自由振,而且(2-20)的解,式(2-21)也是公式mv(t)+kν(t)=0的解在作用力等于零时产生的运动称为自由振动,现在要研究的即为体系的自由振动反应。
结构动力学Dynamics of Structures第六章分布参数体系Chapter 6 Continuous Systems华南理工大学土木工程系马海涛/陈太聪结构动力学第六章分布参数体系0of 24华南理工大学土木与交通学院土木工程系本章主要目的及内容目的:了解具有分布质量弹性连续体的动力分析方法;初步掌握一维结构的运动方程的建立和简单问题求解.内容:•梁的偏微分运动方程•梁的自振频率和振型•振型的正交性•用振型叠加法计算梁的动力反应结构动力学第六章分布参数体系1of 24华南理工大学土木与交通学院土木工程系§6.1 梁的偏微分运动方程剪切变形-Euler梁、Timoshenko梁转动惯量阻尼影响§6.1.1弯曲梁(欧拉梁)的横向振动方程结构动力学第六章分布参数体系2of 24华南理工大学土木与交通学院土木工程系§6.1 梁的偏微分运动方程Euler梁静力平衡方程:∂2∂x2⎡∂u(x,t)⎤⎢EI(x)⎥=P(x,t)2∂x⎣⎦2惯性力-分布强度:∂u(x,t)fI(x)=m(x)2∂t2Euler梁动力平衡方程:∂2∂x结构动力学2⎡∂u(x,t)⎤∂u(x,t)⎢EI(x)⎥=P(x,t)−m(x)22∂x∂t⎣⎦223of 24华南理工大学土木与交通学院土木工程系第六章分布参数体系§6.1 梁的偏微分运动方程等截面梁的运动方程:∂u(x,t)∂u(x,t)m+EI=P(x,t)24∂t∂x24运动方程:2⎡∂u(x,t)∂∂u(x,t)⎤m(x)+2⎢EI(x)⎥=P(x,t)22∂t∂x⎣∂x⎦22Euler梁动力平衡方程:∂2∂x结构动力学2⎡∂u(x,t)⎤∂u(x,t)⎢EI(x)⎥=P(x,t)−m(x)22∂x∂t⎣⎦224of 24华南理工大学土木与交通学院土木工程系第六章分布参数体系§6.1 梁的偏微分运动方程等截面梁的运动方程:∂u(x,t)∂u(x,t)m+EI=P(x,t)24∂t∂x24四阶偏微分方程(A fourth order partial differential equation)(1) 比较静力情形:du(x)EI=P(x)4dx4(2) 假设条件:Euler梁理论忽略转动惯量影响结构动力学第六章分布参数体系∂ux,t() P(x,t)=P(x)−m(x)2∂t25of 24华南理工大学土木与交通学院土木工程系§6.1.5考虑阻尼影响的梁的振动方程结构动力学第六章分布参数体系6of 24华南理工大学土木与交通学院土木工程系§6.1.5考虑阻尼影响的梁的振动方程横向阻尼力(分布线密度)∂u(x,t)fD(x)=−c(x)∂t梁内阻尼弯矩∂ε阻尼应力σD=cs∂t∂ε(x,η,t)MD(x)=∫σDηdA=∫csηdA∂tAA32∂u(x,t)∂⎛∂u⎞=∫csη⎜−2η⎟dA=−csI(x)2∂t⎝∂x⎠∂t∂xA第六章分布参数体系7of 24华南理工大学土木与交通学院土木工程系结构动力学§6.1.5考虑阻尼影响的梁的振动方程无阻尼梁的震动方程∂u(x,t)∂m(x)+22∂t∂x22⎡∂u(x,t)⎤⎢EI(x)⎥=P(x,t)2∂x⎣⎦2考虑阻尼力的贡献后,有∂u(x,t)∂u(x,t)m(x)+c(x)+2∂t∂t232∂u(x,t)∂u(x,t)⎤∂⎡EI(x)+csI(x)⎥=P(x,t)2⎢22∂x⎣∂x∂x∂t⎦2结构动力学第六章分布参数体系8of 24华南理工大学土木与交通学院土木工程系§6.2 梁的自振频率和振型§6.2.1 弯曲梁的自振频率和振型欧拉梁的横向自由振动运动方程m或写成∂u(x,t)2∂t2+EI∂u(x,t)4∂x4=0∂()∂()()=,()′=∂t∂xiEI +u′′′′=0u mu(x,t)=φ(x)q(t)使用分离变量法(the method of separation of variables)代入方程后,可得结构动力学第六章分布参数体系EI (t)=−φ′′′′(x)q(t)φ(x)qm9of 24华南理工大学土木与交通学院土木工程系§6.2.1 弯曲梁的自振频率和振型于是有(t)φ′′′′(x)mq=−φxEIqt命 (t)EIφ′′′′(x)q2=ω=−mφxqt2 q(t)+ωq(t)=0 4′′′′φ(x)−aφ(x)=0可得两个常微分方程分别求解式中a=结构动力学4ωmEI10of 24华南理工大学土木与交通学院土木工程系2第六章分布参数体系§6.2.1 弯曲梁的自振频率和振型方程 (t)+ωq(t)=0q2通解为q(t)=A1sinωt+B1cosωt对给定初始条件,有q(t)= (0)qωsinωt+q(0)cosωt结构动力学第六章分布参数体系11of 24华南理工大学土木与交通学院土木工程系§6.2.1 弯曲梁的自振频率和振型方程φ′′′′(x)−aφ(x)=04设解为φ(x)=Cesx代入方程后,有特征方程(s解方程得4−a)Ce=04sxs1,2,3,4=±a,±ia方程的通解−iax−axiaxaxφ(x)=C1e+C2e+C3e+C4e结构动力学第六章分布参数体系12of 24华南理工大学土木与交通学院土木工程系§6.2.1 弯曲梁的自振频率和振型方程φ′′′′(x)−aφ(x)=04用三角函数和双曲函数可将通解表示为φ(x)=Asinax+Bcosax+Csinhax+Dcoshax其中双曲函数e−esinhax=2ax−axe+e,coshax=2ax−ax(1)A, B, C, D为待定常数,通过边界条件确定位移、斜率、剪力或弯矩的自由边界条件(2)齐次代数方程由非零解条件得频率方程,可确定频率参数a,再确定振型参数A, B, C,D结构动力学第六章分布参数体系13of 24华南理工大学土木与交通学院土木工程系§6.2.1弯曲梁的自振频率和振型例6.1简支梁简支条件:x=0:φ(0)=0;M(0)=EIφ′′(0)=0x=L:φ(L)=0;M(L)=EIφ′′(L)=014of 24华南理工大学土木与交通学院土木工程系结构动力学第六章分布参数体系§6.2.1弯曲梁的自振频率和振型由左端边界条件(x = 0) 得:φ(0)=Asin0+Bcos0+Csinh0+Dcosh0=B+D=022′′φ(0)=a(−Asin0−Bcos0+Csinh0+Dcosh0)=a(−B+D)=0⇒B=D=0右端边界条件,有:AsinaL+CsinhaL=0−AsinaL+CsinhaL=0⎡sinaLsinhaL⎤⎧A⎫⎧0⎫=⎨⎬⎨⎬⎢−sinaLsinhaL⎥C⎣⎦⎩⎭⎩0⎭为保证有非零解,系数矩阵行列式必等于零sinaLsinhaL−sinaLsinhaL结构动力学第六章分布参数体系=0⇒频率方程sinaLsinhaL=0sinaL=015of 24华南理工大学土木与交通学院土木工程系§6.2.1弯曲梁的自振频率和振型根据正弦函数特性,由sinaL=0我们有:anL=nπ,n=1,2, ,∞aEI注意到ω=频率为:m22ωn=nπ(n=1,2, ,∞)24将sinaL=0代回到右端点边界条件方程,可得C = 0。
第十一章结构动力学???本章的问题:A.什么是动力荷载?B.结构动力计算与静力计算的主要区别在哪?C.本章自由度的概念与几何组成分析中的自由度概念有何不同?D.建立振动微分方程的方法有几种?E.什么是体系的自振频率、周期?F.什么是单自由度体系的自由振动?G.什么是单自由度体系的受迫振动?H.什么是多自由度体系的自由振动?I.什么是多自由度体系的受迫振动?J.什么叫动力系数?动力系数的大小与哪些因素有关?K.单自由度体系位移的动力系数与内力的动力系数是否一样?L.在振动过程中产生阻尼的原因有哪些?§11—1 概述前面各章都是结构在静力荷载作用下的计算,在实际工程中往往还遇到另外一类荷载,即荷载的大小和方向随时间而改变,这一章我们将讨论这类荷载对结构的反应。
荷载分:静力荷载:是指施力过程缓慢,不致使结构产生显著的加速度,因而可以略去惯性力影响的荷载。
在静力荷载作用下,结构处于平衡状态,荷载的大小、方向、作用点及由它所引起的结构的内力、位移等各种量值都不随时间而变化。
动力荷载:在动力荷载作用下,结构将发生振动,各种量值均随时间而变化,因而其计算与静力荷载作用下有所不同,二者的主要差别就在于是否考虑惯性力的影响。
有时确定荷载是静荷载还是动荷载要根据对结构的反应情况来确定,若在荷载作用下将使结构产生不容忽视的加速度,即动力效应,就应按动荷载考虑。
在工程结构中,除了结构自重及一些永久性荷载外,其他荷载都具有或大或小的动力作用。
当荷载变化很慢,其变化周期远大于结构的自振周期时,其动力作用是很小的,这时为了简化计算,可以将它作为静力荷载处理。
在工程中作为动力荷载来考虑的是那些变化激烈、动力作用显著的荷载。
如风荷载对一般的结构可当做静荷载,而对一些特殊结构往往当做动荷载考虑。
荷载按动力作用的变化规律,又可分为如下几种:(1) 简谐周期荷载这是指荷载随时间按正弦(或余弦)规律改变大小的周期性荷载,例如具有旋转部件的机器在等速运转时其偏心质量产生的离心力对结构的影响就是这种荷载。
一、 结构动力学是研究什么的?包含什么内容?结构离散化有什么方法、特点?结构动力学:是研究结构体系的动力特性及其在动力荷载作用下的动力反应分析原理和方法的一门理论和技术学科。
目的:在于为改善工程结构体系在动力环境中的安全性和可靠性提供坚实的理论基础。
结构动力分析的目的:确定动力荷载作用下结构的内力和变形;通过动力分析确定结构的动力特性。
离散化方法:把无限自由度问题转化为有限自由度的过程。
1、 集中质量法:是结构动力分析最常见的处理方法,它把连续分布的质量集中为几个质量,这样就把一个原为无限(动力)自由度的问题转化为有限自由度。
特点:采用了真实的物理量,具有直接、直观的优点。
2、 广义坐标法:能决定体系几何位置的彼此独立的量。
特点:采用形函数的概念,在全部体系上插值。
虽然广义坐标表示了形函数的大小,如果形函数是位移量,则广义坐标具有位移的量纲,但只有n 项叠加后才是真实的位移物理量。
因而广义坐标实际上并不是真实的物理量。
3、 有限元法:将整个结构离散化为有限个单元,它们在有限个节点上连接,通过选用适当的形函数,对各个单元进行近似的力学分析处理,建立起单元的节点位移和相应节点之间的关系,然后按照在连接点上的力平衡条件与变形连续条件,把单元拼接成原结构。
特点:综合了集中质量法和广义坐标法的特点:1与广义坐标法相似,采用了形函数的概念,但为分片的插值,形函数的表达式相对简单;2与集中质量法相同,也采用了真实的物理量,具有直观、直接的优点。
3.每一分段所选择的位移函数可以是相同的,故计算得以简化。
4、每个节点位移仅影响其邻近的单元,所以这个方法所导得的方程大部分是非藕合的,因此解方程式的过程大大地简化。
(不作要求,仅供参考)动力荷载的类型:简谐荷载、非荷载周期荷载、冲击荷载、一般任意荷载。
(不作要求,仅供参考)结构动力计算的特点:1动力反应要计算全部时间点上的一系列的解,比静力问题复杂要消耗更多的计算时间。